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Abstract
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1 Introduction

Sovereign debt crises are often preceded by rising interest rates and increased debt is-
suance, which gradually raises the cost of servicing debt and makes financing more dif-
ficult. At the heart of the debate lies the question of whether such crises are driven by
deteriorating fundamentals (e.g., recessions) or by coordination failures among creditors.
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Figure 1: Debt service and interest rate spreads in Spain (2000–2025)

An illustrative example is the European sovereign debt crisis, as shown in Figure 1 for
the case of Spain. In his famous speech in July 2012, then-President of the European Cen-
tral Bank (ECB), Mario Draghi, argued that the rise in sovereign spreads of some Euro
Area economies was not justified by economic fundamentals. Instead, he attributed the
widening spreads to a crisis of confidence among creditors. This interpretation shaped
the ECB’s response: first, through Draghi’s pledge to do “whatever it takes” to preserve the
euro; and shortly thereafter, through the announcement of the Outright Monetary Trans-
actions (OMT) program which authorized the ECB to purchase sovereign bonds in the
secondary market without ex ante quantitative limits. Sovereign spreads declined signif-
icantly following these announcements, without the ECB having to conduct any actual
bond purchases under the OMT program.

We develop a quantitative sovereign debt model with self-fulfilling crises in which, even
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in the absence of fundamental shocks, interest rate spreads and debt issuance dynamics
are consistent with Spain’s experience during the European sovereign debt crisis, includ-
ing the effects of policy announcements and interventions by the ECB. The model explores
the complementarity between the rollover risk emphasized in Cole and Kehoe (2000) and
the interest rate risk highlighted in Calvo (1988). A higher perceived probability of a fu-
ture rollover crisis raises interest rates today, which in turn increases the likelihood of
such a crisis occurring, thereby justifying the higher interest rates through a self-fulfilling
mechanism.

The rollover risk in Cole and Kehoe (2000) is motivated by the fact that countries often
rely on new borrowing to finance current debt service. If creditors expect an imminent
default on the previously issued debt, the price of newly issued bonds is low, which in-
deed pushes the country to default on the maturing debt because it cannot raise enough
revenue. Models of rollover risk have been used to explain fast reversal in capital inflows
at the height of a debt crisis, such as December 1994 in Mexico or the summer of 2012 in
Europe.1 A crucial assumption in these models concerns the timing of actions, with the
borrower issuing new debt before deciding whether to default on previously issued debt.

In contrast, the interest rate risk in Calvo (1988) is motivated by the fact that higher inter-
est rates can by themselves lead to a buildup in debt service and leave countries at risk of
default. Models with this kind of interest rate multiplicity have gained renewed interest
recently in an effort to explain the episodes in which bond spreads increase slowly over
time, as in Europe starting from 2008.2 An important assumption in these models con-
cerns the type of actions the borrower can take. We assume the borrower decides on the
amount of revenue it needs to raise from bond markets. Therefore, the amount to be re-
paid in the future is market determined and subject to self-fulfilling crises.3 High interest
rates make default more likely, which in turn justifies the high interest rates.

The European debt crisis, however, was marked by both a gradual buildup in interest
rate spreads and, eventually, a sharp reversal in capital inflows. Previous studies, which
typically rely on only one approach to self-fulfilling debt crises combined with additional

1This source of multiplicity was explored in Cole and Kehoe (1996), Conesa and Kehoe (2017), Bocola
and Dovis (2019), Aguiar et al. (2022), and Bianchi and Mondragon (2022).

2This source of multiplicity was explored in Aguiar and Amador (2020), Lorenzoni and Werning (2019),
and Ayres et al. (2018, 2023).

3An alternative is to assume the borrower chooses the amount to be repaid in the future, as in Arellano
(2008), which leads to equilibrium uniqueness. See Ayres et al. (2018) and Lorenzoni and Werning (2019).
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assumptions about income processes or preferences, fail to quantitatively replicate the
entire dynamics observed during this period. In contrast, we account for these dynamics
by exploiting the complementarity between rollover and interest rate risks, adopting both
the timing assumption in Cole and Kehoe (2000) and the borrower action assumption in
Calvo (1988). This yields a simple framework in which a self-fulfilling increase in interest
rates endogenously pushes the government into a rollover crisis zone, leaving it vulnera-
ble to further shifts in market sentiment.

We show that while credible policy announcements by a lender of last resort can eliminate
high spreads, actual interventions such as third party bailouts are required for the gov-
ernment to exit the rollover risk ”crisis zone.” This result is consistent with the sequence
of interventions that ultimately took place: first, policy announcements by the ECB in the
summer of 2012, which successfully reduced spreads but had limited effect on debt-to-
GDP ratios; and later, the launch of its bond-buying program in March 2015, after which
debt-to-GDP ratios and the corresponding debt service began to decline.

We begin by illustrating our core mechanism in a simple three-period model where the
borrower issues Calvo-type debt in the first period and faces a Cole-Kehoe-style rollover
risk in the second period. Without any income fluctuations and for a risk-neutral bor-
rower, we show analytically that this setup can produce interest rate multiplicity that is
generated by the rollover risk. If creditors expect a rollover crisis in the second period,
they will charge a higher interest rate on the debt issued in the first period. But this larger
debt payment in the second period may in turn push the borrower to default in case a
rollover crisis occurs, hence justifying the higher initial interest rate.

Guided by the results of our stylized three-period model, we extend the analysis to an
infinite-horizon setup to test the complementarity between the two sources of multiplic-
ity. We maintain the assumption of no income shocks; hence, the only source of risk
comes from two “sunspot" variables that exogenously drive the rollover and interest rate
risk sentiments. Calibrated to Spain, the model generates rich debt and bond spread dy-
namics driven by the interaction between these two forms of multiplicity. Each simulated
path eventually enters a “slow-moving debt crisis,” in which debt accumulation is fueled
by creditor coordination on high interest rates (a bad Calvo sunspot). As debt and interest
rates rise, the borrower enters a crisis zone and becomes vulnerable to a rollover crisis (a
bad Cole-Kehoe sunspot), which results in a default. While a temporary and unexpected
policy announcement by a lender of last resort can bring the spread down to zero, it does
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not, by itself, reduce debt levels or lead to an exit from the crisis zone. A lasting solution
requires actual intervention that delivers sufficient debt relief.

