Faculty Profile - University of Houston
Skip to main content

Faculty Profile

Guoquan WangGuoquan Wang

Professor of Geophysics, Geodesy, and Geosensing Systems Engineering

Curriculum Vitae

Office: Science & Research 1, 231 (Office Hours: M/W | 10 AM   3 PM; F | 10 AM   4 PM)
Contact: gwang@uh.edu - 713-743-3224

Education: Ph.D., 2001, Solid Earth Geophysics, Institute of Geology, China Earthquake Administration

Google Scholar Profile
GitHub Profile
ResearchGate Profile
Website

Accepting Graduate Students? Yes

Graduate Student Opportunities

I am seeking graduate students to work on GPS and LIDAR technique developments and their applications to studies of earthquake, landslide, subsidence, faulting, coastal erosion, sea-level change, and structural monitoring.

Research Interests

  1. Coastal hazards (e.g., faulting, subsidence, wetland loss) in the Gulf Coast area
  2. Caribbean neotectonics
  3. GPS seismology, strong earthquake ground motion
  4. Applications of GPS and LIDAR technologies in natural hazards studies
  5. Geological hazard risk analysis and mitigation
  6. Field and structural monitoring and instrumentation
  7. Numerical modeling—Numerical 3D simulation (e.g., Parallel Super-Computer Numerical Simulation, MPI and Finite Difference Method)

Teaching

GEOL6324 Satellite Positioning and Geodesy (Each Fall Semester)
GEOL6396 Solid Earth Geophysics Seminar (Fall Semester, Odd Years)
GEOL6323 Geoscience Applications of GPS and LIDAR (Each Spring Semester)
GEOL4332 Geoscience Applications of GPS and LIDAR (Each Spring Semester)
GEOL 4355 Geophysics Field Camp (Each Summer)
GEOL4330 Introduction to Geophysics (Fall Semester, Even Years)

Major Representative Peer-Reviewed Journal Publications

* Denotes graduate student/postdoc under my primary supervision. All publications can be downloaded from my ResearchGate Profile.

