

An Algorithm for Building Decision Trees

- C4.5 is a computer program for inducing classification rules in the form of decision trees from a set of given instances
- C4.5 is a software extension of the basic ID3 algorithm designed by Quinlan

Algorithm Description

- Select one attribute from a set of training instances
- Select an initial subset of the training instances
- Use the attribute and the subset of instances to build a decision tree
- Use the rest of the training instances (those not in the subset used for construction) to test the accuracy of the constructed tree
- If all instances are correctly classified stop
- If an instances is incorrectly classified, add it to the initial subset and construct a new tree
- Iterate until
 - A tree is built that classifies all instance correctly
 - OR
 - A tree is built from the entire training set

Simplified Algorithm

- Let T be the set of training instances
- Choose an attribute that best differentiates the instances contained in T (C4.5 uses the Gain Ratio to determine)
- Create a tree node whose value is the chosen attribute
 - Create child links from this node where each link represents a unique value for the chosen attribute
 - Use the child link values to further subdivide the instances into subclasses

Example

Credit Card Promotion Data from Chapter 2

Example – Credit Card Promotion Data Descriptions

Attribute Name	Value Description	Numeric Values	Definition
Income Range	20-30K, 30-40K, 40-50K, 50-60K	20000, 30000, 40000, 50000	Salary range for an individual credit card holder
Magazine Promotion	Yes, No	1,0	Did card holder participate in magazine promotion offered before?
Watch Promotion	Yes, No	1,0	Did card holder participate in watch promotion offered before?
Life Ins Promotion	Yes, No	1,0	Did card holder participate in life insurance promotion offered before?
Credit Card Insurance	Yes, No	1,0	Does card holder have credit card insurance?
Sex	Male, Female	1,0	Card holder's gender
Age	Numeric	Numeric	Card holder's age in whole years

Problem to be Solved from Data

- Acme Credit Card Company is going to do a life insurance promotion – sending the promo materials with billing statements. They have done a similar promotion in the past, with results as represented by the data set. They want to target the new promo materials to credit card holders similar to those who took advantage of the prior life insurance promotion.
- Use supervised learning with output attribute = life insurance promotion to develop a profile for credit card holders likely to accept the new promotion.

Sample of Credit Card Promotion Data (from Table 2.3)

Income Range	Magazine Promo	Watch Promo	Life Ins Promo	CC Ins	Sex	Age
40-50K	Yes	No	No	No	Male	45
30-40K	Yes	Yes	Yes	No	Female	40
40-50K	No	No	No	No	Male	42
30-40K	Yes	Yes	Yes	Yes	Male	43
50-60K	Yes	No	Yes	No	Female	38
20-30K	No	No	No	No	Female	55
30-40K	Yes	No	Yes	Yes	Male	35
20-30K	No	Yes	No	No	Male	27
30-40K	Yes	No	No	No	Male	43
30-40K	Yes	Yes	Yes	No	Female	41

Problem Characteristics

- Life insurance promotion is the output attribute
- Input attributes are income range, credit card insurance, sex, and age
 - Attributes related to the instance's response to other promotions is not useful for prediction because new credit card holders will not have had a chance to take advantage of these prior offers (except for credit card insurance which is always offered immediately to new card holders)
 - Therefore, magazine promo and watch promo are not relevant for solving the problem at hand disregard do not include this data in data mining

Apply the Simplified C4.5 Algorithm to the Credit Card Promotion Data

Income Range	Magazine Promo	Watch Promo	Life Ins Promo	CC Ins	Sex	Age
40-50K	Yes	No	No	No	Male	45
30-40K	Yes	Yes	Yes	No	Female	40
40-50K	No	No	No	No	Male	42
30-40K	Yes	Yes	Yes	Yes	Male	43
50-60K	Yes	No	Yes	No	Female	38
20-30K	No	No	No	No	Female	55
30-40K	Yes	No	Yes	Yes	Male	35
20-30K	No	Yes	No	No	Male	27
30-40K	Yes	No	No	No	Male	43
30-40K	Yes	Yes	Yes	No	Female	41

Training set = 15 instances (see handout)

Apply the Simplified C4.5 Algorithm to the Credit Card Promotion Data

Income Range	Magazine Promo	Watch Promo	Life Ins Promo	CC Ins	Sex	Age
40-50K	Yes	No	No	No	Male	45
30-40K	Yes	Yes	Yes	No	Female	40
40-50K	No	No	No	No	Male	42
30-40K	Yes	Yes	Yes	Yes	Male	43
50-60K	Yes	No	Yes	No	Female	38
20-30K	No	No	No	No	Female	55
30-40K	Yes	No	Yes	Yes	Male	35
20-30K	No	Yes	No	No	Male	27
30-40K	Yes	No	No	No	Male	43
30-40K	Yes	Yes	Yes	No	Female	41

Step 2: Which input attribute best differentiates the instances?