Finally, we augment the model with income shocks estimated using GDP growth data for
Spain.4 The model captures a wide range of combinations of average debt-to-income ra-
tios, as well as the level and volatility of interest rate spreads. In contrast, the pure Cole-
Kehoe variant produces a high average spread with no volatility, while the pure Calvo
variant generates positive values for both moments, but at magnitudes less than half of
those in the baseline. Importantly, the richer dynamics in our model arise primarily from
the interaction between the two sources of multiplicity, rather than from simply stacking
them together. Thus, our model also demonstrates that a straightforward combination of
the two mechanisms of self-fulfilling crises in the literature can create synergy in replicat-
ing the empirical moments for debt and spreads that quantitative models typically aim to
match.

1.1 Literature review

This paper is closely related to the sovereign default literature with self-fulfilling debt
crises. The main two papers that lay foundations for our approach are Calvo (1988) and
Cole and Kehoe (2000). Our contribution is to show that a complementarity exists be-
tween the two mechanisms, and that it is quantitatively significant. In a closely related
paper, Corsetti and Maeng (2024) also study a model with both types of multiplicity to
show that the two types of debt crises can arise in a unified framework for different state
variables. By contrast, our paper highlights a complementarity between the two model-
ing assumptions and studies the quantitative implications of their interaction, in particu-
lar in a framework with no additional sources of uncertainty.

Our results are also related to recent papers that incorporate equilibrium multiplicity
in the spirit of Calvo—such as Lorenzoni and Werning (2019) and Ayres et al. (2018,
2023)—as well as to those based on the Cole-Kehoe timing assumption, including Conesa
and Kehoe (2017), Bocola and Dovis (2019), Stangebye (2020), Aguiar et al. (2022), and
Bianchi and Mondragon (2022), among others. Our analysis contributes to this literature
along two main dimensions. First, it shows that a simple combination of both sources of
multiplicity can generate plausible combinations of debt-to-income ratios, as well as the
level and volatility of interest rate spreads. Second, it provides a coherent account of the

4In the Appendix, we also present results for Mexico, a common benchmark in the literature.
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events surrounding the European debt crisis in the case of Spain. Several of these papers
also explore equilibrium multiplicity in the presence of long-term debt. Long-term bonds
naturally reduce the scope for rollover crises and allow for alternative forms of multi-
plicity, as shown in Aguiar and Amador (2020). For this reason, we focus on the case of
one-period debt.5

Our paper contributes to our understanding of the forces at play during the European
debt crisis. Using models based on fundamentals, Paluszynski (2023) explains the grad-
ual development of that episode, while Paluszynski and Stefanidis (2023) show that fric-
tions in spending adjustment may explain why governments simultaneously increased
their external debt. The present paper achieves similar objectives in a model where the
debt crisis is self-fulfilling and consistent with the observed effects of the ECB’s policy
announcements.

2 Multiplicity in a three-period model

This section presents a simple three-period environment to illustrate our core mechanism.
For simplicity, we present the derivation of our main result for a risk-neutral borrower.
In Appendix A, and in the subsequent infinite-horizon model, we assume a risk-averse
borrower.

The borrower receives deterministic endowment y in all three periods (t = 0, 1, 2). It
has zero initial debt and can issue one-period non-contingent bonds to competitive risk-
neutral lenders. The borrower is not committed to repay the debt. In the case of default,
he is permanently excluded from international financial markets and restricted to con-
sume yd < y. The risk-free gross interest rate is denoted by R∗. To induce borrowing, we
assume the borrower has a lower discount factor than the lenders, denoted by β.

As in Cole and Kehoe (2000), we assume the borrower chooses whether or not to default
on the previously issued debt after the new debt issuance takes place.6 In this setting,
lenders may not roll over the debt if the lack of new borrowing pushes the borrower to
default on the old debt, which characterizes the rollover risk. As in Eaton and Gersovitz
(1981), we assume that when the bond auction takes place, the borrower moves first by

5While our main results extend to a version of the model with a moderate profile of long-term debt, a
comprehensive analysis of that variant is beyond the scope of this paper.

6We do not allow for randomization over the default decision.
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committing to the amount of resources he wishes to raise in the current period, denoted
by b. Lenders move next and set the gross interest rate R. These assumptions generate
the interest rate multiplicity, as in Calvo (1988).7 For a given b, a higher R increases the
probability of default because it increases the debt service. In turn, a higher probability of
default implies a higher R, as lenders must have an expected return equal to R∗ in equi-
librium.

We present and solve the problem backward. In period t = 2, the only choice for the
borrower is whether to repay the debt issued in the previous period, R2b2, or to default.
The borrower defaults if yd > y− R2b2 and repays otherwise.

It follows that in period t = 1, if the lenders roll over the debt, the interest rate is uniquely
determined. Let us define the threshold B̃2 ≡

(
y− yd) /R∗. For b2 ≤ B̃2, there is no

default and R2 must be equal to R∗. For b2 > B̃2, the borrower defaults for sure, so B̃2

becomes a borrowing limit.

