Faculty Profile - University of Houston
Skip to main content

Faculty Profile

Naihao ChiangNaihao Chiang

Assistant Professor; Drs. Yao and Song Endowed Professor of Chemistry
Department of Chemistry

Office: Fleming, 139L
Contact: nchiang@central.uh.edu - 713-743-6621

Education: Ph.D., Northwestern University, 2017; B.S., University of Southern California, 2010

Postdoctoral Fellow, UCLA, 2017-2021

Website

I will focus on fundamental light-matter interactions: manipulate light to induce new chem­i­cal and physical phenomena, and leverage these to pursue interdisciplinary projects linking physics, chem­i­s­try, materials science and biomedical engineering. The research builds upon my skillset and training, and involves instru­mentation, technology, and materials development to extend the capa­bil­i­ties of nano­scale op­tical processes. I seek to formulate and interrogate new plasmonic/optical cavity enabled near-field phe­no­mena for fundamental studies of liquid-phase surface chem­is­try, with the aid of applica­tions in regenerative medicine. This will be achieved via the following interrelated projects:

Coherent Control of Surface Chemistry

Figure 1Quantum coherent control of surface-bound molecules will introduce new chemical mechanisms at surfaces. I will use weak and moderately intense laser field, with the aid of plasmon-enhanced near-field effects, to manipulate the molecular alignments and torsional angles in the liquid-phase. Systems of interest will focus on isolated single-molecules and self-assembled monolayers including biomimetic surfaces. Degree of control will be monitored by laser-coupled, non-contact atomic force microscopy and plasmon-enhanced near-field linear and nonlinear optical spectroscopy with single-molecule resolution. The goal is to maintain and generate energy states that are inaccessible using conventional methods.

Several fundamental advances are anticipated including establishment of a powerful platform for manipulating photochemistry and transformation of our ability to control and to reprogram chemical reaction pathways. Technologically, these fundamental developments will impact efforts to introduce precise controls in biomedical applications such as strategies for optical intracellular delivery and cell manipulations.

Non-Contact Plasmon-Induced Intracellular Delivery

Figure 2The goal is to develop plasmon-induced intracellular delivery and imaging platforms capable of facilitating efficient and precise delivery of a variety of cargos into living cells, while maximizing their survivability. This NIH funded R00 project has three specific aims which target improved delivery efficiency, throughput, and cell viability in intracellular delivery with an emphasis on stem cell gene editing.

A universal pathway will be created for non-contact intercellular delivery of nanomaterials with varied physical properties and biochemical functionalities. This will provide fundamental underpinnings for development of new minimally-invasive diagnostic methods, single-cell research, and genome therapies. The strength of this research is its broad interdisciplinary insight and scope. This presents unique capabilities that can drive innovation in fundamental science and translational medicine.

