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1 Introduction

Traditional theories in finance assume that markets are efficient, so that prices of financial

contracts respond to changes in the fundamentals. In contrast, this paper documents the

high degree of price rigidity for a specific long-term financial contract, life insurance, the

cost of which displays significant volatility. This finding has important implications for

understanding the pricing of long-term financial services. We explain this unique pricing

phenomenon using a quantitative model that features the commitment versus flexibility

trade-off and generates price rigidity endogenously.

We show that life insurance premiums are characterized by long periods of rigidity with

occasionally sizable adjustments (on average more than 10%). This is intriguing because

the underlying marginal cost of life insurance is volatile over time, with a monthly

coefficient of variation of 6.3% and the average absolute month-to-month change of

1.4% of the mean. In the data though, the overall probability of a monthly premium

change amounts to just 2.6%.1 This implies an average premium duration of roughly

39 months, placing life insurance on the far-right tail of the price change frequency

distribution documented by Bils and Klenow (2004). Figure 1 presents an illustrative

plot of premiums over time for the most significant and longest-observed companies in

our sample. Remarkably, some products have maintained a constant premium for over 20

years! More generally, our empirical findings indicate that life insurance companies tend

to maintain stable profiles of premiums with respect to age. This means that over the life

cycle, young policyholders will likely pay the same amount as what the older cohorts used to.

To explain the empirical findings, we construct an OLG model where the insurer faces a

commitment versus flexibility trade-off, which stems from the consumer hold-up problem.

Consumers live for three periods and buy one of two types of policies from monopolistically

competitive insurers, renewable or non-renewable. They incur a transaction cost before

purchasing, which represents the monetary expenses and opportunity cost of research and

medical examination. They may also experience adverse health shocks in the second period,

which could lead to significant premium hikes if they searched for a new policy. In the second

period, non-renewable policyholders face all of these costs, while renewable policyholders are

guaranteed coverage at no additional expense. Therefore, renewable policyholders are locked

into a long-term relationship with the company, limiting their future options. This creates

an incentive for the insurer to raise renewal prices, which also lowers the consumers’ ex ante

willingness to sign. In essence, the insurer is time-inconsistent and values commitment. The

1Addressing a common concern, we control for the phenomenon of insurers launching new products
whenever they attempt to change premiums.
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Note: For illustration, we plot here the companies with: i. a share in the California life insurance market

of at least 1% according to California Department of Insurance (2004), and ii. a continuous presence in

our sample for at least 180 months (15 years). The total share in the life insurance market for these four

companies was 9.3% in 2003. Source: Compulife Software, 1990-2013.

Figure 1: ART premiums over time for selected companies

insurer also faces stochastic cost shocks in the second period, so it values flexibility. However,

policyholders do not observe the shocks, so they are unsure if premium hikes are due to

being held-up or due to changes in the cost.2 Consequently, excessive flexibility in adjusting

premiums could exacerbate the hold-up problem by discouraging consumers from purchasing.

To balance the need for commitment and the desire for flexibility, we show that the optimal

premium as a function of cost follows a simple cutoff rule: Premiums are low and rigid for

marginal costs below an endogenously determined threshold, while above this threshold

premiums are high and initially rigid before full flexibility is possible. The reason is the

2The cost of providing life insurance is mainly determined by the mortality risk of its pool of policyholders
and the interest rate. Typically, consumers do not observe the average mortality risk that the insurer bears.
Section 2.4 shows how we use publicly available data to estimate the cost of providing life insurance.
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renewal demand of locked-in policyholders is inelastic for low premiums. In the inelastic

region, premiums can increase slightly without losing any consumers, rendering flexibility

in adjusting premiums within this region non-credible. For marginal costs below the

threshold, the unconstrained premiums are low and map to the inelastic region, so the

insurer commits to a single low premium for all cost realizations sufficiently small to gain

credibility. Premium adjustments have to be costly to the insurer for it to be credible.

Therefore, increases from the low premium need to be significant to induce enough reduction

in demand, which is optimal when marginal cost is large.

Our model explains why level-term insurance policies have a non-guaranteed premium

schedule that affords them the room to be flexible, while the finalized premiums rarely devi-

ate from it. The main result is also consistent with the numerous premium drops observed in

the data which may occur when the cost in the second period decreases significantly, as well

as small premium changes which can be explained by the flexible part of the optimal schedule.

Having established the general properties of an optimal premium, we proceed to solve

the model numerically and calibrate it to match the quantitative features of ten-year

renewable insurance. The model generates realistic premium amounts and predicts

a jump in the premium of 12% when the cost shock switches between the low and

high regions, in line with what we observe on average in the data. We then use the

quantitative model to perform several comparative statics exercises, highlighting the sub-

tle differences between the consumer’s hold-up problem and the traditional monopoly power.

In the final part of the paper we show that the life insurance premiums data supports

the main predictions of our model. First, we show that as the level-term of a renewable

policy increases, which weakens the hold-up problem due to a higher probability of policy

termination before the renewal date, premiums are also more likely to be adjusted and

exhibit smaller jumps. Second, we find that between the 1990s and the 2000s, a period of

time when the consumer’s hold-up problem was likely weakened due to falling transaction

costs and less adverse health shocks, the frequency of premium changes increased and

the average size of such adjustments fell, bringing the pricing patterns of life insurance

companies closer to those in typical consumer goods markets. Third, we demonstrate that

life insurance companies tend to respond to cost shocks predominantly on the extensive

margin, by increasing the hazard of a premium change, while no apparent effect is detected

on the intensive margin, by varying the size of a premium change. This observation is in

line with our model where pricing is based on a threshold rule. Fourth, we contrast life
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insurance premiums with prices of annuities, a related product whose buyers are not held-up

by the insurer. We find that these prices adjust very frequently and by small margins, thus

providing external validity to our theory. Finally, we test several alternative frictions that

commonly lead to price stickiness, such as staggered contracts or menu costs, and show that

their predictions are not consistent with the facts about life insurance premiums.

To summarize, our paper offers two main contributions. Empirically, we provide new

evidence on the frequency and size of price changes in the life insurance market.3 On the

theoretical side, we explain this phenomenon with a model where the optimal incentive

compatible contract necessarily features price rigidity and a discrete jump. We calibrate

our commitment versus flexibility model to the life insurance market and show that the

predicted premium rigidity and jumps are quantitatively significant.

Our empirical finding provides support for a crucial assumption in the literature on life

insurance contracts. In a seminal paper, Hendel and Lizzeri (2003) examine the front-loading

of life insurance premiums, i.e., policyholders pay a surcharge when young to cover for

expected future losses when they age. They analyze the cross-sectional data on premiums

to show that when policyholders lack commitment and face health reclassification risk, the

optimal insurance contracts exhibit front-loading. However, their analysis relies on the

assumption that insurers keep their promises in that premiums for older cohorts are the

future premiums. In essence, they use the data from a single point in time (July 1997),

making an implicit yet crucial assumption that companies never deviate from the current

non-guaranteed premiums. Several papers have since extended their framework.4 Therefore,

the findings in this paper allow us to empirically and theoretically validate the implicit

assumption in Hendel and Lizzeri (2003).

Our model contributes to the literature on optimal delegation, which analyzes a principal-

agent setting with no transfers and a biased agent who is better informed (Holmstrom, 1984;

Melumad and Shibano, 1991; Alonso and Matouschek, 2008; Amador and Bagwell, 2013). In

these models, the principal typically has full commitment and chooses a set of actions that

3The recent vast literature has focused on documenting the distribution of frequency and size of price
changes in consumer goods, for example using the CPI or scanner data. On the other hand, very little such
evidence is available for financial services, in particular in terms of the size of price changes.

4Daily et al. (2008) analyzed the effect of secondary markets on front-loading. Fang and Kung (2018)
considered the consequences of introducing health-contingent cash surrender values, which work in a similar
fashion to secondary markets. The front-loading of contracts motivated Fang and Kung (2012) to ask whether
lapsation is driven by income, health or bequest shocks. Alternatively, Gottlieb and Smetters (2021) show
how front-loaded contracts exploit policyholders who underestimate the probability of an adverse income
shock. (Recent papers have focused on departures from the rational model, see Gottlieb (2018) for example.)
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the agent can take.5 This is similar to our paper since the time-inconsistent insurer commits

to a rule, i.e., a subset of renewal premiums that it can choose in the future.6 In particular,

our characterization of the optimal renewal premium function builds on the theoretical

insights of Melumad and Shibano (1991) and Alonso and Matouschek (2008). Our paper also

makes three novel contributions to the delegation literature. First, in our model, the time

inconsistency of the insurer is endogenous. The insurer is able to decrease or even eliminate

its intertemporal conflict, but we show quantitatively that it does not under empirically

relevant parameters. This differs from the literature which analyzes an exogenously biased

agent. Second, the optimal renewal premium will always feature a discontinuous jump if

the insurer has discretion in adjusting the premiums in the future. This is in contrast to

the previous literature which has found conditions for interval delegation to be optimal

(Amador and Bagwell, 2013). Third, our paper provides empirical support for the trade-off

between commitment and flexibility, which has not been quantified or tested in this literature.

This paper also contributes to the empirical literature on life insurance. Koijen and Yogo

(2015) show that life insurers have recently been posting highly negative markups which can

be explained by financial frictions around the 2008 crisis. Our paper provides an alternative

theory for why many of these companies were reluctant to increase premiums in the presence

of large marginal cost. Ge (2022) shows that insurers often adjust life insurance premiums

in response to shocks to their divisions in other markets. Her story suggests that on their

own, life insurance premiums may be even more rigid than the analysis in our paper indicates.

The remainder of the paper is structured as follows. Section 2 describes the construction

of our dataset and summarizes the main findings about price dynamics in the life insurance

market. Section 3 develops the theoretical model. In Section 4, we present the main qualita-

tive predictions of the model, calibrate it and perform a numerical analysis of the solution.

Section 5 provides empirical support for the main predictions of the model. Section 6 con-

cludes. The Appendices contain the proofs of our theoretical results, a description of the

numerical algorithm, and some more nuanced discussions of our data.

5The delegation framework has been applied to the analysis of savings mechanisms for present-biased
agents (Amador et al., 2006), and to the optimal level of discretion for policymaking (Athey et al., 2005;
Halac and Yared, 2014, 2018, 2022).

6Our model focuses on the disagreement between the insurer in the present and itself in the future.
Compared to the present, the future insurer is biased because it wants to exploit the held-up policyholders,
and it is also better informed than the present insurer because it knows the cost realization. Since it is
impossible for the future insurer to pay the present insurer, the only way for the present insurer to discipline
the future insurer would be to restrict the renewal premiums that it can charge.
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2 Life Insurance Prices

In this section, we describe the empirical setting of our paper. We start by explaining how

renewable level-term insurance works, introduce the dataset of historical premiums, and

discuss our findings on premium rigidity and the magnitude of premium adjustments. We

then show that marginal cost of life insurance is volatile over time, which presents a puzzle

in light of the rigid premiums. We conclude by explaining how these findings motivate the

construction of our model in Section 3.

2.1 Contract Description

We focus our attention on the renewable level-term form of insurance. These contracts

require a down payment of yearly premium at the moment of signing and stay in force

for a pre-defined period, typically between one and twenty years. After the term expires,

customers face a premium schedule that increases with age and are allowed to renew the

policy without undergoing a medical reclassification. Table 1 presents the structure of

a one-year level-term insurance policy, commonly referred to as the Annual Renewable

Term (ART), for the first 10 policy years. To help consumers undertake this long-term

commitment, the contract stipulates a projected path of premiums based on the rates

currently offered to older individuals in the same health category (the “Non-Guaranteed

Current” column). This schedule is not binding though, and the company may change it

at any point in the future. From a legal standpoint, the insurer only commits to an upper

Table 1: Structure of an Annual Renewable Term (ART) contract

Age
Guaranteed Maximum

Contract Premium
Non-Guaranteed Current

Contract Premium
30 270.00 270.00∗

31 550.00 280.00∗

32 565.00 285.00∗

33 582.50 297.50∗

34 605.00 302.50∗

35 632.50 325.00∗

36 670.00 330.00∗

37 712.50 332.50∗

38 757.50 350.00∗

39 820.00 360.00∗

Note: Sample contract offered by the Guardian Life Insurance Company of America (first

ten years). Face value = $250, 000. The asterisk in the last column is a standard feature and

indicates that premiums are non-guaranteed. Source: Compulife Software, December 2004.
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bound on future premiums (the “Guaranteed Maximum” column), which vastly exceeds the

amounts that can be expected in a market equilibrium.

A natural question to ask is: how often do life insurance companies change their premium

schedules? The next section answers this question by constructing a dataset of historical

premiums to verify that companies indeed tend to honor these non-binding commitments.

This in turn supports the assumption in Hendel and Lizzeri (2003) that consumers know

the renewal contract upon signing.

We measure the insurance companies’ adherence to these non-binding promises by collecting

premiums data for a fixed-age customer, as described in the next section.7 This approach is

reasonable because we generally observe in the data that companies tend to adjust entire age

schedules, rather than individual premiums separately. So while there is some measurement

error involved, in Appendix A.2, we show that it is likely to be small. We thus assume

that the pricing patterns for a fixed customer profile are a good approximation for how

credible these non-binding projections are in the next section. For example, a 30-year-old

customer signing an insurance contract as in Table 1 can expect to renew at $280 in 2005

(when he reaches the age of 31). Should the company deviate from this non-binding promise

and charge him an amount greater than $280, we will observe a simultaneous change in the

30-year-old premium in our data since the entire age schedule of premiums shifts.

2.2 Data Construction

We construct a sample of life insurance premiums from Compulife Software, a commercial

quotation system used by insurance agents.8 The programs are released monthly, spanning

the period from May 1990 until October 2013. For each of the 282 months collected, we

recover the premiums for 1-, 5-, 10- and 20-year renewable term policies offered by different

companies.9 Even though Compulife is not a complete dataset, it covers most of the major

7As explained in Section 2.2, we undertake this approach for practical reasons. Even though finding
the full schedules of premium renewals with respect to age for each company in each month is theoretically
possible, it would be prohibitively costly as we would not be able to automate the data collection.

8Since insurance agents need to provide up-to-date quotes for their consumers, Compulife reacts to
changes in the life insurance market and updates the premiums accordingly, see Compulife Software, Inc. v.
Newman, 9:16-cv-81942 (2017). Many of these changes are submitted by insurance companies themselves.
Also, the quoted premiums are a credible source of actual pricing data. This is because it is illegal for agents
to deviate from the quoted premiums in the 48 states with anti-rebating laws. Though California does not
have an anti-rebating law, rebating is still prohibited due to its anti-trust statutes (Garsson, 2015).