If lenders do not roll over the debt in t = 1, the borrower defaults if

vd
1 ≡ (1 + β)yd > y− R1b1 + βy,

where R1b1 is the debt service on the debt issued in t = 0.8 A rollover crisis may happen
only if it pushes the country to default, so the borrower is subject to rollover risk only if

R1b1 > (1 + β)(y− yd). (1)

Note that a rollover crisis is equivalent to setting the borrowing limit to zero, a convention
we will adopt to simplify the exposition. We can express the problem in period t = 1 as

v1 (R1b1, sck) = max{vnd
1 (R1b1, sck) , vd

1},

where
vnd

1 (R1b1, sck) = max
b2≤B2(R1b1,sck)

y− R1b1 + b2 + β (y− R∗b2) .

The sunspot variable sck ∈ {0, 1} commands the Cole-Kehoe type of market sentiment.
If sck = 0 and condition (1) holds, a rollover crisis happens and the borrowing limit

7See Ayres et al. (2023).
8As in Aguiar et al. (2016), we assume the borrower does not keep the proceeds from the new bond

auction in case it defaults on the old debt.
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B2 (R1b1, sck) equals zero. Otherwise, B2 (R1b1, sck) = B̃2.9 In addition, note that the
condition for the rollover risk in (1) depends on R1, which gives rise to interest rate mul-
tiplicity. For a given b1, higher R1 makes a rollover crisis more likely. In turn, the higher
probability of a rollover crisis implies a higher R1.

We now turn to the borrower’s problem in t = 0:

v0(sc) = max
b1≤b1

y + b1 + β ∑
sck∈{0,1}

π(sck) v1

(
R1(b1, sc)b1, sck

)
,

where π(sck) denotes the probability distribution over the values that sck may take in
t = 1. We let p denote the probability of the bad sunspot, π(0) = p. The state variable
sc ∈ {0, 1} denotes the Calvo-type sunspot. In case there are multiple interest rates for
a given b1 such that lenders receive an expected return equal to R∗, we use the sunspot
variable sc as a device to select the interest rate. As in Ayres et al. (2023), we will focus on
two extreme cases. In the bad sunspot state, sc = 0, R1 takes the highest possible value. In
the good sunspot state, sc = 1, R1 takes the lowest possible value. Lemma 1 characterizes
all pairs (b1, R1) such that lenders receive return R∗ in expectation.

Lemma 1 The pairs (b1, R1) in which lenders receive an expected return equal to R∗ given the
borrower’s optimal borrowing and default strategies are:

(i) b1 ≤ (1+β)(y−yd)
R∗ ≡ B1 and R1 = R∗.

(ii) B1 ≡
(1+β)(y−yd)(1−p)

R∗ ≤ b1 ≤ (1− p)(y− yd)
(

1
R∗ +

1
(R∗)2

)
≡ B1 and R1 = R∗

1−p .

Proof Recall that the borrower will default in period t = 1 if R1b1 > (1 + β)(y − yd).
Because there are two possible values for the interest rate, R∗ and R∗/(1− p), we have two
debt thresholds that limit the repayment decision in the case of low and high interest
rates:

b1 ≤
(1 + β)(y− yd)

R∗
≡ B1

b1 ≤
(1 + β)(y− yd)(1− p)

R∗
≡ B1.

Finally, we need to find a debt threshold that makes the borrower indifferent between
repaying and defaulting when markets are open in period t = 1. The condition is

vd
1 = (1 + β)yd = y− R∗

1− p
b1 + b2 + β max{y− R2b2, yd}.

9Note that the optimal strategy for the borrower in this simple case is to set b2 = B2 (R1b1, sck).
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Under risk neutrality, assuming the borrower is impatient enough, the optimal borrowing
in that period is b∗2 = y−yd

R∗ . Plugging this value into the indifference condition yields the
following upper debt threshold:

b1 = (1− p)(y− yd)
(1 + R∗

R∗2
)
≡ B1.

For any debt level smaller than B1, the borrower repays even if lenders do not roll over the
debt. Hence, the interest rate is unique and equal to the risk-free rate. For a level of bor-
rowing between B1 and B1, however, multiple interest rates arise. It is noteworthy that,
in this case, it is the rollover risk in period t = 1, rather than the income shock, that drives
the multiplicity of the interest rate. In other words, for a given b1 ∈

[
B1, B1

]
, a high or

low interest rate R1 determines whether or not the borrower finds itself in a Cole-Kehoe
type of crisis zone. Finally, if the debt level is sufficiently high, above B1, then the interest
rate is again unique and equal to the high rate R∗

1−p . At such debt levels, the borrower is
in the crisis zone unconditionally and defaults in the event of a bad sck sunspot even if
interest rates were set to R∗.

The borrower observes sc before the bond auction and internalizes how the interest rate
will vary with respect to the amount of debt it chooses to issue. Therefore, when choosing
how much to borrow, he considers an interest rate schedule R1(b1, sc) as a mapping from
debt levels into unique interest rate values. Figure 2 presents a stylized illustration of
the two interest rate schedules the borrower may face. Panel 2(a) features the case of the
higher rate within the multiplicity interval, R1(b1, 0), while Panel 2(b) features the case of
the lower rate, R1(b1, 1).

3 Infinite-horizon model

In this section, we develop an infinite-horizon model to study the interaction between
interest rate multiplicity and rollover risk.

3.1 Economic environment

Consider a small open economy with a benevolent sovereign that borrows internation-
ally from competitive lenders and receives a stochastic endowment. Time is discrete and
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Figure 2: Stylized illustration of the interest rate schedules

indexed by t = 0, 1, 2, .... Markets are incomplete, and the only asset available for trad-
ing is the one-period non-contingent bond. The risk-free gross interest rate is R∗. The
representative household has preferences given by the expected utility of the form

E0

∞

∑
t=0

βtu(ct), (2)

where we assume the function u(·) is strictly increasing, concave, and twice continuously
differentiable. The discount factor is given by β ∈ (0, 1).

