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ABSTRACT

Heavy construction work is a highly equipment-intensive process, and contractors work under a unique set of conditions that are characterized by various resource constraints and uncertainty. Accurate and timely look-ahead scheduling based on the most recent project data can greatly improve project execution and control. This paper describes a framework of look-ahead scheduling using real-time data collection and simulation techniques. In this framework, real-time dynamic data of an actual construction operation are collected and used to update a process-simulation model for look-ahead scheduling. Compared with the traditional scheduling methods that are static and time-consuming to maintain and update, the capability of real-time simulation to dynamically incorporate new project data and changes in the work environment offers the promise of improving the accuracy of look-ahead scheduling while reducing modeling burdens on end users. To demonstrate the feasibility of the proposed framework, a prototype system was developed for asphalt hauling and paving projects.
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Background
Heavy construction work is a highly equipment-intensive process, and it usually spreads over miles, which makes project planning and control more difficult and exposes contractors to greater schedule and financial risks (Peurifoy et al. 2006). Successful execution and control of these projects relies on both effective master planning and short-term look-ahead scheduling. A master schedule provides a global view of a project, and it identifies work packages and the overall execution strategy of the project. A look-ahead or short-interval schedule, on the other hand, is a more detailed plan showing work to be done within a relatively short time window. These detailed schedules reflect actual field conditions and provide field personnel with instructions regarding what tasks have been done and what tasks are yet to be performed (Hinze 2008). A look-ahead schedule should be developed based on the most recent project performance data, and it must be updated in a timely manner so that it accurately reflects the dynamic project environment. This is especially the case for heavy-construction projects because these projects are greatly influenced by numerous factors that involve uncertainty, such as weather and traffic conditions. Due to the inevitable and almost constant changes along the project timeline, schedulers must be able to quickly collect and analyze project data and incorporate them in the scheduling of future work. 

Providing accurate and reliable look-ahead scheduling is challenging in at least three respects. First, data regarding the most recent project performance are the basis for predicting future performance, yet the time and cost required to manually collect and analyze these data can be prohibitive. Second, schedulers must consider uncertainty and various productivity-influencing factors and determine how they will affect the project schedule. Quantifying the combined impact of these variables can be difficult, as has been shown by many previous studies (e.g., AbouRizk and Sawhney 1993). Third, the accuracy of a look-ahead schedule is directly affected by the timing of its preparation, which means that this scheduling task is generally done a day or two before the scheduling period (Hinze 2008). While this approach helps to reduce the guesswork required for scheduling, it also means that schedulers must be able to act quickly and devise a reliable schedule in a very short amount of time.
This paper proposes a framework for efficient look-ahead scheduling of heavy construction projects using real-time data collection and simulation techniques. Within this framework, real-time dynamic data from an actual construction operation are captured and used to update a process-simulation model for look-ahead scheduling. Current industry practice and related research on look-ahead scheduling are summarized in the first section, and the conceptual framework of the real-time, simulation-based scheduling system is then described. To demonstrate the feasibility of the proposed framework, a prototype system was developed, and a heavy civil contractor was involved to establish a realistic case study. Benefits as well as limitations of the proposed look-ahead scheduling approach are also summarized and reported in this paper.
Literature Review


After examining the literature on planning and scheduling, Hinze (2008) argued that very little information on look-ahead scheduling had been provided. He studied the industry’s practices based on a sample of approximately 30 construction firms, and he found that look-ahead schedules are typically presented as bar charts structured to cover a period of two, three, or four weeks. Many schedules include a look-back of one week to clarify the nature of the tasks to be performed and the rate at which they are to take place. However, in essentially all cases schedulers rely on readily available project information and their own subjective judgments in evaluating uncertainty and forecasting future project performance. 