9To extract the data from Compulife programs, we obtain screenshots with premium listings and apply
a dedicated optical character recognition (OCR) script to convert them into numeric data. This approach is
particularly useful for the pre-1997 programs which can only be run under MS-DOS operating system.
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life insurers with an A.M. Best rating of at least A-. For the default consumer, we use a

30-year-old non-smoker male of the “regular” health category in California purchasing a

policy with face value of $250,000.10 The obtained sample consists of 55,829 observations

on annual premiums for 578 different policies offered by 234 insurance companies.11

Naturally, over the course of 23 years, these insurers tend to disappear or merge, as well as

discontinue their old products and launch new ones. We keep track of all such transforma-

tions whenever possible, merging the premium series of products with seemingly identical

characteristics. We also eliminate the seemingly duplicate products offered by the same com-

pany, always keeping the one with the lowest price. This is consistent with the assumption of

rationality—consumers would only consider the policy that is offered at the lowest price for

a fixed product characteristic. In the resulting sample, on average we observe each product

for around 96 months (with a median of 84).

2.3 Historical Premiums

Frequency of changes Table 2 provides a statistical description of price rigidity in our

dataset. Among 578 distinct insurance products that appear for at least 12 continuous

months in the sample, only 369 change their premium ever. The probability of a change

in any month is 2.59%, resulting in an average premium duration of roughly 39 months.

Table 2 includes a vast number of companies that do not adjust prices even once. This could

be because the insurance companies are not actively managing or promoting these products.

Hence, we also calculate the statistics for the subsample of insurance policies that display

at least one premium change. Among those products the probability of a monthly price

adjustment increases slightly, but still remains low at 3.4%, resulting in an average duration

of 29 months.

Magnitude of changes Table 2 also shows that premium adjustments, whenever they

occur, tend to be of large magnitude. We observe in total 1432 instances of premium ad-

justment, consisting of 580 hikes and 852 drops. The average size of these premium changes

is close to 11%, although we also observe many small changes which yields a median change

10The choice of this particular state is by Compulife’s recommendation, due to a relatively large population
and wide representation of insurance companies.

11Because of occasional incompleteness of Compulife data (especially in the 1990s), we impute the premi-
ums whenever a discontinuity appears for up to at most 12 months. We also drop all the products that are
observed for less than 12 continuous months. The imputed data represents roughly 1% of the final sample
size and consists of 220 continuous intervals, of which about a half directly precede an observed adjustment.
Our results on the overall rigidity would change very little even if we assumed that each of the remaining
imputed intervals contained one premium adjustment.
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of around 8%. This pattern is broadly consistent with the shape of the distribution of price

change sizes for CPI goods and services (Klenow and Kryvtsov, 2008), although life insurance

premiums exhibit fewer small changes and fatter tails (with kurtosis of around 5.5).12

Table 2: Price rigidity in the sample

Number of:
observations 55,829 premium changes 1432
insurance products observed 578 premium hikes 580
products that change price 369 premium drops 852

Probability of price change (in %): Whole sample Conditional
Average 2.6 3.4
Median 1.7 3.3

Adjustment size (abs., in %): Average Median
All premium changes 10.7 7.9
Premium hikes only 10.6 7.4
Premium drops only 10.8 8.5

Note: The conditional sample is restricted to those products that change price at least once.

Illustration To visualize these findings, Figures 2(a) and 2(b) plot the distribution of pre-

mium durations and adjustment sizes. The former depicts a standard view of a distribution

of durations with significant positive skewness and a long right tail reaching up to 20 years!

Each bin in the histogram represents 6 months, which means that roughly 35% of premium

spells last up to 12 months, while the majority last longer than a year, and some premiums

stay constant for up to 20 years. The second chart presents the distribution of relative sizes of

price adjustments, together with a fitted normal density plot. As is clear from the summary

statistics in Table 2, premium drops occur more often and are of slightly larger magnitude.

The size of adjustments reaches as much as 50% in both directions. The distribution also

exhibits fatter tails and more concentration around zero than the normal one.13

12Naturally, life insurance is different from typical CPI basket goods in that it provides a nominal face
value rather than a real consumption value. Hence, inflation provides at best a second-order pressure on
premium changes (Appendix A.4 provides a more comprehensive discussion of the effects of inflation). Hence,
all else constant, it should not be surprising that life insurance premiums are rigid even in the presence of
positive inflation. On the other hand, as we demonstrate in Section 2.4, life insurance products exhibit
volatile cost shocks which is not necessarily the case for many goods included in the CPI basket.

13While there are still many small price adjustments occurring in our data, the main takeaway is that the
distribution of premium changes for life insurance has fatter tails than for common CPI goods and services
as documented by, for example, Klenow and Kryvtsov (2008).

10



0
.0

5
.1

.1
5

.2
Fr

ac
tio

n

0 50 100 150 200 250
Duration (in months)

(a) Histogram of premium durations

0
.0

5
.1

.1
5

Fr
ac

tio
n 

of
 p

ric
e 

ad
ju

st
m

en
ts

-50 0 50
Size of price adjustments (in %)

(b) Histogram of adjustment sizes

Figure 2: Distribution of premium durations and adjustment sizes

2.4 Marginal Cost Estimation

In this section, we analyze the evolution of the marginal cost of life insurance. This is

important, because premium rigidity may not appear puzzling unless we understand the

dynamics of the underlying cost. Similar to Koijen and Yogo (2015), we approximate

marginal cost by calculating the actuarially fair value of an insurance policy. A precise

description of our method, applicable to renewable level-term insurance, is provided in

Appendix A.3. Intuitively, actuarially fair value is a price that satisfies the insurance

company’s zero-profit condition and depends crucially on two factors: interest rates and

mortality rates of the insured.

Figure 3 plots the evolution of the actuarially fair value for an ART policy, from May 1990

until October 2013. It ranges from as low as $196 (in November 1994) up to $291 (in De-

cember 2008), with mean of $216 and a standard deviation of $13.6. Notice the considerable

fluctuations over time that result from high frequency movements in the interest rate and low

frequency movements in mortality rates. A slight upward trend can be observed throughout

the sample, which is a consequence of two opposing long-term empirical patterns—a decline

in interest rates, and a decline in mortality of the insured. In particular, the actuarially fair

value exhibits a sharp spike in December 2008 when interest rates plunged to record low,

and a similarly high level in the post-2011 period of the zero lower bound.
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Figure 3: Actuarially fair value for an Annual Renewable Term policy over time

2.5 Using Cross Sectional Data for Life Cycle Estimations

Since this paper finds that renewable life insurance premiums exhibit extreme rigidity, it

provides justification for using cross sectional data to infer premium changes over the life

cycle. For example, Hendel and Lizzeri (2003) show that the optimal insurance contract

is front loaded when policyholders lack commitment. However, to test their theory, they

collect premiums for different ages from a fixed point in time—July 1997—to infer the

change in premiums over the life cycle. In essence, they implicitly assume that, for a fixed

profile of policyholders, the age schedule of premiums is held fixed or seldom adjust. Thus,

our empirical finding that premiums for a fixed profile rarely change over time provides

support for this methodology.

To better understand the difference, Figure 4 illustrates the two dimensions of pricing being

analyzed. Premiums are a function P (t, a, x), where t is time, a is age, and x is the policy-

holder’s initial profile—gender and health category—which is taken as given (x̄). Figure 4

shows how the premiums depend on t and a. The theoretical model of Hendel and Lizzeri

(2003) focuses on the gray diagonal line, while their empirical exercise examines an age pro-

file of premiums at a given point in time, P (t0, ·, x̄), which is the vertical area shaded in red.

Hence, their model matches their empirical exercise only if policyholders can expect to pay

the same premium in the future as the older cohorts—i.e., when the red-shaded age profiles

of premiums is mostly time-invariant. Our empirical analysis examines a panel of premiums

for a fixed age, highlighted by the horizontal blue shading. Since our paper finds evidence of
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rigidity in premiums for a given age over time together with the fact that premium adjust-

ments usually occur along the entire age schedule (see Appendix A.2), we provide empirical

and theoretical support for the empirical approach in Hendel and Lizzeri (2003).

time (t)

age (a)
Life

Rigid
premiums

Age profile

360 360 360 360 360

350 350 350 350 350

325 325 325 325 325

285 285 285 285 285

270 270 270 270 270

Figure 4: Stylized illustration of premiums

2.6 From Data to Model

We found that life insurance premiums tend to be rigid over time and exhibit infrequent

large adjustments, while the marginal cost of issuing policies is volatile. To explain this,

we develop a theory based on consumer hold-up and show that the optimal premium for

renewing consumers is shaped by the trade-off between commitment and flexibility. Before

formally presenting the theory, we now explain why the premiums shown in this section are

the relevant premiums renewing consumers face.

Rigid premiums imply promise-keeping While our data tracks the premiums over time

for a fixed-age consumer, its rigidity also implies that insurers tend to maintain their entire

age profiles of premiums stable over time. This is because life insurance companies generally

tend to adjust entire premium profiles, rather than individual premiums for different ages

(in Appendix A.2 we discuss the potential scope for measurement error involved in this

assumption). For example, referring back to Figure 4, if premium P (t, 31, x) is constant for

all t, then a customer renewing at age 31 in 2011 pays the same amount as he anticipated

at age 30 in 2010. In other words, the company keeps its non-binding promises towards the

renewing customers. Our model, which follows a generation of aging policyholders who face
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renewal decisions in the future, will offer an explanation to why an insurance company has

incentive to honor its non-binding commitment towards them.

Renewing vs. incoming consumers Although our data contains the initial premiums

for all types of renewable policies, most renewing consumers pay the same premiums as the

incoming consumers. Following the classification of Hendel and Lizzeri (2003), there are two

types of renewable term policies. The first and most common type is aggregate level term

policies, where premiums indeed vary in age but not across cohorts. For aggregate term

policies, both renewing and incoming consumers of the same age pay the same price, so the

premiums in our data are the renewal premiums. The other is Select and Ultimate (S&U)

level term policies, where consumers of the same age may pay different premiums depending

on when they had their last medical exam. For S&U, renewing consumers who do not get a

new medical checkup pay a higher premium than newcomers of the same age. While we do

not have an easy way to extract the S&U renewal premiums from our dataset, two remarks

are in order. First, the supply of S&U policies is smaller, because insurers are less willing

to issue it due to its high lapsation rate and severe adverse selection (Potasky et al., 1992).

Second, anecdotal evidence suggests that insurance agents are reluctant to recommend S&U

to consumers for fear that they may mistake S&U for aggregate (Van Steenwyk, 2007).

Effects of inflation The premium amounts we present here are nominal, while our model

in the following section is formulated in real terms. As we explain in Appendix A.4, this is

without loss of generality as long as inflation is constant (which is approximately true for the

analyzed period of time in the United States, which we document and verify quantitatively

in Appendix A.4). This is because while inflation erodes the value of premiums over time, it

does so to the expected death benefit as well. Thus, nominally rigid premiums for a policy

with fixed nominal face value translate into rigid real premiums per dollar of real face value.

Regulation Like most of the insurance sector, life insurance companies are heavily regu-

lated. A potential concern might be that the observations on price rigidity presented in this

section are a result of the regulatory constraints. Hence, it should be emphasized that life

insurance premiums are generally not subjected to regulatory approval of any sort, and the

firms are allowed to set them freely.14

14“State Insurance Regulation: History, Purpose and Structure”, a brief by the National Association Of
Insurance Commissioners.
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3 The Model

In this section, we present a dynamic pricing model of renewable life insurance. After setting

up the model, we characterize consumer demand, define incentive compatible premiums, and

present the insurer’s optimization problem.

3.1 The Setup

3.1.1 Consumers and Preferences

We consider an economy consisting of overlapping generations of three-period-lived con-

sumers. The economy operates in discrete time, t = 0, 1, 2, . . . . At each date t, there is a

continuum of consumers with demand for insurance, where a unit of them are young and

the rest are old. We refer to the young born at t as consumers of generation t. For each

generation t, the young decide whether to purchase insurance at t and whether to renew,

forgo coverage, or search for a new policy when old at t+ 1. The life insurance market does

not exist for generation t consumers at t+ 2, because they are dead in t+ 3 and beyond.

Mortality risk We assume that all young consumers are of the same health category,

and face a population-average mortality risk my ∈ (0, 1). We denote the population-average

mortality risk of the old as mo ∈ (0, 1).

Private valuation We normalize the face value of all life insurance contracts to 1. Before

purchasing life insurance, young consumers privately learn their reservation price for owning

a policy when old, which is denoted as ro. The reservation price is assumed to be the same

for all consumers when young: ry = r.15 Private valuation ro is drawn from a continuous and

differentiable distribution h (ro) and c.d.f. H (ro) over support [R,R]. We assume the hazard

rate is non-decreasing and R is sufficiently large so there is demand for insurance coverage

when old even if the marginal cost of insurance is large. Only the distribution of ro is

common knowledge, so insurers are unable to write individual-specific contracts. Consumers

have discount factor δ ∈ (0, 1) . We normalize the value of not owning life insurance to 0.

3.1.2 Life Insurance Company and Contract

We model the pricing decision of a single life insurance company that faces exogenous compe-

tition in the form of stochastic outside options available to consumers. The market structure

15The main results of the paper are unchanged if ry is heterogeneous.
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can be interpreted as monopolistic competition where the insurer faces a downward-sloping

demand due to the imperfect substitutability of insurance policies.16

Marginal cost The insurer faces a stochastic marginal cost shock co for insuring the

old, which is randomly drawn from a continuous and differentiable c.d.f. G and p.d.f. g

with support [c, c] . The marginal cost for each date cj,t, where j ∈ {y, o} depends on the

aggregate mortality rate and the interest rate: cj,t =
mj,t
1+it

, where it is the one-period risk-free

interest rate. We do not take a stand on the distributions of mj,t and it, and instead we

only model explicitly the univariate distribution of cj,t. Also, since my,t is small, movements

in it do not affect cy,t much, so we assume cy,t = cy for all t.17

A key assumption is that the cost is privately observed by the insurer. This is a natural

assumption since the mortality rate of the insured pool is not observed by the consumer.

Also, even if the insurer is well diversified so the mortality rate of the insured pool matches

that of the population, the mapping from interest and mortality rates to the marginal cost of

renewable life insurance contracts is complicated. This is evidenced by the complex formula

for estimating the marginal cost of renewable policies detailed in Appendix A.3.

Life insurance contract As was mentioned, the face value is exogenously normalized

to 1 for all life insurance contracts. The renewable life insurance contract consists of the

premium for young consumers Py,t and the renewal premium Po,t+1 (co,t+1) as a function of

cost co,t+1.
18 Since policyholders do not observe the cost of insuring old consumers, from their

perspective, the contract consists of insurers choosing a premium from a set of admissible

renewal premiums—the range of Po,t+1 (co,t+1) . We express the set of admissible renewal

premiums that generation t old consumers observe as {Po,t+1(co,t+1)} . Notice that by knowing

{Po,t+1(co,t+1)} , consumers also know the renewal premium a profit maximizing insurer would

choose for any co. We will show that Po,t+1 is rigid and adjustments in Po,t+1 are large, which

matches the empirical evidence documented in the previous section.

16This is due to the search and information frictions, as described by Hortacsu and Syverson (2004)
and confirmed by the premium dispersion in our dataset (see Appendix A.1). Section 3.1.3 introduces this
assumption in more detail.