Income process The economy’s income is affected by stochastic endowment growth
realizations and evolves according to

Yt = gtYt−1, (3)

where gt denotes the growth shock. The growth rate can take two values, gL and gH, with
gH > gL. It follows a Markov process with the transition probability matrix given by

Π =

[
πL 1− πL

1− πH πH

]
, (4)

where Pr(gt+1 = gL|gt = gL) = πL and Pr(gt+1 = gH|gt = gH) = πH. We model the
income shock process as growth regimes following Ayres et al. (2018), who show that a
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bimodal income process generates Calvo-style interest rate multiplicity.10 That said, our
main quantitative result in Section 3.3 is obtained with a variant of the model with no
income shocks whatsoever.

Timing The timing assumptions are the same as in Section 2. The borrower chooses
whether or not to default on the debt from the previous period after the new debt issuance
(Cole and Kehoe, 2000). Similar to Calvo (1988), when the bond auction takes place, the
borrower moves first by committing to the amount of revenue it wishes to raise from
bond markets in the current period, b. Lenders move next and set the gross interest rate
R. Shocks are observed at the beginning of the period.

States The state variables are {A, Y, s}. A = RB denotes the total debt service to be
paid in the current period, Y is the current income, and s = {sc, sck} is a vector of sunspot
realizations corresponding to the interest rate multiplicity and rollover risk, respectively.

Recursive problem The value function of the government involves a choice of whether
or not to default:

V(A, Y, s) = max
d∈{0,1}

{
(1− d)Vnd(a, Y, s) + dVd(Y, s)

}
.

The value associated with repayment is

Vnd(A, Y, s) = max
B′≤B(A,Y,s)

{
u(C) + β ∑

y′
∑
s′

Π(y′|y)p(s′|s)V
(

B′R(B′, Y, s), y′, s′
)}

subject to
C = Y− A + B′.

The value associated with default is

Vd(Y, s) = u
(

Y(1− φ)
)
+ β ∑

y′
∑
s′

Π(y′|y)p(s′|s)
{

θV
(

0, y′, s′
)
+ (1− θ)Vd

(
y′, s′

)}
,

where φ represents the fraction of income lost upon default. We assume that, following
a default, the borrower has probability θ of being readmitted to capital markets in each
period and the recovery rate of defaulted debt is zero.

10It is also possible for the model to feature a transitory shock, but its variance cannot be too large.
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As in Section 2, the borrowing limit B (A, Y, s) equals zero whenever sck = 0, and the
lack of new borrowing pushes the country to default. That happens when the following
condition is satisfied:

u(Y− A) + β ∑
y′

∑
s′

Π(y′|y)p(s′|s)V
(

0, y′, s′
)
≤ Vd(Y, s).

Definition 2 formally defines an equilibrium in this economy.

Definition 2 A Markov perfect equilibrium for this economy consists of the government value
functions V(A, Y, s), Vnd(A, Y, s), Vd(Y, s); policy functions B′(A, Y, s) and d(A, Y, s); the
interest rate schedule R(B′, Y, s) and the borrowing limit function B (A, Y, s) such that:

1. Policy function d(A, Y, s) solves the government’s default-repayment problem.

2. Policy functions B′(A, Y, s) solve the government’s consumption-saving problem.

3. Interest rate schedules R(B′, Y, s) and borrowing limit functions B (A, Y, s) are such that
international lenders receive an expected return equal to R∗.

3.2 Quantification of the model

In this section, we parameterize our model in order to evaluate its quantitative perfor-
mance.11 We calibrate the variant of our model with no growth shocks to match the ex-
perience of Spain in years 2010-2015. Specifically, the risk-free rate r is set to 0.01, the risk
aversion γ is 2, and the probability of re-entry following a default θ is 0.125, all standard
values (Aguiar et al., 2022). Then, the discount factor β and the income loss in default φ

are picked so that debt crises in the model (the mechanics of which we describe in next
section) replicate the mean amount of debt service to GDP of Spain in years 2010-2015 of
14.5% and its peak bond spread of 5%, as shown in Figure 1. The resulting values for β

and φ are 0.813 and 0.022, respectively.12

3.3 No growth shocks

Simulated behavior As a first step, we evaluate the model with no growth regimes
(thus, no fundamental shocks whatsoever). Income is deterministic and equal to 1 in
every period. Hence, in this variant of the model, rollover risk is the sole driver of defaults

11We solve for a detrended version of the model in Section 3.1, following the approach of Aguiar and
Gopinath (2006) and Ayres et al. (2023).

12In Appendix D we conduct an alternative calibration for Mexico.
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and a potential interest rate multiplicity. We start with 0.1 as the initial probability of the
bad Calvo sunspot realization (sc = 0), and we vary the probability of the bad Cole-
Kehoe sunspot to illustrate how the model works. Columns (1)–(3) in Table 1 present
the statistics from a simulated ergodic distribution for three different probabilities of a
bad Cole-Kehoe sunspot (sck = 0). As is evident, the model features starkly different
types of behavior for seemingly similar values of this parameter. When the probability is
about 4.7% or lower, the agent borrows on the higher interest rate schedule and defaults
every time a rollover crisis occurs. As a result, the average spread is roughly equal to
the probability of a bad Cole-Kehoe sunspot, while the variance of the spread is zero. On
the other hand, for a probability of about 4.9% or higher, the agent borrows on the lower
interest rate schedule and reduces debt every time the Calvo sunspot switches to bad in
order to avoid the region of multiplicity. As a result, no defaults occur on the equilibrium
path and the bond spread is exactly zero. In between the two extremes, there is an interval
of the bad Cole-Kehoe sunspot probabilities centered around the value of 4.8% where
interesting action occurs. In this case, the agent initially borrows on the lower interest
rate schedule but then increases the debt and jumps to the higher rate when the Calvo
sunspot switches to bad (a “slow-moving debt crisis"). The borrower remains there until
a Cole-Kehoe-type rollover crisis forces him into default. Consequently, the simulated
bond spread exhibits high average and volatility. It should be emphasized that while the
interval of sunspot probabilities for which the interesting behavior occurs is narrow, it is