Look-ahead scheduling deals with day-to-day construction operations, and many of these operations are repetitive and subject to the influence of resource constraints and uncertainty that exist in the project environment. This situation has motivated several researchers to apply discrete-event simulation to the look-ahead scheduling problem. Discrete-event simulation is a mathematical-logical model which represents a real-world system that evolves over time, and it allows users to experiment with the model to analyze and predict system performance. It is a powerful tool that can combine actual progress data and the uncertainty of the operational environment to predict future project performance. For repetitive construction operations, once the construction work has started, actual data can be collected and used to fine-tune simulation models for better prediction precision. Chung, Mohamed, and AbouRizk (2006) collected actual project data on a bi-weekly basis during a tunneling construction project, and these data were used to improve a base simulation model for more accurate performance forecasting. They showed that a proper updating process for simulation input modeling based on actual project data can reduce uncertainty and improve simulation accuracy. Lu, Dai, and Chen (2007) developed a real-time decision-support system for planning concrete plant operations that tracks activity durations in real time, with the collected data being used to update simulation input models. 


Both of the above-mentioned studies indicated that a significant amount of data are required for determining the most up-to-date project performance in order to improve scheduling accuracy. With the recent growth of sensing technologies, a broad range of embedded, wide-area, and satellite-based sensors have become available for real-time and automated project data collection and transmission. For example, equipment-intensive heavy construction projects have seen the use of the Global Positioning System (GPS) to track real-time locations of construction equipment such as earth-moving machines (Ackroyd 1998; Navon and Shpatnitsky 2005) and concrete-hauling trucks (Lu, Dai, and Chen 2007). GPS is also used in the prototype system of this research.



The above-mentioned existing studies focused primarily on collecting and using real-time data to improve simulation input modeling, which concerns the determination of statistical distributions of model input parameters such as activity durations. In addition to the input modeling, real-time data also have the potential to enhance the entire simulation-modeling process, including model formulation, updating, and validation. This paper studies not only the collection of real-time equipment data but also the use of these data for updating input models, operation logic, and for validating simulation models. The following section describes the proposed look-ahead scheduling system and explains how real-time data are used to improve the simulation process.
simulation-Based Look-Ahead scheduling 


Simulation for look-ahead scheduling must account for and react to system changes efficiently. It requires that a simulation model can capture system changes and be updated accordingly so that the changes and their impacts can be determined for look-ahead scheduling. To achieve this, the proposed system integrates three subsystem components, which are data collection, construction process knowledge, and a self-adaptive modeling process, as shown in Figure 1. A baseline project schedule and a baseline simulation model must first be defined by a scheduler. Once the project is started, real-time project data will be collected from the field and used to update the base simulation model in order to more accurately reflect the actual project environment. Experiments with the updated simulation model can then be conducted, and the baseline schedule can be updated based on the simulation output. 

Here, this conceptual system design is applied to look-ahead scheduling for an asphalt hauling and paving operation, which is described below, followed by a detailed account of the three system components in the context of asphalt hauling and paving projects. 
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Figure 1. Real-time simulation-based look-ahead scheduling.
Asphalt Hauling and Paving Operation



In a typical asphalt pavement project, hot-mix asphalt is produced at a central asphalt plant and the mix is then hauled by trucks to the job site for paving. This asphalt hauling and paving operation is a cyclical process. The central asphalt plant usually provides asphalt mix for several projects simultaneously. At the paving site, efforts are usually made to balance the performance of the paver and hauling trucks so that the paving operation can be performed continuously. An operation involving an asphalt plant located in central Louisiana is briefly described here. 

Major resources utilized in the operation are an asphalt plant, hauling trucks, pavers, and shuttle buggies. The asphalt plant features a double-barrel-drum mix process that blends, heats, and mixes aggregates and asphalt cement and produces a continuous flow of asphalt mix. Fresh asphalt mix is placed in storage silos, from which it can be discharged into dump trucks. The trucks are first prepared by spraying a release agent on their bed, and the asphalt mix is then loaded, with a shipping ticket being issued to each truck when it leaves for the job site. At the job site, the asphalt mix is discharged into a shuttle buggy, which acts as a buffer between the trucks and the paver. As soon as it is not full, the shuttle buggy can receive asphalt mix while simultaneously transferring asphalt to the paver. When a truck is fully unloaded, it returns to the asphalt plant for another hauling cycle.
Real-time Data Collection