17The cost to insure the young is relatively stable in the data, for details see Figure 14 in Section 4.1.
18This departs from the assumption in Hendel and Lizzeri (2003) and many papers that followed, where

policyholders know the renewal premiums as a function of future health upon signing. Their paper is focused
on a symmetric learning problem where the policyholder’s health evolves over time. In contrast, we focus
on a self-control problem where the insurer has private information on cost realizations in the future but is
also biased towards exploiting the consumers.
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3.1.3 Renewability, Transaction Cost and Search Frictions

Renewable vs. non-renewable There are two types of policies offered in the market:

renewable and non-renewable. The young may purchase one of these products, or neither

of them. If they choose a renewable policy, then they have an option to renew when old

regardless of the possible changes in their health status. On the other hand, a non-renewable

policy expires after one period, and consumers may purchase another non-renewable insur-

ance bearing the risk of being reclassified to a different health group. For both types of

policies, old consumers can lapse after one period (i.e. drop coverage altogether or switch to

another insurer).19

Transaction cost Prior to acquiring a new policy, consumers need to invest a transaction

cost µ > 0. It captures the cost of researching the market for available products, attending

medical checkups, meeting with sales agents and answering detailed questionnaires, as well

as being exposed to the contestability period. If young consumers decide to purchase a

non-renewable policy, then they must pay the transaction cost again to receive new coverage

when old. This cost is avoided if consumers decide to extend their renewable policy.

Risk of searching In addition to paying µ again, old consumers do not know the

non-renewable premium when they search for a new non-renewable policy. Non-renewable

premiums are determined exogenously, and we assume they are equal to the marginal cost

of providing the insurance, so insurers earn no profit from non-renewables. Specifically, the

price of non-renewable insurance for the generation t old consumers is PNR
o,t+1 = εco,t+1, where

ε is the uncertainty added to the marginal cost and it follows a right-skewed distribution

with c.d.f. Z and p.d.f. z and support (0,∞). The shock ε encompasses two sources of risk

associated with searching. First, a consumer faces the possibility of health deterioration

which can result in much higher premium when purchasing non-renewable insurance.20 The

second source of risk comes from the search and information imperfections, resulting from

ample dispersion of the premiums offered in the market, possibly coming from differences in

mortality rates across varying insured pools. Hence, a consumer who decides to search may

end up finding a worse alternative, even if the health status is unchanged. We will refer to

ε as the health and search shock. Since cy is constant, we assume that the non-renewable

premium for the generation t young consumers is constant across time, PNR
y,t = PNR

y .

19We do not consider the effects of the secondary market, because our quantitative exercise will focus on
30 and 40 year olds and the secondary market usually targets policyholders who have less than 15 years in
life expectancy. See Daily et al. (2008); Gottlieb and Smetters (2021); Fang and Kung (2018); Fang and Wu
(2020) for in-depth analysis on long-term contract design with secondary markets.

20We abstract from selection issues and assume that the non-renewable premium is independent of the
policyholder’s valuation.
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Most of the literature has focused on the optimal design of long-term contracts with risk-

averse agents who face reclassification risk (Hendel and Lizzeri, 2003; Daily et al., 2008; Fang

and Kung, 2018). Our paper departs from this literature by assuming that old consumers

are risk neutral with respect to the risk of searching for a new policy ε. This is because, for

a fixed transaction cost µ, the cost of switching insurers for consumers who are risk averse

to ε is even higher than for their risk neutral counterparts. Since our theory hinges upon

the fact that the consumers are held-up by the insurance company due to costly switching,

assuming risk averse consumers would strengthen our theory.

3.1.4 Timing

At each t, the insurer announces Py,t. Young consumers proceed to make their investment

and purchasing decision. Prior to t + 1, the insurer announces {Po,t+1 (co,t+1)} . At t + 1,

co,t+1 is realized and the insurer sets Po,t+1, which all surviving consumers observe. Then,

existing policyholders decide whether to renew, forgo coverage, or search for a new offer.21

Figure 5 summarizes the timing for generation t.

Py,t
announced

Learn ro Invest µ

{Po,t+1 (co,t+1)}
announced

Death
shock

co,t+1

realized
Po,t+1

finalized

Renew,
forgo coverage,

or search

Generation t Young Generation t Old

Figure 5: Timing of events

Even though {Po,t+1 (co,t+1)} is not announced at the beginning of t, it is common knowl-

edge that it is selected optimally to balance commitment and discretion. In other words,

consumers correctly anticipate {Po,t+1 (co,t+1)} upon signing.

3.2 The Insurer’s Problem

The environment is the same across generations, so the insurer can maximize total expected

present-valued profit by optimizing the profit for each generation. Therefore, the optimal

21We do not model new consumers signing with the insurer when they are old. There are two reasons for
this. First, if newcomers invest µ before the realization of co, then the hold-up problem persists, which is a
likely concern since co is volatile as seen in Figure 14. Second, our quantitative exercise will focus on 30-year
olds renewing at 40. It is reasonable for the demand of renewing 40-year old policyholders to be larger
than the demand of 40-year old new consumers. Therefore, the incentive to exploit held-up policyholders
dominates the incentive to lower premiums and attract new consumers.
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premium schedule is stationary. Subsequent analysis will thus focus on the profit maximiza-

tion problem for a single generation. To simplify notation, we drop the date subscripts.

We consider a sequentially optimal pricing rule. The insurer chooses a premium function

in each period that maximizes the present value of discounted profits taking into account

that it will do the same in the future. Moreover, consumers purchase insurance taking the

future behavior of the insurer into consideration. The endogeneity of consumer behavior

differs from the concept of sequential optimality in Halac and Yared (2014). To define the

equilibrium, let Dy (Py, {Po (co)}) and Do (Py, Po (co)) denote the demand for young and old

consumers respectively. We will assume that all young consumers have a demand for life

insurance coverage: r ≥ PNR
y + µ.22 In essence, if consumers do not purchase a renewable

policy, they will purchase a non-renewable instead.

Definition 1 The sequentially optimal pricing rule is a contract {Py, {Po (co)}} satisfying:

(i) given Py and the optimal response {Po (co)} , consumers sign-up for renewable life insur-

ance if and only if

Bren (ro)−Bnon (ro) ≥
Py − PNR

y

(1−my) δ
, (1)

where Bren (ro) denotes the expected utility of an old renewable policyholder with private

valuation ro :

Bren (ro) =

∫ c

c

max

{
0, ro − Po (co) ,

∫
ε

max
{

0, ro − Po (co) , ro − PNR
o

}
dZ (ε)− µ

}
dG (co)

and Bnon (ro) denotes the expected utility of and old non-renewable policyholder with private

valuation ro :

Bnon (ro) =

∫ c

c

max

{
0,

∫
ε

max
{

0, ro − PNR
o

}
dZ (ε)− µ

}
dG (co) ;

(ii) taking Py and the demand of renewing old consumers as given, {Po (co)} solves the static

optimization problem:

Πo(Py) ≡ max
{Po(co)}

∫ c

c

(Po (co)− co)Do (Py, Po (co)) dG(co), (2)

22This simplifies but does not change our analysis. As long as µ is large the hold-up problem persists.
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subject to the incentive compatibility constraints: for all co, c
′
o ∈ [c, c] ,

[Po (co)− co]Do (Py, Po (co)) ≥ [Po (c′o)− co]Do (Py, Po (c′o)) ; (3)

(iii) the premium Py solves the optimization problem for a given cy by taking the optimal

response {Po (co)} as given:

Π = max
Py

(Py − cy)Dy (Py, {Po (co)}) +
1

1 + i
Πo (Py) . (4)

Part (i) of Definition 1 shows that consumers take prices as given and purchase renewable

insurance if and only if the additional present value discounted expected benefit in owning

a renewable when old is greater than premium difference of the two types of insurance when

young.23 By observing Bren (ro) , we can see that there are three benefits to purchasing a

renewable policy. First, renewable policyholders do not incur a transaction cost µ if they

renew. Second, renewable life insurance contracts are similar to options: Policyholders

are not obligated to renew if premiums are high. They could instead forgo coverage or

search for a new policy. Finally, policyholders can always renew if they are unable to

find better deals after searching. From Bnon (ro) , non-renewable policyholders have the

same options as renewable policyholders except for the option of renewing when they are old.

Importantly, part (i) of Definition 1 also helps us characterize the demand functions. First,

notice that if Py ≤ PNR
y , then (1) is automatically satisfied. In particular, the demand for

renewables is independent of ro, because all generation t young consumers would purchase

renewables since r ≥ PNR
y + µ. As a result, not all renewable policyholders expect to renew

next period. Importantly, there is no hold-up problem if Py ≤ PNR
y , because the renewal

demand is elastic with respect to premium changes.

The more interesting case is when Py > PNR
y , because all renewable policyholders expect to

renew. Intuitively, this implies that only consumers with large valuation for coverage when

old—sufficiently high ro—would purchase renewables and there is a lower bound in ro for its

pool of policyholders.24 The insurer would then be tempted to increase Po up to this lower

bound, because the renewal demand is inelastic with respect to premium changes below it.

The insurer encounters a hold-up problem when Py > PNR
y . This novel feature of our model

is in contrast to the delegation literature, which has focused on exogenously determined

23Since all consumers will either buy a renewable policy or a non-renewable policy, we can derive (1) from
the following condition: (r − Py − µ) + (1−my) δBren (ro) ≥

(
r − PNR

y − µ
)

+ (1−my) δBnon (ro) .
24Appendix B.1 provides a formal treatment of this intuitive result.
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time inconsistency that cannot be eliminated. Here, the insurer’s level of time inconsistency

is determined by its own choice of premiums and can be eliminated when Py ≤ PNR
y . We

will show numerically that despite this, the insurer sets Py > PNR
y at the optimum.

Formally, let r̄o (Py, {Po (co)}) be defined as the threshold valuation such that (1) holds with

equality. Intuitively, this threshold is endogenously determined by the insurer’s choice of

premiums and is increasing with respect to both premiums. To streamline notation, we

write r̄o with the implicit understanding that it depends on Py and {Po (co)} . Since all

consumers with ro ≥ r̄o purchase the renewable insurance, the demand function of young

consumers is

Dy (Py, {Po (co)}) = 1−H (r̄o) . (5)

The demand for renewing is

Do (Py, Po (co)) = (1−my) [1−H (max {r̄o, Po (co)})] . (6)

The demand is weakly decreasing in premiums. Most importantly, renewal demand becomes

perfectly inelastic for any Po (co) ≤ r̄o.

Next, we discuss part (ii) of Definition 1. From the analysis above, the insurer faces

differing incentives before and after a young consumer purchases renewable insurance. By

purchasing a renewable policy, policyholders reveal their valuation to be at least as large

as r̄o. This discourages young consumers from buying renewable policies, since the insurer

has an incentive to increase Po up to r̄o. As a result, the insurer needs to commit to a low

premium to attract young consumers. However, volatile cost shocks create an incentive to

adjust premiums accordingly.25 To resolve this tension, the insurer disciplines its pricing

behavior by making sure that the renewal premiums are incentive compatible, i.e., the

contract satisfies (3). In other words, the insurance company has a time-inconsistency

problem which it manages by creating a rule for itself. The incentive constraints (3)

restrict attention to renewal premium functions Po (co) that induce the insurer to report

co truthfully. Effectively, the incentive constraints (3) reduce the set of admissible renewal

premiums {Po (co)} that the insurer can choose from after realizing the cost. The set of

admissible renewal premiums shares the same concept as delegation sets in Holmstrom

25In a recent paper, L’Huillier (2020) also generates rigid prices in a model where firms are better informed
of the state of economy, such as the inflation rate. He shows that prices are rigid when a sufficiently high
proportion of consumers are uninformed of the state of the economy. In contrast to L’Huillier (2020), where
price rigidity can be generated without long-term relationships, the rigidity in our paper relies on the hold-up
problem that naturally stems from the multiple interactions between a policyholder and the insurer.
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(1984).26 The set is announced prior to policyholders becoming old. For simplicity, we

assume the insurer incurs a sufficiently large exogenous penalty for deviating from {Po (co)} .
In reality, the set of premiums is not legally binding, so in Appendix B.4 we explore a

reputation mechanism to endogenize the penalty.

Furthermore, parts (i) and (ii) of Definition 1 also subtly require the insurer to take r̄o

as given and choose {Po (co)} such that (1) is satisfied for all ro ≥ r̄o. In essence, in

addition to incentive compatibility, the insurer needs to deliver a minimal expected utility

to the policyholders that corresponds to what the consumers expected when they were young.

The objective (2) is similar to finding a balance between discretion versus rules in delegation

problems. The main difference is in how this trade-off is being created. The literature on

optimal delegation and self-control has focused on situations where the disagreement between

principal and agent or present and future selves is exogenous. In essence, the delegation

literature has focused on the static optimization problem in (2). The novel feature of our

model is that in (4), the insurer can completely eliminate its time inconsistency at a cost

by setting Py ≤ PNR
y . To the best of our knowledge, we are the first to analyze such an

empirically motivated two-stage delegation model: The insurer chooses the level of time

inconsistency in the first stage before playing the standard delegation game in the second

stage. However, we will show numerically that the trade-off in life insurance contracts is

endogenously generated by the insurer optimally setting Py > PNR
y , so the time inconsistency

problem is not eliminated at the optimum.

4 The Optimal Premium Schedule

In this section, we characterize the set of incentive compatible renewal premiums and obtain

its general properties. Note that all of the results here are for Py > PNR
y . Later in this

section, we will calibrate the model and solve for Py.

We define the following cost regions: Co = {co | Po (co) ≥ r̄o} and Co = {co | Po (co) < r̄o} .
The following lemma shows that the incentive compatible renewal premium follows a thresh-

old rule, where it is rigid for cost shocks below the threshold.

Lemma 1 An incentive compatible renewal premium satisfies the following:

i. For co ∈ Co, Po (co) does not vary with co and Co has strictly positive measure.

26Alonso and Matouschek (2008) showed that solving a direct mechanism design problem subject to (3)
is equivalent to solving a delegation problem where insurers choose a delegation set to restrict the choice of
renewal premiums.
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ii. Po (co) is weakly increasing, and there exists cT such that Co =
[
c, cT

)
and Co =

[
cT , c

]
.

Lemma 1 shows that the incentive compatible renewal premium is rigid when the marginal

cost is small: co < cT . The rigidity is caused by the inelastic renewal demand for prices

below r̄o. The insurer knows the minimum valuation of the insured pool r̄o and is tempted

to increase premiums up to it. As a result, any variation in premiums below r̄o would not

be credible, because the insurer would always announce the highest admissible premium

below r̄o.

Denote P̄o = Po (co) for all co ∈ Co. Lemma 1 allows us to rewrite some of the incentive

constraints, and in particular, we have the following binding incentive constraint at cT :

(
P̄o − cT

)
[1−H (r̄o)] =

(
Po
(
cT
)
− cT

) [
1−H

(
Po
(
cT
))]

. (7)

If (7) is violated, then it is not incentive compatible for cost realizations within a neighbor-

hood of cT . Let P ∗o (co) denote the optimal frictionless premium at co, which is the optimal

premium when incentive constraints are not binding. The next lemma characterizes the

incentive compatible premium for Co.