Table 1: Simulation results in the quantitative model calibrated to Spain

Model without Model with
Statistic growth regimes growth regimes Data

(1) (2) (3) (4) (5) (6)

P(sc = 0) 0.10 0.10 0.10 0.24 0.00
P(sck = 0) 0.047 0.048 0.049 0.02 0.00

avg(A/Y) 14.6% 13.4% 10.5% 10.3% 24.0% 10.3%
avg(spreads) 5.0% 3.8% 0.0% 1.0% 0.0% 1.0%
std(spreads) 0.0% 2.2% 0.0% 0.9% 0.0% 1.0%
corr(spreads, TB) 0 0.36 0 -0.09 0.0 0.51
corr(TB, Y) - - - -0.18 -0.52 -0.22
corr(spreads, Y) - - - 0.16 0.0 -0.41

Note: P(sck = 0) and P(sc = 0) denote the probabilities of a bad Cole-Kehoe-type and Calvo-
type sunspot realization, respectively. Y = output, A = debt service, TB = trade balance-to-
output ratio. All statistics are computed over non-default periods.
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so because the model does not feature any other sources of uncertainty. Section 3.4 shows
that this interval widens considerably when income shocks are introduced.

Model mechanics Figure 3(a) plots the interest rate schedule in the intermediate case
of P(sck = 0) = 0.048. The clear multiplicity interval confirms our analytical result from
Section 2, which shows that the Calvo action space can combine with rollover crises to
generate overlapping interest rate schedules with no income shocks. We also use the graph
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to describe the dynamics of the borrower’s decisions in this model.13 As the agent ac-
cumulates debt starting from zero, he moves along the risk-free interest rate toward the
points labeled “A" and “B." The former is chosen if the Calvo sunspot realization is ini-
tially bad, whereas the latter is eventually selected when the realization switches to good.
Once the borrower lands at point B, he will not retreat to point A upon another bad Calvo
sunspot, but instead will borrow all the way to point C and incur an interest rate of 6%.
With no additional friction or shocks in the model, the agent stays at point C until a Cole-
Kehoe rollover crisis occurs, in which case he defaults. This behavior contrasts with that
reported in Ayres et al. (2023) for the case of Spain, where the government responds with
endogenous austerity (associated with choosing point A), thereby preventing the higher
interest rates driven by pessimistic expectations from materializing in equilibrium.

Policy interventions Figure 3(a) also features points D and E which we refer to as pol-
icy interventions. First, suppose that while the borrower is in point C, a lender of last
resort unexpectedly steps in and eliminates the possibility of a rollover crisis for one pe-
riod.14 In such case, the interest rate spread drops to zero in that given period while the
borrower increases the face value of the debt slightly to keep the debt obligation constant
(point D). Importantly, this type of intervention offers no possibility of reducing the debt
and escaping the Cole-Kehoe crisis zone. If the lender of last resort withdraws its pledge,
the borrower will revert back to point C. The only way for the government to exit the cri-
sis zone is through debt relief. If the Calvo sunspot realization is favorable, the required
transfer does not need to cover the entire gap between points C/D and B. Instead, it is
sufficient to reduce indebtedness to an endogenous point E, at which the government will
optimally choose to return to B. If the Calvo sunspot realization is unfavorable, however,
the debt relief must cover the full distance between points C/D and A.

The two types of intervention we consider resonate with the aftermath of the Spanish
debt crisis in the summer of 2012. As Figure 1 shows, the European Central Bank suc-
ceeded in bringing down the Spanish bond spread with a combination of its “Whatever
it takes" pledge and the announcement of the OMT bond purchase program. However,
it failed to induce the government to reduce the debt burden. The gradual debt reduc-
tion only materialized starting from 2015 when the ECB’s asset purchase program was
launched, amounting to a de facto debt relief. The exact value of this implicit transfer is

13Appendix B provides a more detailed analysis of this behavior by examining the full set of policy
functions corresponding to columns (1)–(3) in Table 1.

14In the case of a permanent elimination of a rollover crisis, the model becomes degenerate as the impa-
tient government borrows up to the fundamental debt limit and never defaults.
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difficult to assess because we do not know the counterfactual spread on Spanish bonds
in the absence of this intervention. However, by simply examining the magnitudes and
considering various assumptions, in Appendix C we show that the total value of such
a transfer may have varied between 0.5% up to 10% of Spain’s GDP in 2015, with the
intermediate parameterization showing a debt relief of 3.6%. This is consistent with the
difference between points D and E in Figure 3(a) of around 3.5%, representing the amount
of debt relief needed to exit the Cole-Kehoe crisis zone and return to point B.

The temporary policies discussed thus far take effect after the country has already issued
debt at high interest rates. An alternative set of policies, however, can be implemented
ex-ante to prevent the country from reaching such elevated rates in the first place. That
is, the government could be prevented from ever moving from point B to point C in
Figure 3(a). Specifically, following a bad Calvo sunspot realization, a transfer that reduces
debt service back to point A would be sufficient. At that point, the government would
optimally choose not to accumulate additional debt. The fiscal cost of this ex-ante policy
is substantially lower than that of rescuing the government once it enters the rollover
crisis zone, approximately 0.5% of GDP, compared to around 3.5% in the latter case.