  • K99/R00 Pathway to Independence Award, NIH National Institute of Biomedical Imaging and Bioengineering, 2019
  • Division of Chemical Physics Young Investigator Travel Award, American Physical Society, 2018
  • Outstanding Researcher Award, International Institute for Nanotechnology, 2016
  • Dorothy M. and Earl S. Hoffman Travel Grant, American Vacuum Society, 2016
  • Award for an Outstanding Poster Presentation, Gordon Research Conference on Vibrational Spectroscopy, 2016
  • American Vacuum Society Nanometer-Scale Science and Technology Division Graduate Award, Finalist, 2015
  1. N. Chiang,* L. Scarabelli,* G. Vinnacombe-Willson,† L. Pérez, C. Dore, A. Mihi, P. S. Weiss and S. Jonas, “Large-scale Soft Lithographic Patterning of Plasmonic Nanoparticles” 2020, 3, 282.
  2. G. Vinnacombe-Willson,† N. Chiang, P. S. Weiss, S. Tolbert and L. Scarabelli, “Seeded-Growth Experiment Demonstrating Size- and Shape-Dependence on Gold Nanoparticle-Light Interactions”, J. Chem. Educ. 2020, 98, 546.
  3. G. Vinnacombe-Willson,† N. Chiang, L. Scarabelli, Y. Hu, L. Heidenreich, X. Li,† Y. Gong,† D. Inouye,† T. Fisher, P. S. Weiss and S. Jonas, “In Situ Shape Control of Thermoplasmonic Gold Nanostars on Oxide Substrates for Hyperthermia-Mediated Cell Detachment”, ACS Central Science 2020, 6, 11, 2105.
  4. J. Belling, L. Heidenreich, Z. Tian, A. Mendoza, T-T. Chiou, Y. Gong,† N. Chen, T. Young, N. Wattanatorn,† J. Park, L. Scarabelli, N. Chiang, J. Takahashi, S. Young, A. Stieg, S. De Oliveira, T. Huang, P. S. Weiss and S. Jonas, "Acoustofluidic Gene Delivery to Human Hematopoietic Stem and Progenitor Cells", Proc. Natl. Acad. Sci. 2020, 117, 10976.
  5. C. Zhao, X. Xu, A. Ferhan, N. Chiang, J. Jackman, Q. Yang, W. Liu, A. Andrews, N-J. Cho and P. S. Weiss, "Scalable Fabrication of Quasi-One-Dimensional Au Nanoribbons for Plasmonic Sensing" Nano Lett. 2020, 20, 1747.
  6. S. Wang,† N. Chiang, H. Gao, N. Wattanatorn,† K. Barr,† P. Sautet, A. Alexandrova and P. S. Weiss, "Distribution of Photoinduced Charges in Titanyl Phthalocyanine Self-Assembled Monolayer", Chem. Mater. 2019, 31, 10109.
  7. S. Wang,† N. Wattanatorn,† N. Chiang, Y. Zhao, M. Kim, H. Ma, A. Jen and P. S. Weiss, "Photo-Induced Charge Transfer in Single-Molecule p-n Junctions", J. Phys. Chem. Lett. 2019, 10, 2175.
  8. D. Nguyen, G. Kang,† N. Chiang, X. Chen, T. Seideman, M. Hersam, G. Schatz and R. P. Van Duyne, "Probing Molecular-Scale Catalytic Interactions between Oxygen and Cobalt Phthalocyanine Using Tip-Enhanced Raman Spectroscopy", J. Am. Chem. Soc. 2018, 140, 5948.
  9. N. Chiang, N. Jiang, L. Madison, E. Pozzi, G. Goubert, M. Wasielewski, T. Seideman, M. Ratner, M. Hersam, G. Schatz and R. P. Van Duyne, "Probing Intermolecular Vibrational Symmetry Breaking in Self-Assembled Monolayers with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy", Am. Chem. Soc. 2017, 139, 18664.
  10. X. Xu, Q. Yang, N. Wattanatorn,† C. Zhao, N. Chiang, S. J. Jonas and P. S. Weiss, "Multiple-Patterning Nanosphere Lithography for Fabricating Periodic Three-Dimensional Hierarchical Nanostructures", ACS Nano 2017, 11, 10384. [Cover Article]
  11. D. Kurouski, N. Large, N. Chiang, A-I. Henry, T. Seideman, G. C. Schatz and R. P. Van Duyne, "Unraveling Near- and Far-Field Relationship of 2D SERS Substrates Using Wavelength-Scan Surface-Enhanced Raman Excitation Spectroscopy (WS-SERES)", J. Phys. Chem. C 2017, 121, 14737.
  12. A. Zrimsek, N. Chiang, M. Mattei,† S. Zaleski, C. Chapman, M. McAnally, A-I. Henry, G. Schatz and R. P. Van Duyne, "Probing Single Molecule Chemistry with SERS and TERS", Chem. Rev. 2017, 117, 7583.
  13. E. Pozzi, G. Goubert, N. Chiang, N. Jiang, C. Chapman, M. McAnally, A-I. Henry, T. Seideman, G. Schatz, M. Hersam and R. P. Van Duyne, "Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy", Chem. Rev. 2017, 117, 4961. [Cover Article]
  14. N. Chiang, X. Chen, G. Goubert, D. Chulhai, X. Chen, E. Pozzi, N. Jiang, M. Hersam, T. Seideman, L. Jensen and R. P. Van Duyne, "Conformational Contrast of Surface-Mediated Conformational Switches Yields Angstrom-Scale Spatial Resolution in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy", Nano Lett. 2016, 16, 7774. [C&EN News Article]
  15. B. Sharma, L. Madison, P. Bugga, A-I. Henry, M. Blaber, N. Greeneltch, N. Chiang, M. Mrksich, G. Schatz and R. P. Van Duyne, "Bisboronic Acids for Selective, Physiologically Relevant Direct Glucose Sensing with Surface-Enhanced Raman Spectroscopy", J. Am. Chem. Soc. 2016, 38, 18952.
  16. E. Pozzi, N. Gruenke, N. Chiang, D. Zhdanov, N. Jiang, T. Seideman, G. Schatz, M. Hersam and R. P. Van Duyne, "Operational Regimes in Pulsed-Excitation Ultrahigh-Vacuum SERS", J. Phys. Chem. Lett. 2016, 7, 2971.
  17. N. Jiang, D. Kurouski, E. Pozzi, N. Chiang, M. Hersam and R. P. Van Duyne, "Tip-Enhanced Raman Spectroscopy: From Concepts to Practical Applications", Chem. Phys. Lett. 2016, 659, 16. [Cover Article]
  18. N. Jiang, N. Chiang, L. Madison, E. Pozzi, M. Wasielewski, T. Seideman, M. Ratner, M. Hersam, G. Schatz and R. P. Van Duyne, "Nanoscale Chemical Imaging of a Dynamic Molecular Phase Boundary with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy", Nano Lett. 2016, 16, 3898.
  19. D. Kurouski, N. Large, N. Chiang, N. Greeneltch, K. T. Carron, T. Seideman, G. C. Schatz and R. P. Van Duyne, "Unraveling Near-Field and Far-Field Relationships of 3D SERS Substrates - A Combined Experimental and Theoretical Analysis", Analyst 2016, 141, 1779.
  20. N. Chiang, N. Jiang, D. Chulhai, E. Pozzi, M. Hersam, L. Jensen, T. Seideman and R. P. Van Duyne, "Molecular-Resolution Interrogation of a Porphyrin Monolayer by Tip-Enhanced Raman and Fluorescence Spectroscopy", Nano Lett. 2015, 15, 4114.
  21. P. P. Pal, N. Jiang, M. D. Sonntag, N. Chiang, E. T. Foley, M. C. Hersam, R. P. Van Duyne and T. Seideman, "Plasmon Enhanced Transport in Tip-Enhanced Raman Spectroscopic Junctions", J. Phys. Chem. Lett. 2015, 6, 4210.
  22. E. A. Pozzi, M. D. Sonntag, N. Jiang, N. Chiang, T. Seideman, M. C. Hersam, and R. P. Van Duyne, "Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy with Picosecond Excitation", J. Phys. Chem. Lett. 2014, 5, 2657.
  23. E. Loginov, L. F. Gomez, N. Chiang, A. Halder, N. Guggemos, V. V. Kresin and A. F. Vilesov, "Photoabsorption of AgN(N∼6–6000) Nanoclusters Formed in Helium Droplets: Transition from Compact to Multicenter Aggregation", Phys. Rev. Lett. 2011, 106, 233401.