The data-collection component collects real-time project performance data and forecasting data on the future operation environment, such as current project progress, activity duration, future resource allocation, and weather. These data can be collected from various sources, including data-collection sensors, project personnel, existing information systems, and other external sources. The hauling and paving operation relies primarily on heavy equipment, and GPS-based location-tracking sensors can be used to monitor the location, speed, and travel pattern of a piece of equipment. Real-time vehicle tracking GPS has become commercially available, and these commercial products can monitor vehicle travel data and transmit them to a remote data server in virtually real time. A GPS package that includes GPS hardware and wireless data transmission service is adopted by the contractor involved in this research (HCSS 2007). Real-time data for this research were collected from seventeen dump trucks and one paver that are equipped with this type of GPS unit.
In addition to real-time equipment data, look-ahead scheduling also requires input data regarding the actual project progress. In this study, a PC-based asphalt plant control system provides truck-loading data, such as job number, job site location, material type, and material weight, which are used to measure project progress and productivity. Look-ahead scheduling also requires a scheduler to estimate future project operation variables that may significantly affect project performance, including such things as the future resource allocation scheme and shift arrangement. Some uncertainty variables, such as weather conditions, can be collected from external data sources. For example, in this study, 10-day weather-forecast data are automatically pulled from a weather forecasting Web service (National Weather Service 2005). The impact of weather on future project performance can be evaluated either subjectively by the scheduler based his or her experience or by statistical models, such as the method described in Wales and AbouRizk (1996). 
Construction Process Knowledgebase


Raw data collected from a GPS unit includes equipment travel speed and location, and these data can be collected on a frequency ranging from every few minutes to every few seconds. Useful performance data, such as truck hauling time and the waiting time at the asphalt plant or the job site, need to be extracted from the large set of raw GPS data. An automated interpretation of these time-sequenced data is made possible by associating a piece of equipment’s location with construction events and activities based on user-defined construction process knowledge. In the first step, equipment location is associated with construction events (e.g., start of loading) through a concept called “geo-fence.” A geo-fence is a virtual area that is defined around a fixed geographic location or a mobile object of interest, such as a paver. Geo-fences must be defined by project personnel for areas such as an asphalt plant and a paver. A comparison of the GPS location of a piece of equipment with the pre-defined geo-fences can reveal meaningful information about the construction operation. For example, when a truck travels across the boundary and into an asphalt-loading geo-fence, a start-loading event is logged, and when it moves out of the geo-fence an end-loading event is recorded. The second step of the raw data interpretation involves extracting construction-activity information from the construction-event data obtained in the first step. By definition, an activity is initiated by the occurrence of an event and is ended by the occurrence of another event. Therefore, for the previous example, a truck-loading activity and its duration can be defined based on the start- and end-loading events. The knowledge required for this automated data-interpretation procedure is represented in a hierarchical structure of geo-fence locations, events, and activities. Table 1 illustrates the organization of this construction process knowledge.
Table 1. Organization of Construction Process Knowledge

	Geo-fence
	Action
	Event
	Activity

	Asphalt plant 
	Enter
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	End loading
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	Leave
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Self-adaptive Modeling
For the proposed simulation-based scheduling system, it is important that the initial base simulation model be updated in a timely manner to reflect changes to the project environment. The objective of the self-adaptive modeling component is to streamline the model-updating process by taking advantage of the real-time data gathered by the data-collection component. In response to changes in the project environment, the base simulation model may need to be updated in terms of its input models and operation logic, as described below.
Updates to input models may involve a change of probability distribution types, distribution parameters, and even input-modeling methods. Real-time data can be used to fit to a number of standard distributions, and the best-fitted distribution can be chosen to replace an outdated input model. This input-modeling procedure can be automated, with user involvement being kept to a minimum level, and such a procedure is described in the next section. Another option for input modeling is using external prediction models (AbouRizk and Sawhney 1993). To further improve forecasting accuracy, certain uncertainty variables (e.g., weather and staffing level) and their impacts on project performance can be modeled explicitly using statistical prediction models. However, at this stage of the research, only the standard distribution fitting procedure is implemented.
Updates to the operation logic may include adding or deleting activities and resources and revising precedence relationships. For example, if a truck operates in a job location other than its scheduled location, as evidenced by its GPS records, the modeling system will draw an inference that the truck has been relocated from one job to another. Schedulers will be notified for verification, and if this change is confirmed the simulation model will be updated. Certainly, as with any decision-support technique, this self-adaptive modeling function offers support for model updating, but it cannot completely replace human judgment. User intervention is still required to confirm or disapprove system changes identified by the self-adaptive modeling component. The behavior of this component is further demonstrated in the case study section, which presents a scenario in which updates to both input models and the operation logic of a simulation model are involved. 