Comparative statics An interesting aspect of our model is that the interval of the bad
Cole-Kehoe sunspot probabilities that generate these dynamics is the same for any bad
Calvo sunspot probability parameter that we choose. However, the implications for the
simulated moments are quite different as we vary the likelihood of a Calvo-style buildup.
Panels 3(b) and 3(c) of Figure 3 explore these comparative statics by plotting the key
moments of the bond spread and debt for a range of values that this parameter can take.
We find that the average spread and average debt ratio are both monotonically increasing
in the probability of the bad Calvo sunspot. The intuition is simple: as switching to
the higher interest rate schedule becomes more likely, the borrower spends less time at
point B of Figure 3(a), characterized by lower debt and zero spread, and more time at
point C, with high debt and positive spread. On the other hand, the measured volatility
of the spread is non-monotonic, initially rising sharply from zero and then falling back
gradually. Intuitively, if a Calvo-style crisis is unlikely, or if it happens often, the borrower
will end up spending a disproportionate amount of time on the lower or upper interest
rate schedule, respectively. Hence, there exists an intermediate value for the bad Calvo
sunspot probability that balances the average time spent on the two parts of the schedule
and maximizes the overall bond spread volatility. For the present parameterization, we
find that the standard deviation of the bond spread peaks at around 2.5% for the bad
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Calvo sunspot probability of around 5%.

3.4 Quantitative results with growth regimes

We now evaluate the variant of our model with income shocks and we use it to conduct
comparative statics analysis. We borrow the parameters of a Markov-switching process
for growth shocks in Spanish real GDP from Ayres et al. (2023). Their estimates for the
high and low regime growth rates are gh = 1.034 and gl = 0.982, while the persistence
of high and low regimes is πH = 0.84 and πL = 0.63, respectively. Given the estimated
income process, and keeping the structural parameter values β and φ from Section 3.3 un-
changed, we then pick the combination of bad Calvo and the Cole-Kehoe sunspot proba-
bilities to match the average debt and average bond spread for the entire data episode.

Column (4) in Table 1 presents the simulated results. We find that the combination of the
Calvo bad sunspot probability of 21% and the Cole-Kehoe bad sunspot probability of 2%
yield an average levels of debt and spread close to the empirical targets for the sample
of 1999-2024, reported in Column (6) of Table 1. Importantly, it also allows the model to
nearly match the volatility of the spread of around 1%. In Appendix D, we do the same
exercise for the case of Mexico, an emerging market economy, which features a higher
debt-to-income ratio and a considerably higher average and standard deviation of the
spread. Our model is able to match these moments equally well which entails a slightly
lower probability of a Calvo-style buildup, and a higher probability of a rollover crisis.

Column (5) in Table 1 further shows that sunspots play an essential role in the quantitative
results, as both the average spreads and the volatility of spreads drop to zero when the
probability of bad sunspot realizations is eliminated.

Comparative statics We now turn to the comparative statics analysis of our model (us-
ing the calibration for Spain) with respect to the bad sunspot probabilities. Panels 4(a),
4(c), and 4(e) of Figure 4 plot the three moments of interest while varying the bad Calvo
sunspot probability up to 0.25, for three different values of the bad Cole-Kehoe sunspot
probability, while panels 4(b), 4(d), and 4(f) plot it the other way round. In particular, the
solid black line shows the moments generated by either the pure Calvo or the pure Cole-
Kehoe model. There are two main observations to take away from these graphs. First,
by varying both probabilities together, our model is capable of generating a much wider
range of combinations of the debt and spread moments than a model with a single source
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of multiplicity. In particular, such models display a pervasive knife-edge behavior with
the borrower either choosing to be exposed with high debt and high spread, or avoiding
such exposure altogether and exiting the crisis zone. While our model is also character-
ized by such threshold behavior, it features many more combinations of expansions and
reductions in borrowing, and as a result it is capable of matching the combination of em-
pirical moments for either Spain, as Table 1 shows, or Mexico, as Table 3 in Appendix D
shows.
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Figure 4: Comparative statics in the baseline calibration for Spain
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Second, the two sources of multiplicity interact in driving the variation in the bond spread.
To see this, notice first that for the Calvo sunspot probabilities up to around 0.05, the av-
erage spread increases roughly by the probability of a rollover crisis, while the standard
deviation of the spread is the same (as the pure Cole-Kehoe model does not generate
any volatility in the bond spread). This implies that the two sources of multiplicity in
this region are independent of each other and their effects are approximately additive.
Beyond this threshold, however, an interesting interaction occurs. As we add rollover
crises, the average spread rises by less than the probability of a bad Cole-Kehoe sunspot,
while the standard deviation of the spread rises by more. At the peak, the standard devi-
ation reaches 2.5% in our model, compared to 1.8% in the pure Calvo and zero volatility
in the pure Cole-Kehoe variants.

4 Conclusion

This paper contributes to the literature on self-fulfilling debt crises by introducing a sim-
ple model with interest rate multiplicity generated by belief-driven runs on government
debt. In turn, such runs are justified by a realization of high interest rates that by itself re-
sults from pessimistic beliefs. The most interesting feature of the model is that it generates
rich dynamics of sovereign debt and the interest rate spread by interacting the notions of
slow- and fast-moving debt crises without any underlying shocks to fundamentals. Through
a combination of simplicity and quantitative rigor, the model allows us to simultaneously
think about the slow- and fast-moving stages of the European debt crisis of 2008-2012, as
illustrated by our case study of Spain.
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Appendices (for online publication)

A Three-period model with risk-averse borrower

In this section we derive the borrowing thresholds for the case of a risk-averse borrower.
We assume a CRRA utility function of the form u(c) = c1−γ

1−γ , and we analyze the problem
backward. Similar to the case of risk neutrality, in period t = 2 the agent repays if y −
b2R∗ ≥ yd. In period t = 1, if markets do not roll over the debt, the borrower will default
if

vd
1 = (1 + β)u(yd) > v1(R1b1, s1 = 1) = u(y− R1b1) + βu(y)

If γ > 1, this condition boils down to

R1b1 > y−
(
(1 + β)(yd)1−γ

) 1
1−γ

,

which shows that the default decision depends on the level of interest rate. Consequently,
we have the two debt thresholds that limit the repayment decision for the case of low and
high interest rates:

b1 ≤
1

R∗
[
y−

(
(1 + β)(yd)1−γ − βy1−γ

) 1
1−γ
]
≡ B1

b1 ≤
1− p

R∗
[
y−

(
(1 + β)(yd)1−γ − βy1−γ

) 1
1−γ
]
≡ B1.