Lemma 2 An incentive compatible renewal premium satisfies the following:

i. For co ∈ Co, if Po (co) is strictly increasing and continuous on an open interval (c′o, c
′′
o) ,

then Po (co) = P ∗o (co) on (c′o, c
′′
o) .

ii. There is a discrete jump in premiums at cT : Po
(
cT
)
> r̄o > P̄o. Furthermore, there

exists cM > cT such that Po (co) does not vary with co ∈
[
cT ,min

{
cM , c

})
.

Lemma 2 shows that the insurer charges the optimal frictionless price if it has full flexibility,

but it is not incentive compatible for the insurer to have full flexibility for all costs in Co.
Crucially, Lemma 2 shows that the renewal premium function has a jump discontinuity at cT ,

i.e., the set of admissible renewal premiums has a hole. In essence, the incentive compatible

premium has to have a discrete jump if the insurer has flexibility to adjust premiums.

What is interesting is the size of this jump. The jump at cT is such that Po
(
cT
)
> r̄o.

The reason is that for the premium increase at cost cT to satisfy incentive compatibility

(7), the premium hike has to induce a sufficient drop in demand: 1−H
(
Po
(
cT
))
< 1−H (r̄o) .

To see why the optimal renewal premium function will always contain a jump, consider a

set of admissible renewal premiums without holes: {Po (co)} = [A,B] . Amador and Bagwell

(2013) provided general conditions for when interval delegations are optimal, but they fail

23



here.27 To see why, first notice that consumers with ro ≤ A would not purchase renewables,

because all renewal premium realizations will be weakly greater than their private valuation.

Next, notice that all consumers who purchase renewable insurance have valuation strictly

greater than B, i.e., r̄o > B. This is because if r̄o ∈ (A,B] , then the insurer will always

announce a premium of at least r̄o since the demand function is inelastic below r̄o. As a

result, by backward induction, none of the consumers with ro ∈ [A,B] would purchase

renewable insurance. Therefore, r̄o > B and the insurer would always charge a price of

B. Intuitively, if the insurer chooses to implement {Po (co)} = [A,B] , then the consumers

believe that the insurer will exploit them because a renewal premium function that allows

adjustments without jumps violates incentive compatibility.

Lemma 2 also states that incentive compatible premiums are rigid for co ∈
[
cT ,min

{
cM , c

})
.

This is because if the insurer chooses P ∗o (co) for all co ∈
[
cT , c

]
, then the insurer would devi-

ate to the frictionless premium for cost realizations slightly below cT . As a result, similar to

the characterization of incentive compatible delegation rules with discontinuities in Melumad

and Shibano (1991) and Alonso and Matouschek (2008), the insurer chooses a rigid premium

within
[
cT ,min

{
cM , c

})
, which is the only other incentive compatible option. This implies

the insurer is able to charge frictionless premiums only for sufficiently large marginal costs,

because the corresponding frictionless premiums are large enough to cause a significant de-

crease in demand through lapsation to relax incentive compatibility. Let ¯̄Po denote the rigid

premium when co ∈
[
cT ,min

{
cM , c

})
.

Theorem 1 The incentive compatible premium has the following feature:

Po (co) =


P̄o c ≤ co < cT

¯̄Po cT ≤ co < min
{
cM , c

}
P ∗o (co) min

{
cM , c

}
≤ co ≤ c

with P̄o < r̄o <
¯̄Po = P ∗o

(
cM
)

and

(
P̄o − cT

)
[1−H (r̄o)] =

(
¯̄Po − cT

) [
1−H

(
¯̄Po

)]
. (8)

Theorem 1 shows that the incentive compatible set of admissible renewal premiums {Po (co)}

27Halac and Yared (2020) is another paper that produces discontinuities even when conditions in Amador
and Bagwell (2013) hold. Their jump is caused by a verification mechanism. Specifically, at the optimum, the
principal chooses to verify the reported state when it is above a threshold. Hence, the principal’s optimum is
implemented for states above the threshold while the agent has some degree of flexibility for states below the
threshold, which causes a discontinuity at the threshold. There is no costly state verification in our model.
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is
{
P̄o,
[

¯̄Po, P
∗
o (c̄)

]}
, so the insurer does not announce premiums within the open interval(

P̄o,
¯̄Po

)
. Figure 6 illustrates an optimal renewal premium function (in blue) with the

corresponding set of admissible renewal premiums on the vertical axis (in red). By Theorem

1, the insurer solves for the premiums
{
P̄o,

¯̄Po, Py

}
and the cost thresholds

{
cT , cM

}
subject

to (1) and (8).

Po

co

r̄o

P̄o

¯̄Po

cT cM

P ∗o (co)

Figure 6: Incentive compatible premium profile

Theorem 1 can explain the pricing phenomena documented in Section 2.28 The low frequency

of premium changes in Figure 2(a) is explained by the intervals of cost shocks for which

the optimal price is rigid. The discontinuous jump between the two rigid parts, P̄o and
¯̄Po, accounts for the fact that life insurers often adjust premiums by large margins and

the distribution of adjustment sizes in Figure 2(b) exhibits fat tails. A jump can be both

positive (a premium hike) or negative (a premium drop), which depends on how the future

cost realization compares to what the current old generation is facing. The optimal renewal

premium function also features a continuous part which allows for small changes, consistent

with the high concentration of mass around zero on the histogram in Figure 2(b). In the

following Section 4.1, we take these predictions to the data by solving our model numerically

and calibrating it to the US life insurance market.

28We can enrich our baseline model with a private reservation price that is a function of the cost co that
the insurer reports. Specifically, consumers privately learn their reservation price function ro (co) , which is
drawn from a known distribution H (ro) . For this extension to work, we need to make two assumptions.
First, the function ro is increasing in co : Higher mortality rates or lower interest rates make owning life
insurance more desirable. Second, an agent who values owning life insurance more does so for all costs: If
r̂o (co) > r̃o (co) for some co ∈ [c, c] , then r̂o (c′o) > r̃o (c′o) for any c′o ∈ [c, c] . Such an extension would not
change the qualitative results presented in this section.
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4.1 Numerical Analysis

4.1.1 Calibration

The model does not have an explicit closed-form solution. We proceed by using the data and

outside knowledge to assume reasonable parameter values and functional forms, and solve for

an equilibrium numerically. Table 3 presents a summary of our calibration. Because we only

focus on two periods, we assume that each period is equivalent to ten years and calibrate

the remaining parameters to the features of ten-year level-term renewable insurance. While

most of the model variables do not have a direct counterpart in the data, we attempt to

make the calibration realistic while also keeping the numerical solution feasible. In what

follows, we describe our assumptions on the functional forms and parameter values.

Table 3: Parameter values in the model

Symbol Meaning Value

µ Transaction cost 970
cy Cost of insuring young 1090
PNR
y Price of non-renewable insurance 1040
my Mortality rate 0.007
i Annual interest rate 0.04
δ Discount factor 0.68

Cost shock distribution: uniform

c Lower bound 2700
c Upper bound 3500

Valuation distribution: Generalized Pareto

γ Scale parameter 700
κ Shape parameter 0
θ Threshold parameter 3580

Health and search shock distribution: lognormal

ε̄ Mean -0.0104
σε Standard deviation 0.14425

Marginal cost The marginal costs to insure consumers are computed directly from the

data. Figure 14 in Appendix A.3 illustrates our measure of the cost shocks over time.29

29In reference to the series presented in Figure 3, here we consider a fixed 10-year insurance term only
and do not convert the cost shocks to annual values.
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Cost of covering the young cy corresponds to the average expected death benefit payout for

a 30-year old male over the period of ten years.30 This cost ranges from $914 to $1244 in

the data, with a mean of $1090. Because of the relatively small volatility of this variable,

evident in Figure 14, we simplify the model by taking cy as given and setting it equal to the

average. The cost of covering the old co is associated with the expected death benefit payout

for a 40-year old male who is renewing a policy purchased at age 30. This involves using

different (higher) mortality rates than for new 40-year-old customers who have just passed a

medical exam. This cost ranges from $2717 to $3430 in the data, with an average of $3064.

The distribution of this shock is unlikely to be normal due to the presence of fat tails. This

is confirmed by the Jarque-Bera test which returns a p-value of 0.075, providing grounds to

reject the null hypothesis of normality. In order to make computation of some parts of the

equilibrium analytically feasible, we assume that the distribution is uniform with bounds

[2700, 3500]. Note that the realization of co,t+1 is independent from the value of co,t.

Private valuations The distribution of consumers’ private valuations does not have a

clear counterpart in the data. To simplify the algorithm, we assume it to be a Generalized

Pareto distribution, with the shape parameter of 0. This assumption makes it essentially a

“shifted” exponential distribution, which features a constant inverse hazard rate 1−H(·)
h(·) = γ,

enabling us to obtain closed-form solutions for prices P̄o and ¯̄Po (details of the solution

method are provided in Appendix B.3). The scale parameter γ is selected to match the

existing evidence on elasticity of demand for term life insurance. Specifically, Pauly et al.

(2003) use the Compulife data from January 1997 and find the price elasticity of demand to

be 0.475 for a median company. Given our distributional assumption, and the median yearly

premium for an ART in January 1997 of $335, we set the value of the scale parameter γ to

be 700. The threshold parameter θ is then calibrated to match the fraction of non-renewable

policies among all term policies underwritten, equal to 11% as reported by LIMRA (1994).

Health and search shock The distribution of the health and search shock ε is assumed

to be lognormal, which conveniently allows us to calculate the integrals inside of Bren(·) and

Bnon(·) of (1) analytically, rather than numerically. The right skewness of the distribution

captures the idea that a consumer who decides to search for a new policy when old may find

a better deal in the market, but is also at a risk of prohibitive premium increases should his

health have deteriorated or lifestyle habits changed.31 We do not have compelling evidence

30As discussed in Appendix A.3, we abstract here from the issue of voluntary lapsation and assume that
the consumer will continue to pay the premium for the entire period.

31In practice, below the regular health category life insurance companies use the so-called table ratings to
determine a premium hike. The consumer’s health and lifestyle is evaluated with respect to several categories
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on the probabilities of getting a table rating. For this reason, we set the parameters of the

lognormal distribution to match two moments: i.) E(ε) = 1, and ii.) V ar(ε) = 0.1452

where 0.145 is the average coefficient of variation across time for all the prices of 10-year

renewable term policies in our sample. In other words, we calibrate the variance of ε to

match the observed dispersion of premiums in the data, and allow the right-skewness of the

lognormal distribution to determine the likelihood of adverse health shocks. Notice that by

calibrating the distribution of ε to the empirical price dispersion, we introduce to the model

a reduced-form effect of market competition.

Transaction cost The transaction (or switching) cost µ is the key parameter in our model,

and at the same time probably the most controversial one. It comprises the opportunity cost

of researching the products on the market (and not working or using leisure), the opportunity

and monetary cost of attending the medical examination, the opportunity cost of meeting

with an insurance agent and filling out the paperwork (given that our sample starts in the

1990s). An additional factor contributing to the dollar value of µ is getting exposed to the

contestability period, i.e. a possibility that the insurance company may reject a benefit

claim if death occurs in a short period after signing the contract. Direct estimation of

switching costs in the life insurance market is beyond the scope of this paper. Instead, we

survey the literature for similar recent estimates across other markets which also feature

long-term contracts. Table 4 summarizes our investigation. The switching cost estimates

vary significantly for different studies and markets, ranging between $40 and $700 for markets

such as auto insurance, wireless or cable TV, as well as between $1200 and $5000 for health

and retirement plans. In order not to rely on possibly irrelevant outliers, we adopt a median

value between these two groups of $970, and we analyze the importance of this parameter

by performing comparative statics exercises in the following section.

Other parameters The remaining parameters of the model are calculated directly from

the data. The mortality rate my is the cumulative ten-year probability of dying for the

insured 30-year old male; we find it to be 0.7% using the 2001 Select and Ultimate mortality

tables. The annual interest rate i is assumed to be 4%, which yields the ten-year discount

factor δ of 0.68. Finally, we assume that the non-renewable insurance premium PNR
y is

$1040, which implies that such policies are priced competitively and sold at a slight discount

relative to the cost of renewables cy. This assumption is useful in the model due to the

fact that the insurer may choose Py = PNR
y to eliminate its time inconsistency problem.

However, with cy > PNR
y , this will cause a loss in covering the young which encourages

and each one may raise the standard rate by 25%.
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Table 4: Switching cost estimates in the related literature

Reference Market Dollar value

Honka (2014) Auto insurance 45-190
Cullen and Shcherbakov (2010) Wireless 255
Shcherbakov (2016) Television and satellite 227-395
Weiergräber (2014) Wireless 337-672
Illanes (2016) Pension plans 1285
Miller and Yeo (2018) Medicare 1700-1930
Handel (2013) Health insurance 2250
Nosal (2012) Medicare 4990

Note: Relative to the amounts quoted in original papers, we convert them to 2012 US dollars.

the insurer to seek an interior solution instead. Empirically, the assumption that non-

renewable insurance is sold at a discount relative to the ten-year marginal cost is plausible

for at least two reasons. First, consumers who purchase such policies are likely to actually

need it for a shorter time, resulting in higher lapsation rates. Second, the average health

status of renewable policyholders at any given time tends to be worse than non-renewable

policyholders. This is because all non-renewable policyholders recently had health exams,

while some renewable policyholders have renewed without undergoing a health exam and

have likely deteriorated in health. For example, in the data, the cost to insure a pool of

30-year-olds who have held their policies for 10 years increases the marginal cost by 55%.

While in reality such vintage policyholders are likely a minority in the pool of 30-year-old

customers, their existence naturally elevates the average cost cy relative to PNR
y , a price only

available to the newcomers.

4.1.2 The Equilibrium

Table 5 presents the equilibrium of our model under the discussed calibration. The premium

for young consumers is 1052, which is greater than PNR
y , so the insurer’s time inconsistency

problem is not eliminated. The lower cost threshold cT is equal to 3026, just below the

midpoint of the cost domain, and the upper cost threshold cM is set to 3337. This frequency

of price adjustments is reasonable given that we calibrate the model to 10-year renewable

level-term insurance. The predicted rigid premiums, P̄o and ¯̄Po, are equal to 3616 and 4037,

respectively. As the lower panel of Table 5 shows, this is well in the ballpark of what the

renewing 40-year-olds can expect to pay in the data (expressed in cumulative ten-year terms).

Also, the size of the jump predicted by our model,
( ¯̄Po/P̄o − 1

)
× 100, matches closely the

average size of the premium adjustment observed in the data, around 11.5%.
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Table 5: Equilibrium of the model

Symbol Variable name Value

Π Total profit 312.73
Πo Profit from old 513.08
cT Lower cost threshold 3026.39
cM Upper cost threshold 3337.47
Py Price for young 1052.02
P̄o Lower price for old 3615.87
r̄o Threshold for renewables 3659.79
¯̄Po Upper price for old 4037.47( ¯̄Po/P̄o − 1

)
× 100 Jump between premiums (in %) 11.66

Premiums in the data:
40-year-old average 3549.14
40-year-old median 3489.35
40-year-old standard deviation 817.93
Average change (in %) 11.43

Note: the data section summarizes the premiums for 40-year-old males in

regular health category, for 10-year renewable insurance. Annual premiums

are expressed here as present expected value of the entire ten-year period,

until renewal. Similarly as in Section 2.4, we ignore the issue of lapsation.