For each case (attribute value), how many instances of Life Insurance Promo = Yes and Life Insurance Promo = No?

For each branch, choose the most frequently occurring decision. If there is a tie, then choose Yes, since there are more overall Yes instances (9) than No instances (6) with respect to Life Insurance Promo

Evaluate the classification model (the tree) on the basis of accuaracy. How many of the 15 training instances are classified correctly by this tree?

Apply Simplified C4.5

- Tree accuracy = 11/15 = 73.3%
- Tree cost = 4 branches for the computer program to use
- Goodness score for Income Range attribute is 11/15/4 = 0.183
- Including Tree "cost" to assess goodness lets us compare trees

Apply Simplified C4.5 Consider a Different Top-Level Node

For each case (attribute value), how many instances of Life Insurance Promo = Yes and Life Insurance Promo = No?

For each branch, choose the most frequently occurring decision. If there is a tie, then choose Yes, since there are more total Yes instances (9) than No instances (6).

Evaluate the classification model (the tree). How many of the 15 training instances are classified correctly by this tree?

Apply Simplified C4.5

- Tree accuracy = 9/15 = 60.0%
- Tree cost = 2 branches for the computer program to use
- Goodness score for Income Range attribute is 9/15/2 = 0.300
- Including Tree "cost" to assess goodness lets us compare trees

What's problematic about this?

How many instances for each case? A binary split requires the addition of only two branches. Why 43?

For each branch, choose the most frequently occurring decision. If there is a tie, then choose Yes, since there are more total Yes instances (9) than No instances (6).

For this data, a binary split at 43 results in the best "score".

Apply Simplified C4.5

- Tree accuracy = 12/15 = 80.0%
- Tree cost = 2 branches for the computer program to use
- Goodness score for Income Range attribute is 12/15/2 = 0.400
- Including Tree "cost" to assess goodness lets us compare trees

? No

How many instances for each case? A binary split requires the addition of only two branches. Why 43?

? No

For each branch, choose the most frequently occurring decision. If there is a tie, then choose Yes, since there are more total Yes instances (9) than No instances (6).

Evaluate the classification model (the tree). How many of the 15 training instances are classified correctly by this tree?

Apply Simplified C4.5

- Tree accuracy = 11/15 = 73.3%
- Tree cost = 2 branches for the computer program to use
- Goodness score for Income Range attribute is 11/15/2 = 0.367
- Including Tree "cost" to assess goodness lets us compare trees

Apply Simplified C4.5

- Consider each branch and decide whether to terminate or add an attribute for further classification
- Different termination criteria make sense
 - If the instances following a branch satisfy a predetermined criterion, such as a certain level of accuracy, then the branch becomes a terminal path
 - No other attribute adds information

 Production rules are generated by following to each terminal branch

If Age <=43 AND Sex = Male AND CCIns = No Then Life Insurance Promo = No Accuracy = 75% Coverage = 26.7%

Apply Simplified C4.5

Simplify the Rule If Sex = Male AND CCIns = NoThen Life Insurance Promo = NoAccuracy = 83.3% Coverage = 40.0%This rule is more general, more accurate

Decision Tree Algorithm Implementations

- Automate the process of rule creation
- Automate the process of rule simplification
- Choose a default rule the one that states the classification of an instance that does not meet the preconditions of any listed rule

Y Weka Explorer	ie - Use	WEN	VA .	
Preprocess Classify Cluster Associa	te Select attributes Visualize			
Open file Open URL	Open DB Gener	vate Unde	Edit	Save
Filter				
Choose None				Apply
Current relation		Selected attribute		Turne Mana
Instances: None	Attributes: None	Missing: None	Distinct: None	Unique: None
Attributes				
All None	Invert Pattern			
		s		✓ Visualize All
Rem	ove			
Status				
Welcome to the Weka Explorer				Log x 0

Download
 CreditCardPromotion.zip
 from Blackboard and
 extract
 CreditCardPromotion.arff

* Weka Explorer	
Preprocess Classify Cluster Associate Select attributes Visualize	
Open file Open URL Open DB Genera	rate Undo Edit Save
Filter	
Choose None	Apply
Current relation Relation: CreditCardPromotion Instances: 15 Attributes: 7	Selected attribute Name: Watch Promotion Type: Nominal Missing: 0 (0%) Distinct: 2 Unique: 0 (0%)
Attributes	No. Label Count
	1 No 7
All None Invert Patient	2 Yes 8
Income Range Vagazine Promotion Vada Promotion Gredit Card Insurance Sex Gage Julie Ins Promotion Value Remove	Class: Life Ins Promotion (Nom) Visualize All
Status OK	Log 💉

• Why remove magazine promotion and watch promotion from the analysis?