Next, to find the debt threshold that makes the borrower indifferent between repaying
and defaulting when markets are open in t = 1, we need to find optimal borrowing b2.
Under risk aversion, this entails solving the problem

v1(R1b1, s1 = 0) = max
b2

u(y− R1b1 + b2) + βu(y− R∗b2).

The interior solution to this problem is b∗2 = (βR∗)−1/γy−(y−R1b1)
1+(βR∗)−1/γR∗ , while a corner implies

b∗2 = y−yd

R∗ . To find threshold B1, we need to plug this into the indifference condition in
period t = 1,

vd
1 = (1 + β)u(yd) = u(y− R∗

1− p
b1 + b∗2) + βu(y− R∗b∗2),

and solve for b1. Under risk aversion, this solution cannot be obtained analytically. The
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results in Section A.1 present our numerical solution to this problem.

A.1 Numerical example

In this subsection, we provide a simple numerical example to show that the interest rate
multiplicity characterized so far is realistic. We also extend the analysis to the case of a
risk-averse borrower and show that the result becomes even stronger. The exact deriva-
tions for this case are presented in Appendix A.

Consider the case of a risk-averse borrower with a CRRA utility function of the form
u(c) = c1−γ

1−γ . We assume the following, fairly realistic parameterization: β = 0.7, γ = 3,
y = 1, yd = 0.95, p = 0.8, R = 1.03. Figure 5 presents the interest rate schedules, as well as
the optimal debt policy for the risk-averse borrower. The solid blue line depicts the lower
(risk-free) interest rate, while the dashed red and dotted blue lines represent the upper
(risky) interest rate for the case of a risk-averse and risk-neutral borrower, respectively. It
is immediate to notice that including risk aversion causes the interest rate multiplicity to
almost double in size. The presence of this multiplicity also has real consequences for the
borrower’s actions. When the Calvo sunspot is bad, the government must reduce its debt
by around 20%, compared to the case of a good sunspot, to avoid the higher interest rate.
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Figure 5: Interest rate schedules and optimal policy
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B Further illustrations for the infinite-horizon model

In this section, we provide further illustration of the government’s borrowing choices in
the model with no income shocks, corresponding to the three types of behavior presented
in columns (1)–(3) in Table 1. Panel 6(a) of Figure 6 shows the optimal next period debt
choice (b′) as a function of today’s debt (b), for the two possible realizations of the Calvo
sunspot. As the government accumulates debt from zero, it will ultimately stop at the
45 degree line, with the exact amount depending on the current realization of the Calvo
sunspot. If the sunspot is bad, then the government will stop just outside of the interval of
interest rate multiplicity (corresponding to point A in Figure 3(a)). If the sunspot is good,
the government will borrow more (progressing to point B), at which point another bad
sunspot realization will induce it to jump to a debt level of about 19% with no possibility
of retreat.

Panel 6(b) of Figure 6 illustrates the case corresponding to column (1) in Table 1, which
we refer to as “exposed." As the government accumulates debt from zero, none of the
lower segments of the policy functions actually cross the 45 degree line. This means that
regardless of the realization of the Calvo sunspot, the government will end up jumping to
a level of debt of around 18%, which is the region of the Cole-Kehoe-type crisis zone. As
a result, while the average bond spread is high, it does not exhibit any volatility over time.

Finally, Panel 6(c) of Figure 6 illustrates the case corresponding to column (3) in Table 1,
which we refer to as “no default." In this variant, the interval of interest rate multiplicity
spans the range of debt where the policy functions are below the 45 degree line and, as
a result, the government pulls back. The points of intersection of the policy functions
with the 45 degree line lie completely outside of the region of multiplicity, and the gov-
ernment never enters the Cole-Kehoe crisis zone and never defaults. Consequently, the
equilibrium bond spread is always zero.
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Figure 6: Optimal borrowing and equilibrium interest rate in the combined model
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C Quantifying implicit transfers for Spain

In this section, we provide a quantification of the value of implicit transfers received
by Spain from the European Central Bank via the Public Sector Purchase Programme
(PSPP). The bond purchases started in March 2015 and have continued for the next ten
years. To the extent that the ECB’s holding of Spanish bonds is motivated politically, the
true risk associated with these assets is likely higher than what the observed interest rate
reflects. In such case, the Spanish government receives an implicit transfer by being able
to pay a lower interest rate on these bonds than in the counterfactual scenario of no such
intervention. Figure 7 illustrates the cumulative net purchases of Spanish government
bonds over time, along with hypothetical unwinding forecasts. The purchases increased
steadily in the first few years and the stock exceeded 0.25 trillion euro in 2018, falling back
to this level only in 2025Q1. At the pace of the selloff that started from the peak in 2022,
it would take at least another decade to unwind the entire portfolio.
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Figure 7: Cumulative net purchases for Spanish bonds under PSPP

Data source: https: // www. ecb. europa. eu/ mopo/ implement/ app/ html/ index. en. html# pspp .
The forecasts beyond 2025Q1 are the authors’ own calculations derived by extrapolating the linear and geo-
metric trends from the peak in 2022Q3.

To calculate the implicit transfer, we first define a parameter κ that captures the interest
rate differential associated with the intervention. That is, assume that in the absence of
the ECB’s bond purchase program the true Spanish spread would have been higher by a
constant percentage amount κ. In other words,

κ ≡ Yield differential absent ECB intervention
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Then we proceed as follows. We set κ to a fixed percentage amount. Next, for each
quarter, we calculate the implicit transfer resulting from lower interest rate by multiplying
κ by the outstanding amount of Spanish bonds in the ECB portfolio. Finally, we calculate
the present value of all these transfers in 2015Q1 (using the German government bond
yield as risk-free rate), we sum them up and divide by the Spanish GDP.