4.1.3 Comparative Statics

Transaction cost We now analyze the mechanics of the model by performing several

comparative statics exercises with respect to the key parameters. Figure 7 illustrates how

the optimal pricing rule changes with transaction cost µ. Renewable life insurance contracts

become more attractive compared to non-renewables as µ increases. The insurer responds

by increasing premiums (Py, P̄o, and ¯̄Po) and restricting quantity, i.e. decreasing the pool

of covered policyholders (r̄o increases). As a result, the total profit of the insurer rises.

Crucially though, an increase in the transaction cost also worsens the hold-up problem. To

attract consumers ex ante, the insurer responds by increasing cT (along with cM , which rises

even more) so that it is more committed to the rigid premiums P̄o and ¯̄Po, and by raising

the size of the jump between them. Notice that beyond a certain level of µ, the terms of the

optimal contract become invariant. This is due to the fact that search becomes too expensive

for a vast majority of consumers and only the ones with high enough demand for coverage

when old decide to buy.

Health and search shock Figure 8 shows a similar exercise when we vary the mode of the

lognormal health and search shock distribution, while holding the mean equal to 1. Higher
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Figure 7: Varying the transaction cost µ in the model

mode means that consumers face more adverse health shocks and become more locked-in

to the contract, but it also makes renewables more desirable than non-renewables. Once

again, the reduced competition from non-renewables leads the insurer to raise equilibrium

premiums and restrict the quantity supplied. By the same logic as with the transaction

cost, to attract more consumers ex ante the equilibrium cost thresholds cT and cM go up,

promising a wider interval of rigid-priced insurance, and the jump between ¯̄Po and P̄o widens.

Elasticity of demand Finally, in Figure 9 we vary the inverse hazard rate of the distri-

bution of consumers’ valuations. As γ goes up, the price elasticity of demand decreases and

the company enjoys more monopoly power resulting in a higher P̄o. Importantly though,

lower demand elasticity does not alter the strength of the consumers’ hold-up problem. As

a result, the equilibrium cost thresholds fall, imposing high premiums over a wider range

of cost shocks, while the jump between ¯̄Po and P̄o becomes smaller. The increase in profit

from higher renewal premiums would be bigger with a larger pool of policyholders, which is

why Py falls as γ rises to attract more customers in the spirit of the switching cost literature

(Klemperer, 1987). However, it is important to note that ¯̄Po can be inversely related to γ.

This is because the profit for smaller cost shocks (co < cT ) has increased with higher γ, so
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Figure 8: Varying the mode of the health shock distribution in the model
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Figure 9: Varying the inverse hazard rate γ in the model
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for (8) to hold, the profit for larger cost shocks (co ≥ cT ) must also go up. Since ¯̄Po is too

high compared to the frictionless premium near cT , the insurer lowers ¯̄Po to increase profits

for cost shocks near and above cT .

5 Empirical Support

In this section, we show that the main predictions of our model are supported by broad trends

in the life insurance premiums data. In particular, we look at how the average probability

and size of premium adjustments vary across renewal terms and across time. Then, we

show that the marginal cost is positively correlated with the hazard of premium adjustment,

rather than size, indicating that life insurers tend to respond to cost shocks on the extensive

margin. Finally, we contrast the price dynamics of life insurance with that of annuities, a

related product but without the hold-up problem. We show that the latter change prices

very frequently and by small margins. In the concluding part of this section, we use the data

to address common alternative theories of price rigidity in the context of life insurance.

5.1 Premium Changes Across Renewal Terms

First, we investigate whether the frequency and size of price adjustments vary with the

length of renewability term. As the term extends, the level of marginal cost, premiums, and

consumers’ valuations increase, while the one-time transaction cost remains unchanged (it

takes the same amount nominally to invest in purchasing ART or 10-year level-term). In

other words, the transaction cost falls relative to the size of the consumer’s surplus as we

move from one-year term to 10- and 20-year terms. Suppose we calibrate our model to three

different term lengths, and normalize the lower rigid price P̄o to be equal to 100 across all

calibrations. The normalized value of the transaction cost parameter µ would then decrease

as the term extends. Figure 7 shows that in the model this leads to a drop in both cost

thresholds, more flexibility in adjusting premiums (cM falls more than cT ), and a smaller

jump between P̄o and ¯̄Po.

Table 6 presents the frequency of premium changes, along with the average magnitude of

adjustments, for the four standard lengths of level-term renewable insurance. Two stark

observations arise from this test. First, as the term extends, we indeed observe a larger

frequency of price changes, climbing monotonically from 1.08% for ART policies up to 3.61%

for 20-year level-term. The analysis of variance between and within the groups confirms that

these differences are statistically significant. Second, ART policies exhibit a significantly
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higher average size of the premium adjustment at 15%, compared to roughly 10% for all

the remaining term lengths. Interestingly, term lengths above one year are not informative

about the expected size of a premium change, and the mean of squares within these three

groups exceeds the means of squares between them (with p-value of the F test equal to 0.26).

Table 6: Testing the difference in frequency and size of premium adjustments across terms

Term length N obs. % adjusting St. err. Variance analysis

1 year 13, 499 1.08 0.01 MSB 1.70
5 years 6, 440 2.10 0.03 MSW 0.001
10 years 20, 763 3.01 0.03 F-stat 1795.85
20 years 14, 549 3.61 0.03 p-value 0.00

Term length N obs. size (in %) St. err. Variance analysis

1 year 146 15.01 0.83 MSB 1017.36
5 years 135 10.85 0.58 MSW 40.32
10 years 626 10.02 0.22 F-stat 25.23
20 years 525 10.38 0.26 p-value 0.00

5.2 Time Trend in Premium Changes

In this section, we divide our sample into two sub-periods: 1990-1999 and 2000-2009. It can

be argued that between these two time intervals, the consumer hold-up problem became

weaker for two main reasons. First, the emergence of on-line pricing tools led to a reduced

transaction cost needed to search for a life insurance policy and compare premiums across

different companies and products. The internet also enabled customers to purchase policies

directly from the insurance firms, avoiding the need to meet an agent physically.32 Second,

mortality rates among the insured dropped significantly in the 2000s as documented by the

two vintages of Select and Ultimate mortality tables issued in 2001 and 2008. For example,

a cumulative 20-year probability of death for a 30-year-old male policyholder decreased from

2.36% to less than 1.96%, while the cumulative 20-year death rate fell from 5.19% to 4.39%

for a 40-year-old male policyholder. As our comparative statics exercises in Section 4.1.3

reveal, a reduction in the transaction cost, as well as a leftward shift in the distribution of

health shocks in the model, both lead to more frequent (region of flexible pricing increases)

and less sizable premium adjustments (the jump between the rigid premiums shrinks).

32A similar assertion is made by Brown and Goolsbee (2002) to argue that the popularization of internet
pricing tools over that period of time led to an overall decrease in the level of life insurance premiums.
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Table 7 presents the average fraction of premium changes and the average size of adjustments

for the two sub-periods. Between the 1990s and the 2000s, the average fraction of life

insurance policies adjusting premiums in any month increased from 2.45% to 2.78%, while the

average size of the adjustment fell from 11.81% to 10.20%. Both differences are statistically

significant at the 1% confidence level.

Table 7: Testing the difference in frequency and size of premium adjustments over time

Period N obs. % adjusting St. err. p-value

1990-1999 27,979 2.45 0.09
2000-2009 21,976 2.78 0.11
Difference −0.33 0.14 0.01

Period N obs. size (in %) St. err. p-value

1990-1999 686 11.81 0.36
2000-2009 612 10.20 0.37
Difference 1.61 0.52 0.00

Note: One sided t-test for equality of means, with alternative hypothesesHa: diff (% adjusting)< 0

and Ha: diff(size)> 0, respectively. Average premium changes are computed only for the months

where at least one is observed, hence the difference in the number of observations.

5.3 Relationship Between Premium Changes and Cost Shocks

We now focus on the dynamics of life insurance premiums over time using the entire

available sample. Figure 10 plots the 13-month moving averages of the fraction of products

that adjust their premiums and the average size of the adjustment, along with the marginal

cost line from Figure 3. Panel 10(a) shows that each of the episodes of high cost shocks (late

1990s, around 2005, late 2008, and 2012) was accompanied by an increase of at least one

percentage point in the fraction of companies that adjusted their premiums, and the increase

is statistically significant. On the other hand, panel 10(b) reveals no such apparent corre-

lation between the cost shock and the average magnitude of changes (except for late 2008,

in the presence of a record-high cost). The most apparent observation from that time series

is probably the gradual decline in the size of premium jumps discussed in the previous section.

Table 8 formalizes these findings by computing simple correlations between the cost shock

and the line plotted on the two panels of Figure 10 in different time periods. This relationship

is generally positive for the fraction of insurers that adjust and was the strongest during the

1990s, when the consumer’s hold-up problem was likely more severe (before the introduction
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(a) Fraction of products that adjust premium (b) Average size of premium adjustment

Note: 13-month moving averages applied. Gray areas depict the 95% confidence intervals.

Figure 10: Fraction and average size of premium changes

of internet search which led to lower transaction costs (Brown and Goolsbee, 2002), and

before a significant decline in the adversity of health shocks as measured by mortality rate).

On the other hand, the average adjustment size turns out to be negatively related to the

marginal cost shock (but not statistically significant). In light of our theory, this evidence

suggests that life insurers respond to industry-wide shocks predominantly with an increased

hazard of adjusting the premiums, rather than altering the magnitude of such an adjustment.

Table 8: Correlation between the cost shock and frequency/size of premium changes

Correlation with cost: % adjusting adjustment size

1991-2000 0.65∗∗∗ −0.07
2001-2010 0.19∗∗ 0.13
Full sample 0.28∗∗∗ −0.24∗∗∗

Note: correlations are between the marginal cost shock and 13-month moving averages

of the frequency and size of premium changes. *** p<0.01, ** p<0.05, * p<0.1

5.4 Comparison with Annuities

So far we have demonstrated that renewable life insurance premiums are rigid, adjust by

large margins and these properties tend to diminish as the hold-up problem gets weaker.

It is then instructive to contrast these findings against the price dynamics of a related

product that is free of the hold-up problem altogether. A good example of such a product

is annuity, typically offered by the same life insurers, where consumers pay a single lump-
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sum amount up front in exchange for a schedule of fixed benefits until death. Depending

on policy, these benefits may carry a 10- or 20-year guarantee in case the insured dies earlier.

Table 9: Price changes in life annuities vs. life insurance: Jan 2007 - Jul 2009

Life annuities Life insurance

Number of observations 8140 4266
Number of insurers 19 76
Number of products 304 147

Probability of price change (in %):
Average (weighted) 71.5 2.6
Average (unweighted) across insurers 68.7 2.6
Median (unweighted) across insurers 74.2 0

Distribution of change sizes (in %):
Average 1.85 9.34
Standard deviation 1.56 9.18
Median 1.51 6.67

Note: the data is acquired from Koijen and Yogo (2015) and originally comes from the

WebAnnuities Insurance Agency.

We use the annuity prices collected and made available by Koijen and Yogo (2015). This

data was originally provided by the WebAnnuities Insurance Agency and comes at a

monthly frequency from January 2007 to August 2009.33 The quotes are available for males

and females at all ages from 50 to 85 (in five year intervals). Table 9 presents the price

rigidity in life annuities. Intriguingly, prices change in any given month with around 70%

probability, and the magnitude of those adjustments is smaller than 2%. A natural concern

then may be that this price dynamics is a result of the financial crisis in years 2007-2009.

For this reason, in the right-hand side column, we also provide information about premium

rigidity from our own sample, adapted to the time period of interest. The premiums during

the financial crisis were as rigid as in the entire sample described in Table 2, while the

adjustment sizes are slightly smaller.

We believe that the difference between the volatile pricing of annuities and the rigid pricing

of life insurance supports our theory for price rigidity. It is possible that other theories of

price rigidity can explain the sticky renewable prices. However, it would be difficult for other

theories to explain the difference between the pricing of annuities and life insurance, which

33The full dataset is semi-annual and covers the years from 1989 until 2011. However, the panel is highly
unbalanced, making it difficult to make a compelling case on price rigidity.

37



are often supplied by the same insurer. We discuss other prominent theories of price rigidity

in the next section.

5.5 Alternative Theories

We now investigate whether the rigidity of life insurance premiums could potentially be

explained by existing models of price stickiness. We first consider the two most popular

theories: Calvo-type staggered contracts and menu costs. Then, we investigate if a model of

competition can generate realistic premium rigidity.

5.5.1 Staggered Contracts à la Calvo

In Calvo (1983), firms adjust prices with exogenous frequency. The spell duration is subject

to a random shock and every period a fixed number of firms reoptimize their price. The

longer an individual price remains staggered, the more shocks accumulate in the meantime,

resulting in larger average size of the adjustment. In such a pricing setup, we would expect

to observe variation on the intensive margin, and much less so on the extensive margin

which is determined exogenously. Figure 10 shows that the opposite appears to be the case

in the life insurance market, where the firms tend to respond to cost shocks predominantly

on the extensive margin.
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Figure 11: Premium duration and adjustment size in the life insurance market

In addition, Figure 11 shows a plot of all premium changes in our data (expressed in absolute

value) as function of premium duration. As can be noticed, the points are scattered with
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no clear pattern and the correlation of the two variables is about 0.13. Table 10 confirms

this in a regression analysis. The relationship between premium duration and size of the

adjustment is rather weak (albeit positive), with a slope of 0.07% and R-squared of less

than 0.02.34 We conclude that models based on Calvo-type frictions are not a promising

alternative to explain premium rigidities observed in the life insurance market.

Table 10: Regression results (dependent variable: abs change)

coefficient s.e. P > |z|
constant 9.372 0.372 0.000 No. of obs. 1432
duration 0.066 0.014 0.000 Adj. R-sq. 0.016

5.5.2 Menu Costs

In models such as Dotsey et al. (1999) or Golosov and Lucas (2007), individual firms

are subject to heterogeneous “menu costs” and can choose when to adjust their prices.

The basic prediction of traditional menu cost models is that the hazard of price change

is an increasing function of duration.35 This occurs because incoming shocks move the

optimal price away from the one currently posted. Figure 12 plots the hazard of premium

.0
1

.0
2

.0
3

.0
4

.0
5

H
az

ar
d

0 50 100 150
Premium duration (in months)

Figure 12: Premium duration and adjustment hazard in the life insurance market

34The regression results here, as well as in Section 5.5.2, are robust to controlling for cost shocks and firm
fixed effects.