Weka Explorer	
Preprocess Classify Cluster Associate Select attributes Visualize	
Open file Open URL Open DB Gen	erate Undo Edit Save
Filter	
Choose None	Apply
Current relation	Selected attribute
Relation: CreditCardPromotion-weka.filters.unsupervised.attribute.R Instances: 15 Attributes: 5	Name: Income Range Type: Nominal Missing: 0 (0%) Distinct: 4 Unique: 0 (0%)
Attributes	No. Label Count
All None Invert Pattern	1 40-50K 4
	3 50-60K 2
No. Name	4 20-30K 4
1 Income Range	
3 Sex	
4 Age	Class: Life Ins Promotion (Nom)
	5
	4 4
Remove	
Status	
ОК	

See algorithm options through Choose

Choose PART under rules

* Weka Explorer	
Preprocess Classify Cluster Associate Select attri Classifier Choose ZeroR	sutes Visualize
Test options Use training set Supplied test set Cross-validation Folds Percentage splt More options	Classifier output
(Nom) Life Ins Promotion	
Status OK	Log ×0

reprocess Classify Cluster Associate Select attributes	Visualize
Classifier	
weka	
🕀 🔐 bayes	r output
meta	
H- M mi	
🖶 🚺 misc	
😑 🏢 rules	
ConjunctiveRule	
DecisionTable	
DINB	
MSDular	
• Nae	
OneR	
PART	
Prism	
···· Ridor	
ZeroR	
trees ⊥	
Filter Remove filter Close	
Status	
OK	Log, x (

🞌 Weka Explorer	
Preprocess Classify Cluster Associate Select attributes Visualize	
Classifier	
Choose PART -M 2 -C 0.25 -Q 1	
Test options Classifier output	
© Use training set	
Supplied test set Set	
Cross-validation Folds 10	
Percentage split % 66	
More options	
Start Stop	
Result list (right-dick for options)	
OK	Log x 0

🖻 Weka Explorer		x
Preprocess Classify Cluster Associa	te Select attributes Visualize	
Classifier		
Choose PART -M 2 -C 0.25 -Q 1		
Test options	Classifier output	
 Use training set Supplied test set Set 	=== Classifier model (full training set) ===	*
○ Cross-validation Folds 10	PART decision list	
Percentage split % 66		
More options	Sex = Female: Yes (7.0/1.0)	E
(Nom) Life Ins Promotion 🛛 🗸	Credit Card Insurance = No: No (6.0/1.0)	
Start Stop	: Yes (2.0)	
Result list (right-click for options)	Number of Rules : 3	
09:49:32 - rules.PART		
	Time taken to build model: 0 seconds	-
	<	Þ
Status		
OK	Log	м, x 0

Sex Female Male Life Insurance = Yes (7/1) Yes No Life Insurance = Yes (2/0) Life Insurance = No (6/1) • Decision tree equivalent of rules generated by PART

eprocess Classify Cluster Associat	e Select attributes Visualize					
Classifier						
Choose PART -M 2 -C 0.25 -O 1						
est options	Classifier output					
 Use training set 						
Supplied test set Set	Time taken to buil	d model: 0 seco	nde			
Cross-validation Folds 10						
	=== Evaluation on	training set ==	-			
Percentage split % 66	=== Summary ===					
More options						
	Correctly Classifi	ed instances	13		10.000/	1
lom) Life Ins Promotion	Kappa statistic	ITEM INSCALLES	0 72	22	10.0000	3
	Mean absolute erro	r	0.22	54		
Start Stop	Root mean squared	error	0.33	57		
esult list (right-click for options)	Relative absolute	error	46.72	86 %		
9:49:32 - rules.PART	Root relative squa	red error	68.50	59 %		
	Total Number of In	stances	15			
	=== Detailed Accur	acy By Class ==	=			
	тр	Data FD Data	Precision	Pecall	F-Massura	POC Are:
	1	.833 0.111	0.833	0.833	0.833	0.88
		.889 0.167	0.889	0.889	0.889	0.88
	Weighted Avg. 0	.867 0.144	0.867	0.867	0.867	0.88
	=== Confusion Matr	ix ===				
	a b ≺ classif	ied as				
	51 a = No					
	18 b = Yes					L
			11			•

Decision Trees – Advantages

Pluses

- Easy to understand
- Map readily to production rules
- No prior assumptions about the nature of the data needed
 - e.g., no assumption of normally distributed data needed
- Apply to categorical data, but numerical data can be binned for application

Issues

- Output attribute must be categorical
- Only one output attribute
- Sufficiently robust?
 - Change in one training set data item can change outcome
- Numerical attributes can create complex decision trees (due to split algorithms)