Another important feature of self-adaptive modeling concerns automated model validation using real-time data. Because a simulation model is constantly updated to reflect system changes, the updated model must be validated to ensure that it is indeed an accurate representation of the real-world system. When the real-world system already exists, the most objective validation test is to compare the model’s output with actual real-world data (Banks 1998). However, it would be inefficient, if not impossible, to perform this validation process manually for the case in which frequent model updating is required. Real-time data provide an opportunity to utilize a computer-aided model-validation process. When real-world data are available, the validation process can be automated by comparing actual performance data with model outputs using classical statistical tests (Law and Kelton 2000). The case study presented later uses a confidence-interval approach and a paired t-test to automate model validation.



In short, real-time data make possible a streamlined process of model updating and validation. When fully implemented, the automated process can help schedulers to refocus on the essentials of scheduling instead of on simulation modeling. They can be freed from time-consuming data-collection and model-maintenance activities and can instead devote their efforts to simulation output analysis and decision making. 
The Prototype System
A prototype system was developed for asphalt hauling and paving projects  that integrates the GPS tracking technology with simulation for the purpose of look-ahead scheduling. In this system, the base project look-ahead schedule is prepared using a scheduling software tool called The Dispatcher (HCSS 2007), which allows users to schedule and deploy equipment for transportation-intensive operations. Schedules prepared in The Dispatcher are essentially static, which means they must be updated manually by schedulers to reflect constantly changing field conditions. For simulation modeling, the prototype system uses a general-purpose simulation platform—Simphony (Hajjar and AbouRizk 1999)—for model development and experimentation. The base simulation model for asphalt hauling and paving operations is developed using this platform.
In the prototype system, GPS and other scheduling-related data are collected and stored in a Microsoft Access database. To extract meaningful information from raw GPS data, geo-fences must be defined for areas such as asphalt plant loading areas and paver locations. The user interface in Figure 2 shows user-defined geo-fences. Construction process knowledge, illustrated in Table 1 above, is used to extract construction activity information from GPS data, and Simphony’s ActiveX library is used to enable automated model updating and validation. The ActiveX library allows a developer to fully control a simulation model using computer codes, and a software module was developed based on this library to automate model updating. 
After a change request is made by the self-adaptive modeling component, the software module handles the addition or deletion of activities and changes to input models. To automate the input-modeling process, another software module was developed based on a distribution-fitting program, BestFit developer’s kit (BestFit 2004), which can fit a data set to 28 pre-defined standard probability distributions, with the highest-ranked distribution being selected to be the input model. Optionally, the fitting results can be presented to the end users for confirmation before the final selection, as shown in Figure 3 below.
A case study
The sample project involves grading, drainage structures, asphaltic concrete overlay, and related work for widening a 1.66-mile portion of U.S. Route 84 from a two-lane to a four-lane highway. According to the base schedule, the contractor allocated 20 dump trucks and 1 paver to a section of the project, and all vehicles were equipped with GPS units for real-time data collection. A base simulation model for this operation was established based on the master project schedule and historical data prior to the start of this project. The model includes five activities—asphalt loading, hauling, unloading, paving, and truck returning. The model assumes that the resources required include one asphalt plant, 20 trucks of the same size, one shuttle buggy, and one paver with a hopper capacity of one truckload.
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    Figure 2. User-defined geo-fences
.          Figure 3. Input-modeling verification.