35It should be noted that several papers have recently proposed frameworks that generate different pre-
dictions. For example, Alvarez et al. (2011) feature a non-monotonic hazard function, and it is decreasing
in Ilut et al. (2020).
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adjustment in our dataset at all durations for which we observe multiple changes. Notice

that the points are dispersed and the relationship is generally negative, with a correlation

of −0.44. Table 11 summarizes the regression results of change hazard on duration. An

additional month of premium duration tends to reduce the hazard by 0.01%, but only 18%

of the variation in hazard can be explained through this channel. Interestingly, it appears

that the increasing hazard may be a local feature of the premiums that have remained

staggered for more than 50 months. We do not have enough observations to make this

assertion robust though.

Table 11: Regression results (dependent variable: hazard)

coefficient s.e. P > |z|
constant 0.0309 0.00176 0.000 No. of obs. 88
duration −0.0001 0.00003 0.000 Adj. R-sq. 0.184

As a second step of this analysis, we approximate the size of potential menu cost that would

be needed to explain the frequency and size of price changes consistent with life insurance

data. Appendix B.5 describes in detail two, starkly different, quantitative exercises we

conduct. In the first exercise, we use the simplest model of i.i.d. marginal cost shocks and

physical costs to adjusting prices and apply it to our calibration from Section 4.1.1. We

find that the physical adjustment costs needed to achieve the frequency and size of price

changes consistent with our data correspond to 1.6-2.2% of firm revenue. This interval,

while not implausible, is considerably higher than the range of estimates found by the

empirical literature (0.3-1.3%). In the second exercise, by contrast, we adapt a discrete-time

version of the Alvarez et al. (2011) model based on a random walk marginal cost series

and observation costs. We find that the observation cost needed to achieve the required

frequency of price change corresponds to around 25% of firm’s revenue, which is consistent

with empirical estimates that show how various managerial costs related to optimizing

prices tend to dwarf the physical costs of updating them. These exercises suggest that menu

costs would not be a straightforward explanation for the behavior of life insurance premiums.

Furthermore, while menu costs can potentially play a role in the pricing behavior of life

insurers, our paper provides a detailed theory of a type of pricing friction in the insurance

industry. For financial regulators, a model of pricing that fits specifically to life insurance

companies may be more useful than a model that can explain the price dynamics of any

general product.
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5.5.3 Competition

Our model accounts for market competition in a reduced form, allowing consumers to search

for an outside option in the non-renewable insurance market. It has been shown in the

literature though that explicit modeling of competition can also generate price rigidity. In

a monopolistically competitive market, Nishimura (1986) shows that prices become rigid as

the price elasticity of demand approaches infinity if a firm cannot infer whether a transient

cost shock is market-wide or firm-specific. Firms set prices based on the expectation of other

firms’ prices. If a firm responds to the cost shock by increasing its price then, with elastic

demand, it will attract few consumers when the shock is firm-specific. On the other hand, if

a firm responds to the cost shock by lowering its price, then it would attract many consumers

when the shock is firm-specific, but the lower price is not profitable. As a result, equi-

librium prices become less sensitive to transient shocks as markets become more competitive.

Even though competition can generate price rigidity in an incomplete information environ-

ment, it also entails price concentration. Indeed, if prices were dispersed, then firms with

high prices would not be competitive. However, the dispersion in life insurance premiums

(measured by the coefficient of variation) is generally high, suggesting that life insurance

markets are not competitive. Table 12 summarizes the premium dispersion for our four

standard term lengths. The dispersion decreases with term length, with an exception for the

20-year level-term which also has a much higher standard deviation, so its premiums may not

be statistically more dispersed than shorter-term contracts. From Table 6, premiums adjust

more frequently as the term length increases. This suggests that the relationship between

price dispersion and rigidity runs counter to the prediction of Nishimura (1986).

Table 12: Coefficient of variation of premiums across terms

Term length Mean St. dev. Min. Max.

1 year 0.18 0.02 0.15 0.23
5 years 0.17 0.03 0.11 0.28
10 years 0.15 0.03 0.11 0.21
20 years 0.17 0.05 0.06 0.28

Note: For each term length, this table shows the distribution of cross-sectional co-

efficients of variation over time. The total number of observations is 282 months.
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6 Conclusion

We show that the market for life insurance has exhibited a remarkable degree of price

rigidity since 1990. Firms that changed premiums in the analyzed sample did so on average

every 39 months, preferring one-time jumps of large magnitude to more frequent and

gradual price adjustments. We build a theoretical model to explain this phenomenon, based

on the assumption that consumers are locked-in due to a relationship-specific investment.

In line with what we find in the data, the model predicts that premiums remain constant

for a wide range of cost shock realizations, while potential changes take the form of discrete

jumps. Our hypothesis is obviously not the only explanation for the observed rigidity of

life insurance premiums. As Table 6 shows, even the 20-year level-term premiums are quite

rigid which leaves room for complementary theories.

Economists and policymakers who study the prices of life insurance products may be tempted

to conclude that this market exhibits low competition and results in suboptimal provision of

risk-sharing in the economy. Such a conjecture would then naturally warrant calls for gov-

ernment intervention. Our work cautions against such immediate conclusions. In particular,

we show that the price rigidity arises endogenously as a solution to a time inconsistency

problem that could otherwise deter consumers from entering a long-term contract. In other

words, in the absence of such a pricing pattern, the provision of risk sharing might be inhib-

ited even further. Future research should investigate the pricing behavior of other financial

or contractual services, and find out if similar products also exhibit pricing anomalies such

as the ones found in life insurance contracts.
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Weiergräber, Stefan, “Network Effects and Switching Costs in the US Wireless Industry.

Disentangling Sources of Consumer Inertia,” SFB/TR 15 Discussion Paper, 2014, 512.

Zbaracki, Mark J., Mark Ritson, Daniel Levy, Shantanu Dutta, and Mark

Bergen, “Managerial and Customer Costs of Price Adjustment: Direct Evidence from

Industrial Markets,” Review of Economics and Statistics, 2004, 86 (2), 514–533.

45



Appendices (for online publication)

A Data Appendices

A.1 Premium Dispersion

In this Appendix, we explore the distribution in insurance premiums in our sample by exam-

ining the relative price dispersion. Figure 13 sketches a histogram of all premiums relative

to the current monthly average (for a given renewable term), which is normalized to 100.

The striking feature of the graph is the long right tail which implies that some life insurance

policies are offered at a premium 2.5 times as high as the average in that category, at a

given point in time. More generally, even though life insurance may seem to be a rather

homogeneous financial product, we observe a significant dispersion across policies. This may

be attributed to varying terms and conditions of different policies (we aggregate all prod-

ucts in the category “renewable level-term” by term duration), as well as the imperfectly

competitive environment in which life insurance companies operate. These imperfections

may include search frictions (Hortacsu and Syverson, 2004), information frictions or product

differentiation (e.g. with respect to company reputation or brand loyalty).

Figure 13: Distribution of insurance premiums, relative to the cross-sectional average

A.2 Measurement Error

As we discuss in Section 2.2, we approximate the life insurance companies’ adherence

to non-binding “current” premiums by measuring the premium rigidity for a fixed set
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of customer characteristics. This is a reasonable assumption as long as insurers tend to

adjust the entire age schedules at the same time and with the same frequency. In this

section, we test whether this is the case by comparing premiums for two separate age groups.

In addition to the baseline profile of 30-year-old male, we also extracted premiums for

10-year level-term policies for a fixed profile of 40-year-old male of the same health category.

The main goal of obtaining this data was to validate the predictions of our quantitative

model about renewal premiums in Section 4.1.2. Here, we can use the same dataset to check

whether companies in fact tend to adjust premiums for 30- and 40-year-olds with the same

frequency and at the same time.

Table 13 presents the number of premium changes observed for the two age groups.

Altogether, there are 20 additional instances of premium adjustments for 40-year-olds

relative to 30-year-olds, a difference of 3%. This confirms our measurement assumption

in Section 2.1 that premium rigidity for a fixed set of customer characteristics implies the

companies’ adherence to the “Non-guaranteed current” premiums in Table 1.

Table 13: Number of premium changes in 10-year level-term policies: 30- vs. 40-year-olds

Customer age N obs. N changes

30 20, 941 624
40 20, 941 644

Note: We analyze matched product-month observations from the two datasets. Because of occa-

sional inconsistencies in Compulife, there are fewer resulting observations here than if we were to

consider premiums in isolation for 30-year-olds (as in Table 6) or for 40-year-olds (as in Table 5).

The final question to ask is whether the changes in 30-year-old and 40-year-old premiums

in fact coincide in time. The first row of Table 14 shows that this is the case in precisely

572 cases, while there are 52 and 72 incidences where a premium change occurs only for a

30-year-old and a 40-year-old customer, respectively. In such cases though, we often observe

that changes to premiums for different ages are separated from each other by up to three

months, indicating a possible reporting error in Compulife, or a gradual implementation of

an adjustment to the whole age schedule. Subsequent rows of Table 14 reveal that close to

half of the premium changes that do not coincide in time are in fact only separated from

each other by up to three months.
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Table 14: Coincidence of premium changes in 10-year level-term policies: 30- vs. 40-year-olds

Tolerance Unmatched 30 Coinciding Unmatched 40

same month 52 572 72
± one month 45 588 57
± two months 23 596 52
± three months 22 601 50

Note: Same remarks apply as in Table 13. A change in premium is here assumed

to coincide with the tolerance of zero, one, two, and three months, correspondingly.

A.3 Estimating the Marginal Cost of Life Insurance

In what follows, let mt,n,n̄ denote the period t mortality rate of age n individuals who

bought life insurance at age n̄,36 and let N be the maximum attainable age according to the

corresponding mortality tables. Let Rt(i) be the (annualized) interest rate on zero-coupon

risk-free securities with maturity i at time t. The schedule of actuarially fair values for an

ART policy acquired at age n for ages up to N per dollar of death benefit is defined as

{Pt(i)}i=n,n+1,...,N and obtained by solving the following equation

N−s∑
i=1

∏i−2
j=0(1−mt,s+j,n)mt,s+i−1,n

Rt(i)
= Pt(s) +

N−s−1∑
i=1

∏i−1
j=0(1−mt,s+j,n)Pt(s+ i)

Rt(i)
(9)

recursively for every age s = N − 1, N − 2, ..., n. Following the method presented by

Huntington (1958), we calculate the full schedule of actuarially fair values backwards,

starting from the highest admissible age. Formula (9) can further be augmented to account

for two additional features of renewable term policies. First, at certain age Nc < N the

consumer may choose to convert to a universal life insurance and pay a fixed premium for

all the remaining periods up to N . Second, the premium may be renewed at frequencies

lower than one year, in particular in 5-, 10-, or 20-year intervals.37

Notice that formula (9) does not take into account potential lapsation of policies, that is the

possibility that a consumer may choose not to renew it. This is because there is currently

no industry-wide standard for insurance pricing with lapsation, and data lapsation is scarce

and varies widely across different policies and time. Similarly as in Koijen and Yogo (2015),

for simplicity we ignore lapsation in our analysis.

36It is important to keep track of different cohorts of the insured due to adverse selection, i.e. individuals
who have already held a policy tend to have significantly higher mortality rates than the same-age newcomers.

37To estimate the cost in Figure 3 we use a one-year level term policy with N = 60 and no convertibility.
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In our calculation of the actuarially fair value, we use the mortality tables issued by the

American Society of Actuaries. We apply the 1980 Commissioners Standard Ordinary

(CSO) table for all years prior to January 2001, the 2001 Valuation Basic Table (VBT)

prior to January 2008, and the 2008 VBT for the time period following January 2008.

We use geometric averaging on the monthly basis to smooth the transition between any

two vintages of the mortality tables. It is important to emphasize that these tables are

created based on the actual mortality rates among the insured rather than the general

population. For this reason, they account for a potential adverse selection in the market for

life insurance.38 For the risk-free interest rate we use the U.S. Treasury zero-coupon yield

curve.39

In contrast to the cost of ART depicted in Figure 3 of the main paper, Figure 14 presents

the dynamics of marginal cost of cumulative 10-year level-term policies for 30- and 40-year

olds.

Figure 14: Cumulative 10-year cost shocks in the data

A.4 Nominal and Real Rigidity

This section analyzes the effect of inflation on life insurance premiums. We first show that

nominal rigidity implies real rigidity per dollar of real face value, and vice versa. Next, we

38Cawley and Philipson (1999) found no strong evidence of adverse selection in the term life insurance.
39Taken from Gurkaynak et al. (2007) and averaged for each month.
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discuss how inflation affects the pricing behavior of life insurers and how it relates to the

results of our paper.

Consider a simple framework where perfectly competitive life insurance companies face a

constant mortality rate m and a constant interest rate r, The (nominal) face value of a

generic policy is Ft, and its real counterpart is FR
t , where t = 0 is the base year. Let PN

t

denote the nominal premium for a one-period (non-renewable) insurance and PR
t be the

real premium. Let π be a (constant) inflation rate. Then, Lemma 3 shows that nominal

premiums are rigid if and only if real premiums per dollar of real face value are rigid.

Lemma 3 For any t, PN
t = PN if and only if for all t,

PRt
FRt

= P̄R.

Proof To show sufficiency, suppose that in a competitive market for non-renewable insur-

ance, nominal premiums are rigid (i.e. the mortality rate, interest rate and nominal face

value are fixed): for all t,

PN
t =

m

1 + r
Ft =

m

1 + r
F.

The real premium is given by

PR
t =

PN

(1 + π)t

=
m

1 + r

F

(1 + π)t

=
m

1 + r
FR
t .

The real premium per dollar of real face value is

PR
t

FR
t

F0 =
m

1 + r
F0 ≡ P̄R,

where F0 is the face value in the base year. This shows that nominal rigidity of premiums

implies that premiums are also rigid for a policy with fixed real face value.

The proof for necessity follows exactly the steps shown above in the reverse order.

From the proof of Lemma 3, notice that as the nominal premium is rigid by assumption,

the real premium decreases over time at the constant rate of inflation π. However, this is

not the insurance product that we consider in our model, because its real face value also

decreases over time. Our model assumes a constant real face value, so the focus of Lemma
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3 is on the real premium per dollar of real face value.

Now, consider a two-period renewable insurance policy. Let PN
t,a denote the nominal premium

in period t dollars for age a individual, and let PR
t,a be the real premium. The nominal pay-

ment over time is
(
PN
t,a, P

N
t+1,a+1

)
. The next lemma uses Lemma 3 to establish the equivalence

relation between nominal and real rigidity in a competitive market for renewable insurance.

The result can be generalized to any n-period renewable insurance.

Lemma 4 For any t and age a, PN
t,a = PN

a if and only if for any t and any age a,
PRt,a
FRt

= P̄R
a .

Proof To prove sufficiency, we define the actuarially fair premiums for renewable insur-

ance according to the backward induction approach of Huntington (1958) (for details, see

Appendix A.3). In t+ 1, a policy bought in t at age a, becomes non-renewable and the ac-

tuarially fair premium satisfies PN
t+1,a+1 = m

1+r
F. In t, nominal premiums satisfy a zero-profit

condition

PN
t,a +

1−m
1 + r

PN
t+1,a+1 = F

[
m

1 + r
+
m (1−m)

(1 + r)2

]
. (10)

Converting nominal premiums to real ones yields

PR
t,a(1 + π)t +

1−m
1 + r

PR
t+1,a+1(1 + π)t+1 = F

[
m

1 + r
+
m (1−m)

(1 + r)2

]
⇐⇒

PR
t,a

FR
t

F +
1−m
1 + r

PR
t+1,a+1

FR
t+1

F = F

[
m

1 + r
+
m (1−m)

(1 + r)2

]
.