Table 2: Implicit transfer to Spain by assumed value of κ (% of 2015 GDP)

κ (in %) 0.1 0.5 1.0 1.5 2.0 2.5

end sample at 2025Q1 0.22 1.11 2.22 3.33 4.43 5.54
linear extrap. to 2038Q1 0.36 1.79 3.57 5.36 7.14 8.93
geometric extrap. to 2038Q1 0.40 1.98 3.96 5.94 7.92 9.90

Note: in extrapolating series, we assume the risk-free interest rate in all periods beyond
2025Q1 is the average rate over 2022Q3-2025Q1 equal to 2.27%.

Table 2 presents the results of our calculation for different values of κ, and for different
assumptions about the unwinding of the ECB-held bonds beyond the latest data observa-
tion (2025Q1). When we only consider the actually observed data (that is, we assume that
ECB sells all Spanish bonds in 2025Q1), the total implicit transfer varies between 0.2%
and 5.5% of Spain’s GDP in 2015 for κ ranging between 0.1% and 2.5%. For reference,
the average spread on Spanish bonds observed between 2015Q1 and 2025Q1 was 1.03%,
while the maximum spread topped at 5.07% in 2012Q3. Hence, this seems like a reason-
able range of ECB-induced yield differentials. On the other hand, if we extrapolate the
bond holdings into the future (given that in 2025Q1 the ECB still held over 0.25 trillion
euro worth of Spanish bonds as Figure 7 shows), the total value of the implicit transfer
ranges from 0.4% to around 9-10% of 2015 GDP depending on the extrapolation method.

Naturally, the calculation above is designed to illustrate magnitudes and should be taken
with a grain of salt. On the one hand, we derive the implicit transfer only from the bonds
actually held by the ECB and ignore any spillover on the interest rate on the bonds held by
private investors (by increasing confidence in the market). On the other hand, large asset
purchases may also have generated moral hazard on the part of the Spanish government,
inducing it to issue excessive debt (especially during the Covid-19 episode). Ultimately,
we ignore these hard-to-quantify forces that work in opposite directions and focus on
what we can observe directly.
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D Calibration for Mexico

In this section, we calibrate our infinite-horizon model to Mexico. The purpose of this
exercise is to show the broader range of outcomes that can be obtained with our model,
especially for the case of an emerging market economy. Mexico is an instructive reference
point as it is often use by related studies in the literature (Aguiar et al., 2022).

Table 3: Simulation results in the quantitative model calibrated to Mexico

Model with
Statistic growth regimes Data

(1) (2) (3)

P(sc = 0) 0.17 0.00
P(sck = 0) 0.04 0.00

avg(A/Y) 16.5% 33.9% 16.5%
avg(spreads) 3.0% 0.0% 3.0%
std(spreads) 2.0% 0.0% 2.2%
corr(spreads, TB) -0.28 0 0.60
corr(TB, Y) -0.19 -0.68 -0.40
corr(spreads, Y) -0.01 0 -0.21

Note: P(sck = 0) and P(sc = 0) denote the probabilities of a
bad Cole-Kehoe-type and Calvo-type sunspot realization, respec-
tively. Y = output, A = debt service, TB = trade balance-to-
output ratio. All statistics are computed over non-default peri-
ods.

Consider the same model as in Section 3.4. We first estimate the income process for Mex-
ico with its GDP data in years 1980-2021. We use the filter of Kim (1994) and estimate the
parameters with maximum likelihood. The resulting estimates are gh = 1.02, gl = 0.96,
πH = 0.8 and πL = 0.3. Parameters r, γ and θ are kept at their values of 0.01, 2, and
0.125, respectively. The discount factor β is set to 0.8 following Aguiar et al. (2022). We
then proceed to calibrate the default cost φ, along with the two sunspot probabilities, to
match the three moments of interest, namely the average and standard deviation of the
interest rate spread and the average debt-to-income ratio. The inferred parameter values
are φ = 3.25%, pc = P(sc = 1) = 0.17, and pck ≡ P(sck = 1) = 0.04. Hence, relative to the
calibration for Spain, Mexico requires a combination of lower discount factor and higher
default cost, along with a lower probability of a Calvo crisis and higher probability of a
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rollover crisis.

Columns (1) and (3) in Table 3 show that the model matches the average debt and interest
rate spread very well, and it comes quite close to getting the full extent of the volatility
of the spread. This is a considerably different calibration from Spain which involves a
lower value for each of these moments. The model also delivers a mildly countercyclical
spread. As in the case of Spain, column (2) shows that sunspot realizations are essential
for generating the quantitative results, consistent with the findings of Aguiar et al. (2022).

We also replicate the comparative statics analysis as in Section 3.2 for the case of Mex-
ico. Panels 8(a), 8(c), and 8(e) of Figure 8 plot the three key moments while varying the
bad Calvo sunspot probability up to 0.2, for three different values of the bad Cole-Kehoe
sunspot probability, while panels 8(b), 8(d), and 8(f) do the opposite. We observe a sim-
ilar pattern as for the case of Spain. By varying the probabilities of bad realization for
both sunspots, our model generates a wide range of combinations of the debt and spread
moments than the model variant with a single source of multiplicity (black solid line in
the graphs). In particular, our model easily achieves a standard deviation of the spread
between 2% and 2.5%, while also offering various combinations of average debt and aver-
age spread. Figure 8 also shows, similar as with our results for Spain, that the two sources
of multiplicity deliver our results either by operating in isolation (for low enough proba-
bilities of both bad Calvo and Cole-Kehoe sunspots), or by interacting and generating a
richer dynamics than the sum of its parts.
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Figure 8: Comparative statics in the baseline calibration for Spain
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