Summer 2020
(Disclaimer: Be advised that some information on this page may not be current due to course scheduling changes.
Please view either the UH Class Schedule page or your Class schedule in myUH for the most current/updated information.)
GRADUATE COURSES  SUMMER 2020
Course  Section  Course Title & Session  Course Day & Time  Rm #  Instructor 
Math 4364  01/ Math 5344  01  19327/19591  Intro. to Scientific Computing (Session #3: 06/01—07/25) 
TWTh, 2—4PM  Online  A. Török 
Math 4377  01/ Math 6308  01  11070/19601  Advanced Linear Algebra I (Session #2: 06/01—07/01) 
MTWThF, 10AM—Noon  (online)  A. Török 
Math 4378  01 / Math 6309  01  12135/19602  Advanced Linear Algebra II (Session #4: 07/06—08/05) 
MTWThF, Noon—2PM  (online)  A. Haynes 
Math 4389  03  15825 
Survey of Undergraduate Math 
MTWThF, 10AM—Noon  (online)  D. Blecher 
Course  Section  Course Title  Course Day & Time  Instructor 
Math 5310  15815  History of Mathematics (Session #4: 07/06—08/05) 
(online)  S. Ji 
Math 5336  11577  Discrete Mathematics (Session #2: 06/01—07/01) 
(online)  K. Kaiser 
Math 5341  16335  Mathematical Modeling (Session 1: 06/01—08/07) 
(online)  J. Morgan 
Math 5344  19591  Intro. to Scientific Computing (Session #3: 06/01—07/25) 
(online)  T.W. Pan 
Math 5389  14076  Survey of Mathematics (Session #2: 06/01—07/01) 
(online)  G. Etgen 
GRADUATE COURSES (under construction)
Course  Section  Course Title  Course Day & Time  Rm #  Instructor 
Math 6308 
19601  Advanced Linear Algebra I (Session #2: 06/01—07/01) 
MTWThF, 10AM—Noon  (online)  A. Török 
Math 6309 
19602  Advanced Linear Algebra II (Session #4: 07/06—08/05) 
MTWThF, Noon—2PM  (online)  A. Haynes 
Math 6386 
18607  Big Data Analytics (Session #3: 06/01—07/21) 
Fr., 3—5PM  (online)  D. Shastri 
Course Details
SENIOR UNDERGRADUATE COURSES
Math 4364  Intro. to Scientific Computing


Prerequisites:  MATH 3331 or MATH 3321 
Text(s):  Numerical Analysis (9th edition), by R.L. Burden and J.D. Faires, BrooksCole Publishers. ISBN: 9780538733519 
Description:  Root finding, interpolation and approximation, numerical differentiation and integration, numerical linear algebra, numerical methods for differential equations 
<
Math 4377  Advanced Linear Algebra I


Prerequisites:  MATH 2331 and MATH 3325, and three additional hours of 30004000 level Mathematics. 
Text(s):  Linear Algebra, 5th Edition by Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence. ISBN: 9780134860244 
Description:  Syllabus: Chapter 1, Chapter 2, Chapter 3, Chapter 4 (4.14.4), Chapter 5 (5.15.2) (probably not covered) Course Description: The general theory of Vector Spaces and Linear Transformations will be developed in an axiomatic fashion. Determinants will be covered to study eigenvalues, eigenvectors and diagonalization. Grading: There will be three Tests and the Final. I will take the two highest test scores (60%) and the mandatory final (40%). Tests and the Final are based on homework problems and material covered in class. 
<< back to top >>
Math 4378  Advanced Linear Algebra II


Prerequisites:  Math 4377 or Math 6308 
Text(s):  Linear Algebra, 5th edition, by Friedberg, Insel, and Spence, ISBN: 9780134860244 
Description:  The instructor will cover Sections 57 of the textbook. Topics include: Eigenvalues/Eigenvectors, CayleyHamilton Theorem, Inner Products and Norms, Adjoints of Linear Operators, Normal and SelfAdjoint Operators, Orthogonal and Unitary Operators, Jordan Canonical Form, Minimal Polynomials. 
<< back to top >>
Math 4389  Survey of Undergraduate Math


Prerequisites:  MATH 3330, MATH 3331, MATH 3333, and three hours of 4000level Mathematics. 
Text(s):  Instructors notes 
Description:  A review of some of the most important topics in the undergraduate mathematics curriculum. 
ONLINE GRADUATE COURSES
<< back to top >>
MATH 5310  History of Mathematics