The second line follows from the fact that FR
t = F0

(1+π)t
and F0 = F, since t = 0 is the

base year. By Lemma 3, PN
t+1,a+1 = PN

a+1 if and only if
PRt+1,a+1

FRt
= P̄R

a+1 for any t and a. As

a result, if for all t and a, PN
t,a = PN

a and PN
t+1,a+1 = PN

a , it immediately follows that
PRt,a
FRt

= P̄R
a .

The proof for necessity follows exactly the steps above in the reverse order.

Lemmas 3 and 4 show that the nominal rigidity observed in the data is equivalent to real

rigidity per dollar of real face value in the simplest case of actuarially fair premiums. As

inflation erodes the value of premiums paid by consumers over time, it does so with the

value of death benefits as well. From this point of view, a theory of real price rigidity

(such as the one presented in this paper) is informative for explaining the nominal rigidity

observed in the data.
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The key assumption behind Lemmas 3 and 4 is that the inflation rate is constant and known

in advance; in particular, it need not be zero. How realistic is this assumption? Figure

15(a) plots long-term inflation expectations from the Survey of Professional Forecasters in

the US for the time period of interest. Notice that inflation expectations have been very

stable since the late 1990s, with a roughly constant median and an interquartile range of

around half a percentage point. What does this amount of cross-sectional uncertainty around

inflation imply, quantitatively, for the marginal cost of life insurance? Panel 15(b) recreates

the baseline marginal cost graph (Figure 3), along with its analog if a consistently higher or

lower realization of the inflation rates is assumed (corresponding to the 75th and the 25th

percentile, respectively).40 We find that the uncertainty around inflation adds very little to

the volatility of the marginal cost, affecting its level by ±2% on average (with a maximum

shift of around ±5% at the end of the sample).

(a) Cross-section of inflation expectations (b) Marginal cost at different inflation levels

Note: Panel (a) plots 10-year inflation expectations from the Survey of Professional Forecasters, published

by the Federal Reserve Bank of Philadelphia. Panel (b) recalculates the marginal cost of life insurance,

at the quarterly frequency (as opposed to monthly in Section 2.4) assuming inflation realizations equal to

the 75th or the 25th percentile (relative to the median, which is associated with the benchmark).

Figure 15: Inflation expectations and their implications for marginal cost of life insurance

By contrast, until the late 1990s we observe a steady and permanent decline in the level of

inflation expectations. While this shift potentially breaks the link between nominal and real

40Specifically, using the Fisher equation, we first assume that the nominal interest rates used to compute
the marginal cost are a product of the real interest rates and the median inflation rate from the forecasters
survey. Then, we replace the latter with the correspondingly higher or lower time series for inflation and
use the nominal interest rates modified in this way to find the new marginal cost. Notice that, compared to
Figure 3, the marginal cost series here appear more rigid and exhibit lower volatility because the inflation
expectations data come at quarterly frequency (as opposed to monthly in the benchmark).
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premiums presented in this section, we should emphasize that its direction strengthens the

overall evidence in favor of premium rigidity. This is because a steady and permanent drop

in inflation acts as a negative cost shock to life insurance companies (by eroding expected

death benefits, relative to the premiums, by less than originally assumed). As such, the true

degree of real rigidity in life insurance premiums may be even higher because some of the

adjustments to nominal premiums we observe in the data might actually be related to the

inflation shock.

B Model Appendices

B.1 Characterizing the Demand

The following lemma helps characterize the demand. In particular, it shows that the demand

for renewable insurance when young is increasing in private valuation ro.

Lemma 5 For any t, Bren (ro; t) and Bnon (ro; t) have the following properties: (i.)

Bren (ro; t) ≥ Bnon (ro; t) ≥ 0 for all ro, (ii.) Bren (ro; t) and Bnon (ro; t) are weakly increasing

in ro, (iii.) there exists sufficiently large r̃o such that Bren (ro; t) and Bnon (ro; t) are strictly

increasing in ro for any ro ≥ r̃o. Also, if there exists r̂o such that Bren (r̂o; t) > Bnon (r̂o; t) ,

then Bren (ro; t)−Bnon (ro; t) is strictly increasing in ro ≥ r̂o.

Proof First note that Bren (ro; t) ≥ Bnon (ro; t) and Bren (ro; t) , B
non (ro; t) ≥ 0 for all ro

and for all t. This is because there are more options available for renewable policyholders

and consumers can always choose to forgo coverage.

Next, we show that Bnon (ro; t) and Bren (ro; t) are weakly increasing in ro for any t. Note

that there exists r̃o such that for all ro < r̃o, B
non (ro; t) = 0 and for ro ≥ r̃o, we have

Bnon (ro; t) =

∫ c

c

[∫
ε

max {0, ro − εco,t+1} dZ (ε)− µ
]
dG (co,t+1)

=

∫ c

c

∫ ro
co,t+1

0

(ro − εco,t+1) g (co,t+1) z (ε) dεdco,t+1 − µ.

Differentiating Bnon (ro; t) with respect to ro yields
∫ c
c
Z
(

ro
co,t+1

)
dG (co,t+1) , so Bnon (ro; t)

is strictly increasing for ro ≥ r̃o. Since Bren (ro; t) ≥ Bnon (ro; t) , B
ren (ro; t) is also strictly

increasing for ro ≥ r̃o.
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Suppose there exists valuation r̂o such that Bren (r̂o; t) > Bnon (r̂o; t) . We will show that

Bren (ro; t) − Bnon (ro; t) is increasing in ro ≥ r̂o. If Bren (r̂o; t) > Bnon (r̂o; t) , then there

exists a set Ĉ with strictly positive measure defined as Ĉ = {co,t+1|r̂o > Po,t+1 (co,t+1)} . Since

if Ĉ is empty or measure zero, then it cannot be the case that Bren (r̂o; t) > Bnon (r̂o; t) . For

ro ≥ r̂o, we have

Bren (ro; t)−Bnon (ro; t) ≥∫
Ĉ

max

{
ro − Po,t+1 (co,t+1) ,

∫
ε

max {ro − Po,t+1 (co,t+1) , ro − εco,t+1} dZ (ε)− µ
}
dG (co,t+1)

−
∫
Ĉ

[∫
ε

max {0, ro − εco,t+1} dZ (ε)− µ
]
dG (co,t+1) . (11)

The inequality comes from the fact that for higher valuations the set of costs such that

ro > Po,t+1 (co,t+1) should be weakly larger. Let Ĉr denote the set of cost realizations where

the policyholder would renew immediately and Ĉs denote the set where the policyholders

search. Define the two sets such that they are mutually exclusive (if policyholders are

indifferent, they renew), then the right-hand side of (11) can be rewritten as∫
Ĉr

[ro − Po,t+1 (co,t+1)] dG (co,t+1)︸ ︷︷ ︸
renew immediately

+

∫
Ĉs

roZ (Po,t+1 (co,t+1)

co,t+1

)
− co,t+1

∫ Po,t+1(co,t+1)
co,t+1

0

εdZ (ε)

 dG (co,t+1)

︸ ︷︷ ︸
search and sign non-renewable

+

∫
Ĉs

[ro − Po,t+1 (co,t+1)]

[
1− Z

(
Po,t+1 (co,t+1)

co,t+1

)]
dG (co,t+1)︸ ︷︷ ︸

search and then renew

−
∫
Ĉ

∫ ro
co,t+1

0

(ro − εco,t+1) dZ (ε) dG (co,t+1)︸ ︷︷ ︸
sign non-renewable

.

Differentiating the above expression with respect to ro yields
∫
Ĉ

[
1− Z

(
ro

co,t+1

)]
dG (co,t+1) ,

which is strictly positive so Bren (ro; t)−Bnon (ro; t) is strictly increasing in ro ≥ r̂o.

Finally, since Bren (ro; t) − Bnon (ro; t) , B
ren (ro; t) and Bnon (ro; t) are increasing for suffi-

ciently large ro, consumers of any generation would purchase renewables if their valuation is

sufficiently large.
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B.2 Proofs

Proof of Lemma 1: For part (i.), by (6) we have the following demand for co ∈ Co,

Do(Py, Po(co)) = (1−my) [1−H (r̄o)] .

The insurance company takes r̄o as given, so for costs in Co, the demand is independent of

the variations in Po (co) .

Suppose co ∈ Co is the actual cost and the insurance company reports c′o ∈ Co, then incentive

compatibility requires Po(co) ≥ Po(c
′
o). Now suppose c′o is the actual cost and the insurance

company reports co, then incentive compatibility requires Po(co) ≤ Po(c
′
o). Therefore, we

have Po(co) = Po(c
′
o) for any co, c

′
o ∈ Co.

Finally, to show that Co = {co | Po(co) < r̄o} has strictly positive measure, first assume

that Co is measure zero. This implies that for almost all co ∈ [c, c] , Po (co) ≥ r̄o. By (1),

0 =
Py−PNRy

1−my , which is a contradiction when Py > PNR
y .

For part (ii.), if incentive compatibility is satisfied, then for any co ∈ [c, c] and ε > 0 such

that co + ε ∈ [c, c] we have

[Po (co)− co]Do (Py, Po (co)) ≥ [Po (co + ε)− co]Do (Py, Po (co + ε)) ,

[Po (co + ε)− (co + ε)]Do (Py, Po (co + ε)) ≥ [Po (co)− (co + ε)]Do (Py, Po (co)) .

Summing the incentive constraints yields Do (Py, Po (co)) ≥ Do (Py, Po (co + ε)) . Since Do is

weakly decreasing in Po, incentive compatible premiums have to be weakly increasing in cost.

Finally, the existence of a cutoff follows immediately from the fact that Po is weakly

increasing in cost and Po(co) ≥ Po (c′o) for any co ∈ Co and c′o ∈ Co.

Proof of Lemma 2: For part (i.), suppose Po (co) < P ∗o (co) for some co ∈ (c′o, c
′′
o) . Since

Po (co) is strictly increasing and continuous, then there exists ε > 0 such that Po (co) <

Po (co + ε) < P ∗o (co) . The hazard rate is non-decreasing, so (Po − co) (1−H (Po)) is single

peaked. This implies

[Po (co + ε)− co] [1−H (Po (co + ε))] > [Po (co)− co] [1−H (Po (co))] ,
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which violates incentive compatibility at co. The argument also applies for Po (co) > P ∗o (co) .

For part (ii.), it is trivial to show that r̄o > P̄o from (1) when Py > PNR
y . To show that

Po
(
cT
)
> r̄o, we only need to rule out r̄o = Po

(
cT
)
. If r̄o = Po

(
cT
)
, then by (7), we have

P̄o = r̄o. By (1), it implies that 0 =
Py−PNRy

1−my , which is a contradiction when Py > PNR
y .

Next, we will establish the fact that the frictionless premium is not incentive compatible for

all co ∈ Co. By (1), r̄o > P̄o. Suppose Po (co) = P ∗o (co) for all co ∈ Co, then (7) implies

LHS ≡
(
P̄o − cT

)
[1−H (r̄o)] = RHS ≡

(
P ∗o
(
cT
)
− cT

) [
1−H

(
P ∗o
(
cT
))]

.

Notice the following: LHS <
(
P̄o − cT

) [
1−H

(
P̄o
)]
. Since RHS is the optimal frictionless

profit, it follows that RHS > LHS, and is only equal when Py ≤ PNR
y and with strict

inequality when Py > PNR
y . Hence, it cannot be the case that Po (co) = P ∗o (co) for all co ∈ Co.

Finally, we will show there is rigidity in Co. Define P+
o

(
cT
)
≡ limco→cT Po (co) and cM =

P ∗−1
o

(
P+
o

(
cT
))
. Consider co ∈

(
cT ,min

{
cM , c

})
, then P+

o

(
cT
)
> P ∗o (co) . By Lemma 1, Po

is weakly increasing, so Po (co) ≥ P+
o

(
cT
)

for any co ∈
(
cT ,min

{
cM , c

})
. Suppose there ex-

ists ĉo ∈
(
cT ,min

{
cM , c

})
such that Po (ĉo) > P+

o

(
cT
)
. This implies the following ordering:

Po (ĉo) > P+
o

(
cT
)
> P ∗o (ĉo) . However, (P − ĉo) (1−H (P )) is single peaked around P ∗o (ĉo) ,

so (
P+
o

(
cT
)
− ĉo

) (
1−H

(
P+
o

(
cT
)))

> (Po (ĉo)− ĉo) (1−H (Po (ĉo))) .

This violates incentive compatibility, so Po (co) is rigid for co ∈
(
cT ,min

{
cM , c

})
.

Proof of Theorem 1: From Proposition 1 of Melumad and Shibano (1991), the proposed

incentive compatible premium is globally incentive compatible. From Lemma 5 and Lemma

2, the optimal incentive compatible premium has to take this form.
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B.3 Solving the Model

To solve the model, we use the theory presented in Section 4 and formulate the profit

maximization problem for insuring old consumers as follows:

Π∗o = max
P̄o,

¯̄Po,cT ,cM

∫ cT

c

(
P̄o − co

)
[1−H (r̄o)] g (co) dco

+

∫ cM

cT

(
¯̄Po − co

) [
1−H

(
¯̄Po

)]
g (co) dco

+

∫ c

cM
(P ∗o (co)− co) [1−H (P ∗o (co))] g (co) dco

subject to (8) and ¯̄Po = P ∗o (cM). Let λ denote the Lagrange multiplier on (8). Given

the distributional assumptions: h (ro) = 1
γ

exp−
(ro−θ)
γ and g (co) = 1

c−c , from the first-order

conditions, we can derive the following premiums:

P̄o =
γ
∂r̄o
∂P̄o

+ cT − 0.5(cT − c)2

λ(c− c) + cT − c
, (12)

¯̄Po = γ + cT − 0.5(cM − cT )2

λ(c− c)− cM + cT
. (13)

The monopoly premium is P ∗o (co) = γ + co. Since ¯̄Po = P ∗o (cM), we have

cM = cT + 2λ (c− c) . (14)

To solve for λ and cT , we need (8) and the first-order condition on cT :

cT − c
c− c

[
P̄o − 0.5

(
cT + c

)] ∂r̄o
∂cT

= λ

[
γ

(
e−

¯̄Po−r̄o
γ − 1

)
− ∂r̄o
∂cT

(
P̄o − cT

)]
. (15)

To solve for the model equilibrium, we apply the following numerical algorithm:

1. Choose Py to maximize the insurer’s total profit (4).

2. Given the choice of Py, select cT such that (15) holds under two cases:

(a) the upper cost threshold hits a corner, i.e. cM = c.

(b) the upper cost threshold is interior and calculated according to (14).

Compare the resulting profit from the old (2) for each case and select the lower cost

threshold cT for which it is maximized.
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3. Given {Py, cT , cM}, find the value of λ for which the IC constraint (8) holds.

