Dissertation Defense - University of Houston
Skip to main content

Dissertation Defense

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Yuhang Wu

will defend his dissertation

Face Recognition in Unconstrained Conditions: Improving Face Alignment and Constructing a Pose-Invariant Compact Biometric Template


Face recognition has been significantly advanced in the past decade; however, challenges still remain under unconstrained conditions regarding variations in pose, illumination, and occlusion. Existing solutions tackle the unconstrained face recognition problem along two directions: (i) control the variations of the input to the recognition system, (ii) improve the robustness of the recognition system to these variations. In the first direction, the face frontalization module in 3D-aided face recognition significantly reduces the pose variation by mapping a facial image to a frontalized texture space with the help of a 3D facial model. However, because face frontalization heavily relies on the projection matrix generated by face alignment, its performance has been largely constrained by the robustness of face alignment under unconstrained conditions. In the second direction, using an ensemble deep neural network model for recognition has been demonstrated to be robust to pose variations. However, the biometric template generated by the ensemble model is much larger than the template generated by an individual model. To improve the robustness of face alignment under unconstrained conditions and significantly reduce the biometric template size, this dissertation presents solutions for both problems. The first contribution is a Globally Optimized Dual-Pathway (GoDP) landmark detector algorithm that is robust to head pose variations that up to 90 degrees. The second contribution is a pose estimation algorithm namely Annotated Face Model-based Alignment (AFMA) that estimates head pose without landmarks. The third contribution is a pose estimation algorithm with the name Sensible-Points based reinforced Hypothesis Refinement (SHR) which is robust to facial occlusion. The fourth contribution is a pose estimation algorithm with the name Convolutional Point-set Representation-based Face Alignment (CPRFA), it is robust to facial occlusion and large head pose variations. The fifth contribution is a neural network architecture that reduces the template size of an ensemble deep model by more than one magnitude based on self-occlusion masks, we name it Mask-Guided Compact Template Learning (MGCTL). When plugging GoDP and MGCTL into a 3D-aided face recognition pipeline, state-of-the-art performance is achieved on multiple databases in terms of both face recognition accuracy and template matching speed.

Date: Wednesday, November 14, 2018
Time: 2:00 PM
Place: HBS 317
Advisors: Dr. Ioannis A. Kakadiaris

Faculty, students, and the general public are invited.