Prerequisites:  Graduate standing 
Text(s):  No textbook is required. 
Description:  This course is designed to provide a collegelevel experience in history of mathematics. Students will understand some critical historical mathematics events, such as creation of classical Greek mathematics, and development of calculus; recognize notable mathematicians and the impact of their discoveries, such as Fermat, Descartes, Newton and Leibniz, Euler and Gauss; understand the development of certain mathematical topics, such as Pythagoras theorem, the real number theory and calculus. Aims of the course: To help students to understand the history of mathematics; to attain an orientation in the history and philosophy of mathematics; to gain an appreciation for our ancestor's effort and great contribution; to gain an appreciation for the current state of mathematics; to obtain inspiration for mathematical education, and to obtain inspiration for further development of mathematics. Online course is taught through Blackboard Learn, visit http://www.uh.edu/webct/ for information on obtaining ID and password. The course will be based on my notes. Homework and Essays assignement are posted in Blackboard Learn. There are four submissions for homework and essays and each of them covers 10 lecture notes. The dates of submission will be announced. All homework and essays, handwriting or typed, should be turned into PDF files and be submitted through Blackboard Learn. Late homework is not acceptable. There is one final exam in multiple choice. Grading: 40% homework, 45% projects, 15 % Final exam 
<< back to top >>
MATH 5336  Discrete Mathematics


Prerequisites:  Graduate standing 
Text(s):  Discrete Mathematics and Its Applications, Kenneth H. Rosen, seventh edition, McGraw Hill, ISBN13 9780072880083, ISBN10 0072880082. Instructor lecture note: Plus: on the ZermeloFraenkel Axioms and Equivalence of Sets. 
Description: 
Syllabus: Chapter 1 (Logic and Proofs): 1.1, 1.3, 1.4 1.6 , Chapter 2 (Sets and Functions), Chapter 5 (Induction): 5.15.3, Chapter 9 (Relations) The Zermelo Fraenkel Axioms; Equivalence of Sets in form of my notes. Grading: Midterm is worth 40%, the final is worth 40% and Homework is worth 20%. For turning in Homework, students need to get the software program Scientific Notebook. 
<< back to top >>
MATH 5341  Mathematical Modeling


Prerequisites:  Graduate standing. Calculus III and Linear Algebra 
Text(s):  Notes will be provided. 
Description: 
Course Overview: Basics of random sampling and an introduction to Monte Carlo methods, a review of multivariable calculus and linear algebra, orthogonality, projection and visualization in higher dimensions, least squares approximation and multiple linear regression, discrete and continuous dynamical systems, stability theory associated with steady states and periodic solutions for continuous and discrete dynamical systems, periodic solutions for discrete dynamical systems, and multiple applications. Computations will be part of regular assignments, and I'll provide guidance and sample code using Excel, Matlab and Python. Students who decide to use Excel are expected to have access and basic familiarity with Excel, but they are not expected to know advanced spreadsheet functionality or have programming experience with VBA. Students will not be tested over Excel/VBA, Matlab, Python, etc. but it will be necessary to use these types of tools to complete many of the computations in the assignments.

<< back to top >>
MATH 5344  Intro. to Scientific Computing


Prerequisites:  Graduate standing and MATH 3331 or MATH 3321 
Text(s):  Numerical Analysis (9th edition), by R.L. Burden and J.D. Faires, BrooksCole Publishers. ISBN: 9780538733519 
Description:  Root finding, interpolation and approximation, numerical differentiation and integration, numerical linear algebra, numerical methods for differential equations 
<< back to top >>
<< back to top >>
MATH 5389  Survey of Mathematics


Prerequisites:  Graduate standing 
Text(s):  Instructor's notes 
Description:  A review and consolidation of undergraduate courses in linear algebra, differential equations, analysis, probability, and astract algebra. Students may not receive credit for both MATH 4389 and MATH 5389. 
GRADUATE COURSES
<< back to top >>
Prerequisites:  Graduate standing. MATH 2331 and MATH 3325, and three additional hours of 30004000 level Mathematics. 
Text(s):  Linear Algebra, 5th Edition by Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence. ISBN: 9780134860244 
Description: 
Syllabus: Chapter 1, Chapter 2, Chapter 3, Chapter 4 (4.14.4), Chapter 5 (5.15.2) (probably not covered) 
<< back to top >>
Prerequisites:  Graduate standing. Math 4377 or Math 6308 
Text(s):  Linear Algebra, 5th edition, by Friedberg, Insel, and Spence, ISBN: 9780134860244 
Description: 
The instructor will cover Sections 57 of the textbook. Topics include: Eigenvalues/Eigenvectors, CayleyHamilton Theorem, Inner Products and Norms, Adjoints of Linear Operators, Normal and SelfAdjoint Operators, Orthogonal and Unitary Operators, Jordan Canonical Form, Minimal Polynomials. 
<< back to top >>
MATH 6386 (18607)  Big Data Analytics


Prerequisites:  Graduate standing. Students must be in the Statistics and Data Science, MS program 
Text(s):  TBA 
Description: 
TBA 