4. Given {Py, cT , cM , λ}, compute the upper rigid price ¯̄Po using (13), and select the value

of lower rigid price P̄o for which the FOC (12) holds.

5. Given {Py, cT , cM , λ, P̄o, ¯̄Po}, find the value of r̄o that makes condition (1) hold with

equality. Approximate partial derivatives { ∂r̄o
∂P̄o

, ∂r̄o
∂cT
} necessary to compute the FOCs.

The algorithm is executed backwards, effectively nesting a sequence of five optimization or

root-finding problems.

B.4 Reputation Mechanism

The analysis so far has implicitly assumed that punishment is imposed on the insurers

if they chose a premium that is not included in the set of admissible renewal premiums,

say Po ∈
(
P̄o,

¯̄Po

)
. Here, we formally model this cost or punishment through a reputation

mechanism that disciplines the insurers.41 This self-enforcing mechanism is related to

Alonso and Matouschek (2007) and Halac and Yared (2022), and its micro-foundations for

price rigidity are similar to Nakamura and Steinsson (2011).

First, we find the equilibrium profit of an insurer without commitment power in a setting

with a single generation. In this setting, the optimal set of admissible renewal premiums

{Po (co)} of Theorem 1 is no longer an equilibrium, because after observing cost co the insurer

sets the premium to

Po (co) = max {r̄o, P ∗o (co)} .

In fact, the insurer is unable to commit to any premium. This implies that the set of

incentive compatible admissible renewal premiums is an empty set. Therefore, the unique

subgame perfect equilibrium of this game is characterized by none of the consumers signing

and an equilibrium profit of Π = 0. We refer to this equilibrium as the discretionary

equilibrium.

Next, we characterize the off-equilibrium path play of the insurer in our overlapping gen-

erations setting. For each generation t, the insurer proposes a set of admissible renewal

premiums {Po (co)} when the policyholders are young. We denote the insurer at this stage

41We focus on a reputation mechanism because premiums for life insurance and annuity products are
generally not regulated in the US except to ensure that benefits are proportional to the premiums charged,
which was discussed in Section 2.6. See the NAIC’s State Insurance Regulation Brief (https://www.naic.
org/documents/consumer_state_reg_brief.pdf) for more information.
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as Iy,t. Then, the insurer finalizes the renewal premium when the policyholders are old. We

denote the insurer at this stage as Io,t+1. To sustain the promised set of admissible renewal

premiums on path, we consider a trigger strategy: If Io,t+1 deviates from the admissible set

promised by Iy,t, then Iy,t+1 reverts to the discretionary equilibrium for all future genera-

tions. Formally, for any generation t− 1 and realized cost c̃o,t, the set of admissible renewal

premiums {Po,t (co,t)} satisfies the reneging constraint

δ

1− δ
(Π− Π) ≥ Π̂o (c̃o,t)− Πo (c̃o,t) , (16)

where Π is given by (4),

Π̂o (c̃o,t) = max
Po

(Po − c̃o,t) (1−my) [1−H (max {r̄o,t−1, Po})] ,

Πo (c̃o,t) = (Po (c̃o,t)− c̃o,t) (1−my) [1−H (max {r̄o,t−1, Po,t (c̃o,t)})] ,

and r̄o,t−1 is determined by (1) for some Py,t−1. Inequality (16) states that the one-time gain

from taking advantage of the held-up policyholders, Π̂o − Πo, is less than the loss of future

profits δ
1−δ (Π− Π) .

In essence, after observing a deviation, the insurer loses credibility and the consumers believe

it will set the renewal premiums at its discretion for all future generations. As a result,

consumers do not sign with the insurer and it earns Π. Similar to Nakamura and Steinsson

(2011), the shift in consumer beliefs prevents the insurer from deviating and taking advantage

of the held-up consumers.42 This gives us the following proposition.

Proposition 1 Let {Py, {Po (co)}} be the sequential optimal pricing rule that solves (2) and

(4). Then, there exists a δ′ such that for any δ ≥ δ′, {Py, {Po (co)}} is sustained as a

stationary equilibrium.

Proposition 1 follows immediately from the fact that for any given sequential optimal

pricing rule, there exists a δ′ such that (16) holds with equality and any δ larger than δ′

only relaxes the reneging constraint. This implies that as long as the interest rate it is

sufficiently small for all periods, then the reputation mechanism enforces the adherence of

the optimal premium schedule in equilibrium.

42Alternatively, the off-path play can also be interpreted as a punishment the insurer imposes on itself
for deviating in the past.
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Several studies have demonstrated how consumers lower their future demand for a product if

prices deviated from previous levels, indirectly providing support for reputation mechanisms

in the real world. Rotemberg (2005) presents a model with consumers who are irrational in

that they care about the fairness of prices posted by the firm. In his setup price rigidity

arises endogenously, due to the fact that sellers prefer to avoid antagonizing consumers.

This mechanism provides a foundation for the off-equilibrium path play in our reputation

mechanism. Anderson and Simester (2010) provide empirical evidence of antagonistic

consumers. They show that customers who recently bought an item are less likely to buy

from the same firm if they later observe the firm offering the item at a deep discount.

Similarly, Renner and Tyran (2004) show experimentally that sellers are unlikely to raise

prices due to increases in cost when the relationship is long term, which provides indirect

evidence for the reputation mechanism.

Finally, it is important to point out that the incentives to self-enforce the promised premium

schedule is likely stronger for life insurance companies than for other firms. This is because

not only do insurers need to maintain their credibility with consumers, they also need to

maintain their reputation with the insurance agents selling the life insurance contracts. In-

surance agents have access to the history of life insurance premiums through Compulife,

which can be shown to potential consumers. Furthermore, insurance agents can make rec-

ommendations to potential consumers based on the history of life insurance premiums. As a

result, the presence of informed insurance agents can help strengthen the insurer’s incentives

to follow a certain pricing rule.

B.5 Menu Costs

In this section, we shed more light on the possible role of menu costs in explaining the pricing

of life insurance products. To do so, we conduct two exercises. The first one is based on

the simplest model of i.i.d. marginal cost shocks and physical costs to adjusting prices. The

second one uses a discrete-time version of the Alvarez et al. (2011) model based on a random

walk marginal cost series and observation costs.

B.5.1 Price Setting with Physical Costs and i.i.d. Marginal Cost Shocks

In the first exercise, we use the profit function from our calibrated model to get an approx-

imation of the possible size of the physical adjustment costs. The firm’s decision in each

period is simple when cost shocks are i.i.d.: In every period, the firm only needs to compare

the optimal static profit from adjusting the price with the static profit without any adjust-
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ments. As a simple illustration, in a menu cost model, the actual profit of the insurer for

old policyholders at period t is

Πo,t (Po,t; co,t, Py) = (Po,t − co,t)Do (Py, Po,t)− η1Po,t 6=Po,t−1 .

where η is the physical adjustment cost. To approximate the magnitude of this parameter,

in every period of our data sample we will compare two variants of the profit function, with

and without price adjustment. If the firm decides to incur the menu cost to adjust, it would

charge the monopoly price P ∗o,t (co,t) defined as

P ∗o,t (co,t) = arg max
Po,t

(Po,t − co,t)Do (Py, Po,t) .

Otherwise, the firm can avoid paying the menu cost but must charge the same price as in

the previous period, Po,t−1. Then, what level of the menu cost η yields the frequency of

price adjustments in line with our data?

To answer this question, we rely on the assumptions used to construct the numerical

equilibrium of our baseline model in Section 4.1.1. In particular, the marginal cost series is

the cost of insuring a 40-year-old renewing customer depicted in Figure 14. The distribution

of private valuations (needed to derive the optimal price) is the same as presented in Table 3.

We consider two cases, summarized in Table 15 and illustrated in Figure 16. In the first case

(panel 16(a)), we pick the menu cost parameter (η = 47) such that the frequency of price

adjustments, 2.5%, matches the one for our life insurance data reported in Table 2, 2.6%.

This size of the menu cost represents 1.58% of the firm’s revenue, on average.

Table 15: Quantifying the menu cost needed to match life insurance data

Menu cost (% of revenue) Freq. of changes Ave. size of changes

Case 1: 1.58% 2.49% 8.19%
Case 2: 2.19% 1.78% 9.42%

In the second case (panel 16(b)), we reset the menu cost parameter (η = 65) to provide a

closer match for the average size of price adjustments (9.42% as opposed to 8.19% for Case

1) to the data counterpart of 10.74% as reported in Table 2. This comes at the expense

of reducing the frequency of adjustments to 1.78%, which is below the empirical average

but still plausible (the median frequency in the data is 1.7%). In this case, the menu cost

represents 2.19% of the firm’s revenue on average.
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(a) Case 1: matching frequency of price changes
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(b) Case 2: matching size of price changes

Figure 16: Quantifying the menu cost needed to match life insurance data

How do our results compare to the common empirical estimates of menu costs? Dutta et

al. (1999) use the data from price changes at a drugstore chain and find that menu costs

constitute about 0.59% of revenues. Zbaracki et al. (2004) consider an extended definition of

menu costs (including managerial costs such as information-gathering and decision-making,

as well as customer response costs, on top of the typical mechanical menu costs) and find

that these price adjustment costs comprise 1.22% of a manufacturing firm’s revenue. Stella

(2020) compares observed profits of a supermarket chain to the counterfactual benchmarks

of no price change (if a change is observed) or a price change (if no change is observed) to

estimate the bounds for menu costs at 0.3% to 1.3% of revenues. Based on these references

we conclude that, while menu costs may certainly play an important role in the life insurance

industry (whether mechanical or managerial in nature), they are unlikely to suffice to account

for the observed rigidity in premiums.

B.5.2 Forward-Looking Model with Observation Costs

In this exercise, we adapt a discrete-time version of the Alvarez et al. (2011) model with

costs to observing optimal prices. The purpose is twofold. First, it is important to account

for the forward-looking nature of the firm’s decision, which is the case for non-i.i.d. cost

shocks. Second, we will now consider observation costs rather than mechanical costs to
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updating prices. Indeed, Zbaracki et al. (2004) show it is the managerial costs related to

information-gathering and decision-making that comprise most of the measured menu costs.

Such costs may also seem more appealing for the case of insurance companies who have

long updated their prices electronically via aggregators such as Compulife.

Consider a discrete time model: t = 0, 1, 2, . . . . Let the target price p∗ evolve according to a

random walk process without drift:

p∗t = p∗t−1 + εt,

where εt is i.i.d. and drawn from a distribution with mean 0 and variance σ2. Suppose the

cost of observing the target price is φ > 0 and the cost of deviating from the target price at

any period t is

B (p− p∗t )
2 ,

with B > 0. Notice that we do not assume any physical costs to price adjustment.

The firm adjusts its price after paying the observation cost φ. Importantly, since observing

the target price is costly, once the firm chooses to observe the target price, it will also decide

on the inactivity length T, i.e., the number of periods that it will wait till the next time it

chooses to observe p∗. We can therefore write this recursively as

V = max
p,T
−φ−B

T−1∑
s=0

δsE0

[
(p− p∗s)

2]+ δTV.

After some transformations, we can present the dynamic programming problem as follows:

V = max
p,T
−φ−B

{
1− δT

1− δ
(p− p∗0)2 +

δ

1− δ

[
1− δT−1

1− δ
− (T − 1) δT−1

]
σ2

}
+ δTV.

Since the target price evolves without drift, the firm will set the price equal to the target

price in periods that it chooses to pay the observation cost. However, finding the optimal

T in discrete time requires us to solve the model numerically by value function iteration.

Following the suggestion of Alvarez et al. (2011), we will approximate parameter B as the

second derivative of the profit function at the optimal price.43 To get that number, we

use the demand structure and the cost shock series from our baseline model presented in

Section 4.1.1. The upper panel of Table 16 presents the calibration of this model under

43More specifically, Alvarez et al. (2011) show this approximation for the logarithm of profit and prices.
While we conduct our analysis in levels, we have also redone it in logs and obtained equivalent results.
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which the optimal observation interval is T ∗ = 39 months (corresponding to the frequency

of premium adjustments from our data). The bottom panel summarizes the solution.

Expressed as percentage of firm’s revenue and profit, the observation cost needed to achieve

the optimum amounts to 24.7% and 131.3%, respectively. While these numbers are much

higher than our results from the first exercise in Section B.5.1 (and vastly exceeding any

plausible empirical benchmarks), they may actually be an understatement. The table also

shows that the resulting average absolute price change amounts to only 5.5%, about a half

of what we observe in the data. To improve on this prediction, we would need to alter the

assumptions on the stochastic process for the target price, which would result in a further

increase in the observation cost needed to target the desired adjustment frequency.

Table 16: Calibration and solution of the dynamic observation cost model

Symbol Meaning Value

φ Observation cost 725
δ Monthly discount factor 0.9967
B Loss function parameter 0.0012
σ Standard deviation 28.99

Solution

T ∗ Observation interval 39
φ/rev. Cost as % of revenue 24.7
φ/prof. Cost as % of profit 131.3

Et
(
abs(Pt+T∗−Pt)

Pt

)
Ave. size of change (in %) 5.5

While the results presented in Table 16 may appear stark at first, they are also consistent

with existing literature. To show this, we experimented with reducing the observation cost

φ to achieve a frequency of price adjustments that would correspond to the one that is

appropriate for common CPI goods. Stella (2020) documents the unconditional median

price duration for supermarket goods of around 3 quarters, i.e., 9 months. Using otherwise

the same specification, but adjusting φ to achieve T ∗ = 9, we get φ = 39. This in turn is

equivalent to 1.3% of revenues, and 7.1% of profits. The former is precisely the upper bound

for the menu cost provided by Stella (2020), while the latter is well within the interval for

gross margins reported in that paper. Hence, the model and its calibration appear to be

very much in line with the magnitudes of observation costs required to match the frequency

of price changes for common CPI goods, but not for life insurance policies.
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Based on these results, we conclude that menu and observation costs, while possibly a

part of the phenomenon, cannot alone explain the rigidity of life insurance premiums. The

final question that arises naturally from this section is: what generates such a discrepancy

between the results presented in Sections B.5.1 and B.5.2?

The main difference between these two models is that the underlying cost shocks are

different. For our first exercise with the physical adjustment cost η, we used the actual

marginal cost series depicted in Figure 14. On the other hand, for our second exercise with

observation cost, we followed Alvarez et al. (2011) and assumed that the target price evolved

according to a random walk process without drift, which means that we implicitly assumed

that the marginal cost was also a random walk process. Importantly, we set the variance

of the random walk process to be the variance of the marginal cost series in Figure 14.

However, it should be evident that there are short-run trends in the marginal cost series and

the variance around these trends are relatively smaller than the variance of the whole series.

This implies that, within a sufficiently short window, the actual cost process shown in Figure

14 is relatively more predictable than a random walk process. Therefore, the firm in the

second exercise would have a higher incentive to pay the observation cost to make sure that

the target price has not changed by too much. As a result, the observation cost in the second

exercise must be much larger to match the price adjustment frequency we observe in the data.
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