  • Welch, J.**, Wang, G.*, Bao, Y., Zhang, S., Huang, G., & Hu, X., 2024. Unveiling the Hidden Threat: Drought-Induced Inelastic Subsidence in Expansive Soils. Geophysical Research Letters. 51,e2023GL107549.https://doi.org/10.1029/2023GL107549
  • Wang, K.**, Wang, G.*, Bao, Y., Wang, Y., Shen, Q., Zhang, Y., & Wang, H., 2024. Preventing Subsidence Reoccurrence in Tianjin: New Preconsolidation Head and Safe Pumping Buffer. Groundwater. https://doi.org/10.1111/gwat.13406
  • Zhang, Y., Wang, G.*, Zhu, X., Yu, D., Liang, H., & Wang, X., 2024. Comparative study on land subsidence monitoring and control in the Shandong Plain, China and the Greater Houston Area, USA. Hydrogeology & Engineering Geology, 51(1), 167–178. https://doi.org/10.16030/j.cnki.issn.1000-3665.202301025
  • Wang, G.*, 2023. A methodology for long-term offshore structural health monitoring using stand-alone GNSS: Case study in the Gulf of Mexico. Structural Health Monitoring, 23(1), 463–478. https://doi.org/10.1177/14759217231169934
  • Wang, G.*, 2023. The 95 per cent confidence interval of the mean sea-level rate derived from tide gauge data. Geophysical Journal International, 235(2), 1420–1433. https://doi.org/10.1093/gji/ggad311
  • Yu, X.**, Wang, G.*, Hu, X., Liu, Y., & Bao, Y. (2023). Land subsidence in Tianjin, China: Before and after the South-to-North Water Diversion. Remote Sensing, 15, 1647. https://doi.org/10.3390/rs15061647
  • Liu, Y.**, Wang, G.*, Yu, X., & Wang, K., 2023. Sentinel-1 InSAR and GPS-integrated long-term and seasonal subsidence monitoring in Houston, Texas, USA. Remote Sensing, 14(23), 6184. https://doi.org/10.3390/rs14236184
  • Cornelison**, B., & Wang, G.*, 2023. GNSS_Vel_95CI.py: A Python module for calculating the uncertainty of GNSS-derived site velocity. Journal of Surveying Engineering, 149(1), 06022001. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000410
  • Wang, G.*, 2023. Seasonal subsidence and heave recorded by borehole extensometers in Houston, Texas. Journal of Surveying Engineering, 149(1), 04022018. https://doi.org/10.1061/JSUED2.SUENG-1369
  • Wang, G.*, 2023. New preconsolidation heads following the long-term hydraulic-head decline and recovery in Houston, Texas. Groundwater, 61(5), 674–691. https://doi.org/10.1111/gwat.13271
  • Yu, X.**, Hu, X., Wang, G.*, Wang, K., & Chen, X., 2022. Machine-learning estimation of snow depth in 2021 Texas statewide winter storm using SAR imagery. Geophysical Research Letters, 49, e2022GL099119. https://doi.org/10.1029/2022GL099119
  • Wang, G.*, 2022. The 95% confidence interval for the GNSS-derived site velocities. Journal of Surveying Engineering, 148, 04021030. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000390
  • Wang, G.*, Greuter, A., Petersen, C. M., & Turco, M. J., 2022. Houston GNSS network (HoustonNet) for subsidence and faulting monitoring: Data analysis methods and products. Journal of Surveying Engineering, 148, 04022008. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000399
  • Liang, S., Gan, W., Xiao, G., Wang, G.*, Dai, C., Zhang, K., Dai, D., Li, Z., Zhang, L., Zhang, Y., et al., 2022. Strong ground motion recorded by high-rate GPS during the 2021 Ms 6.4 Yangbi, China, earthquake. Seismological Research Letters, 93, 3219–3233. http://doi.org/10.1785/0220220013
  • Wang, G.*, & Bao, Y., 2022. GNSS landslide monitoring aligned to regional reference frames. Acta Geodaetica et Cartographica Sinica, 51(10), 2107–2116. http://doi.org/10.11947/j.AGCS.2022.20220308
  • Wang, K.**, Wang, G.*, Cornelison, B., Liu, H., & Bao, Y., 2021. Land subsidence and aquifer compaction in Montgomery County, Texas, U.S.: 2000–2020. Geoenvironmental Disasters, 8, 28. https://doi.org/10.1186/s40677-021-00199-7
  • Zhou, X.**, Wang, G.*, Wang, K., Liu, H., Lyu, H., & Turco, M. J., 2021. Rates of natural subsidence and submergence along the Texas coast derived from GPS and tide gauge measurements (1904-2020). Journal of Surveying Engineering, 147(4), 04021020. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000371
  • Greuter, A., Turco, M. J., Petersen, C. M., & Wang, G.*, 2021. Impacts of groundwater withdrawal regulation on subsidence in Harris and Galveston counties, Texas, 1978-2020. GeoGulf Transactions, 71, 109–118.
  • Bao, Y., Wang, G.*, Yu, X., Zhao, R., Xiao, G., Xu, J., & Gan, W., 2021. Northeast China stable reference frame: NEChina20. Geodesy & Geodynamics, 41(9), 899–910.
  • Bao, Y., Yu, X., Wang, G.*, Zhou, H., Ding, X., Xiao, G., Shen, S., & Zhao, R., 2021. SChina20: A stable geodetic reference frame for ground movement and structural deformation monitoring in South China. Journal of Surveying Engineering, 147(3), 04021006. https://doi.org/10.1061/(ASCE)SU.1943-175428.0000352
  • Bao, Y., Wang, G.*, Yu, X., Xiao, G., Ding, X., Zhao, R., & Gan, W. (2020). Establishment and application of the stable North China reference frame: NChina20. Earthquake Research in China, 36(4), 788–805.
  • Ke, X., Xie, J., Zhang, Z., Zou, Y., & Wang, G.*, 2020. Quaternary stratigraphic division and paleoenvironmental evolution observed from core LZK1 on Hengsha Island, Shanghai. Acta Geologica Sinica (English Edition), 94(4), 1167–1177. https://doi.org/10.1111/1755-6724.14564
  • Guo, W., Li, P., Bao, Y., Zhang, M., Gao, Y., Wang, G.*, Li, R., & Duan, X., 2020. High-accuracy GPS monitoring of riverbed deformation due to shield tunneling. Journal of Beijing University of Technology, 46(5), 490–499. https://doi.org/10.11936/bjutxb2019030019
  • Guo, W., Wang, G.*, Bao, Y., Zhang, M., Sun, X., Zhao, R., & Gan, W., 2020. Tilt and settlement monitoring of high-rise buildings using GNSS precise point positioning and seasonal ground deformation. Geomatics and Information Science of Wuhan University, 45(07). https://doi.org/10.13203/j.whugis20190015
  • Zhao, R., Wang, G.*, Yu, X., Sun, X., Bao, Y., Xiao, G., Gan, W., & Shen, S., 2020. Rapid land subsidence in Tianjin, China derived from continuous GPS observations (2010–2019). Proceedings of the IAHS-the International Association of Hydrological Sciences, 97. https://doi.org/10.5194/piahs-97-1-2020
  • Agudelo, G.**, Wang, G.*, Liu, Y., Bao, Y., & Turco, M. J., 2020. GPS geodetic infrastructure for subsidence and fault monitoring in Houston, Texas, USA. Proceedings of the IAHS-the International Association of Hydrological Sciences, 97. https://doi.org/10.5194/piahs-97-1-2020
  • Wang, G.*, Zhou, X.**, Wang, K., Ke, X., Zhang, Y., Zhao, R., & Bao, Y., 2020. GOM20: A stable geodetic reference frame for subsidence, faulting, and sea-level rise studies along the coast of the Gulf of Mexico. Remote Sensing, 12(3), 350. https://doi.org/10.3390/rs12030350
  • Xiong, L.**, Wang, G.*, Bao, Y., Zhou, X., Wang, K., Liu, H., Sun, X., & Zhao, R., 2019. A rapid terrestrial laser scanning method for coastal erosion studies: A case study at Freeport, Texas, USA. Sensors, 19(15), 3252. https://doi.org/10.3390/s19153252
  • Guo, W., Wang, G.*, Bao, Y., Li, P., Zhang, M., Gong, Q., Li, R., Gao, Y., & Zhao, R., 2019. Detection and monitoring of tunneling-induced riverbed deformation using GPS and BeiDou: A case study. Applied Sciences, 9(13), 2759. https://doi.org/10.3390/app9132759
  • Liu, Y.**, Sun, X., Wang, G.*, Turco, M. J., Agudelo, G., Bao, Y., Zhao, R., & Shen, S., 2019. Current activity of the Long Point Fault in Houston, Texas constrained by continuous GPS measurements (2013–2018). Remote Sensing, 11(10), 1213. https://doi.org/10.3390/rs11101213
  • Wang, G.*, Liu, H., Mattioli, G., Miller, M., Feaux, K., Braun, J., 2019. CARIB18: A stable geodetic reference frame for geological hazard monitoring in the Caribbean region. Remote Sensing, 11, 1-35. https://doi.org/10.3390/rs11060680
  • Kearns, T. J.**, Wang, G.*, Turco, M., Welch, J., & Tsibanos, V., 2019. Houston16: A stable geodetic reference frame for subsidence and faulting study in the Houston metropolitan area, Texas, U.S. Geodesy & Geodynamics, 10(5), 382-393. https://doi.org/10.1016/j.geog.2018.05.005
  • Xiong, L.**, Wang, G.*, Bao, Y., Zhou, X., Sun, X., & Zhao, R., 2018. Detectability of repeated airborne laser scanning for mountain landslide monitoring. Geosciences, 8(12), 469. https://doi.org/10.3390/geosciences8120469
  • Wang, G.*, Bao, Y., Gan, W., Geng, J., Xiao, G., & Shen, J. S., 2018. NChina16: A stable geodetic reference frame for geological hazard studies in North China. Journal of Geodynamics, 115, 10-22. https://doi.org/10.1016/j.jog.2018.01.003
  • Bao, Y., Guo, W., Wang, G.*, Gan, W., Zhang, M., & Shen, J. S., 2018. Millimeter-accuracy structural deformation monitoring using stand-alone GPS: Case study in Beijing, China. Journal of Surveying Engineering, 144(1), 05017007. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000242
  • Wang, G.*, Turco, M., Soler, T., Kearns, T., & Welch, J., 2017. Comparisons of OPUS and PPP solutions for subsidence monitoring in the greater Houston area. Journal of Surveying Engineering, 143(4), 05017005. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000241
  • Zhou, X.**, Wang, G.*, Bao, Y., Xiong, L., Guzman, V., & Kearns, T. J., 2017. Delineating beach and dune morphology from massive terrestrial laser scanning data using the generic mapping tools. Journal of Surveying Engineering, 143(4), 04017008. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000223
  • Xiong, L.**, Wang, G.*, & Wessel, P., 2017. Anti-aliasing filtering for deriving high-accuracy DEMs from TLS data: Case study at Freeport, Texas. Computers & Geosciences, 100, 125-134. https://doi.org/10.1016/j.cageo.2016.11.006
  • Yu, J.**, & Wang, G.*, 2017. Introduction to the GNSS geodetic infrastructure in the Gulf of Mexico region. Survey Review, 352(49), 51-65. https://doi.org/10.1080/00396265.2015.1108069
  • Lyu, H., Wang, G.*, Shen, J. S., Lu, L., & Wang, G., 2016. Analysis and GIS mapping of flooding hazards on 10 May 2016, Guangzhou, China. Water, 447(8). https://doi.org/10.3390/w8100447
  • Yang, L.**, Wang, G.*, Huerfano, V., von Hillebrandt-Andrade, C. G., Martínez-Cruzado, J. A., & Liu, H., 2016. GPS geodetic infrastructure for natural hazards study in the Puerto Rico and Virgin Islands region. Natural Hazards, 83(1), 641-665. https://doi.org/10.1007/s11069-016-2344-7
  • Soler, T., & Wang, G.*, 2016. Interpreting OPUS-Static results accurately. Journal of Surveying Engineering, 142(4), 05016003. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000191
  • Yu, J.**, & Wang, G.*, 2016. GPS derived ground motions (2005–2014) within the Gulf of Mexico region referred to a stable Gulf of Mexico reference frame. Natural Hazards and Earth System Sciences, 16(7), 1583-1602. https://doi.org/10.5194/nhess-16-1583-2016
  • Yang, L.**, Wang, G.*, Bao, Y., Kearns, T. J., & Yu, J., 2016. Comparisons of ground-based and building-based CORS: A case study in the Puerto Rico and Virgin Islands region. Journal of Surveying Engineering, 142(3), 05015006. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000155
  • Wang, G.*, Welch, J.**, Kearns, T. J., Yang, L., & Serna, J., 2015. Introduction to GPS geodetic infrastructure for land subsidence monitoring in Houston, Texas, U.S.A. Proceedings of the Ninth International Symposium on Land Subsidence, Nov. 15-19, 2015, Nagoya, Japan. Proc. IAHS, 92, 1–7. https://doi.org/10.5194/piahs-92-1-2015
  • Liu, H.**, & Wang, G.*, 2015. Delineating relative motion between St. Croix and the Puerto Rico-Virgin Islands block using continuous GPS observations (1995-2014). International Journal of Geophysics, 915753, 1-9. https://doi.org/10.1155/2015/915753
  • Wang, G.*, Bao, Y., Cuddus, Y., Jia, X., Serna, J. J., & Jing, Q., 2015. A methodology to derive precise landslide displacements from GPS observations in tectonically active and cold regions: A case study in Alaska. Natural Hazards, 77, 1939-1961. https://doi.org/10.1007/s11069-015-1684-z
  • Kearns, T. J.**, Wang, G.*, Bao, Y., Jiang, J., & Lee, D., 2015. Current land subsidence and groundwater level changes in the Houston metropolitan area, Texas (2005-2012). Journal of Surveying Engineering, 141(4), 05015002, 1-16. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000147