In this case study, real-time data collected during the first day of the project were used to examine the accuracy of the base model. At the end of the first day of operation, several major discrepancies were captured by the GPS data as listed below. First, three trucks that were allocated to this job did not show up, and so only 17 trucks were actually working on the project. Second, the actual waiting time at the asphalt plant was longer than the queuing time predicted by the base simulation model. Third, because of work-zone traffic and traffic-control delays the actual hauling and returning times were significantly longer than what had been expected. As a result of these discrepancies between the actual conditions and the assumed project conditions, the predicted truck cycle time was more than 20% faster than the actual value measured in the field. This significant error indicates that the base simulation model must be updated in at least three areas—the number of trucks, the waiting time at the asphalt plant, and the waiting time in the work zone. While the change to the allocation of trucks is easy to understand, the changes related to the waiting time are elaborated further below.


In the base model, a truck’s waiting time at the asphalt plant and at the job site is determined by its arrival time, the queue length, and the loading or unloading time. Therefore, waiting time is not modeled as an activity but rather as a derived simulation output. However, the actual observed waiting time is much longer than the derived queuing time. This is mainly due to the interruptions caused by external factors that were not considered in the base simulation model. For example, in the case of the asphalt plant, a truck may be kept waiting for a longer time when the plant also serves trucks from other projects and clients. Also, in the case of the job site, the local traffic and the work zone traffic control can significantly increase the time that a truck spends in the work zone. Accurately predicting the influence of these external factors is difficult without information about the actual project conditions, but, fortunately, once the construction work is started, actual data can be collected and analyzed to better model these factors. An immediate solution to the waiting-time problem is to model the waiting time explicitly as an activity using the real-time data. In this case study, the following automated model updating procedure is applied:
1. The number of trucks is changed from 20 to 17.
2. The additional delay at the asphalt plant is modeled as a probability distribution based on the actual waiting time. As a result, a new “waiting at plant” activity is inserted into the base simulation model, and its duration is exponentially distributed with a mean value of 16.3 minutes.
3. Similarly, two delay activities are inserted into the base model to account for the delay in entering and leaving the work zone due to the local traffic and the traffic control. These combined durations are normally distributed with a mean value of 30.6 minutes and a standard deviation of 11.2 minutes.
4. Real-time data are also used to refine other input models for the activity durations of loading, hauling, paving, unloading, and truck returning. 

After the changes are identified by the system, they are presented to the scheduler for verification. The purpose of this is to confirm whether the changes identified by the system are in line with the scheduler’s perception of the current and future project environment. For example, the user must confirm whether the change from 20 trucks to 17 trucks is permanent or temporary for this project. When the changes are confirmed, simulation experiments with the updated simulation model are conducted to predict future performance, and the accuracy of the updated model is then examined by additional actual data collected from the site. In this case, the actual average truck cycle time is 214 minutes. A paired-t test shows that the 95% confidence interval for the difference between the actual and the simulated average truck cycle time is (-9.9, 10.6), or (-4.6%, 5%), which means that the observed difference is not statistically significant and that the updated model is much more accurate than the base model for look-ahead scheduling. 
conclusions

Accurate and timely look-ahead scheduling based on the most up-to-date project data can greatly improve project execution and control, and this paper describes a look-ahead scheduling approach based on real-time data collection and simulation techniques that are applied to repetitive asphalt hauling and paving projects. In the study, real-time GPS data from trucks and pavers are collected and used to automatically update a process-simulation model in order to better reflect actual project conditions. Compared with the traditional scheduling methods that are static and time-consuming to update, the capability of real-time simulation to dynamically incorporate new project data and changes in the work environment offers the promise of improving the accuracy of look-ahead scheduling while reducing modeling burdens on end users.
A critical component of the proposed method is the self-adaptive modeling process. The capability of identifying system changes relies on efficient real-time data collection and accurate data interpretation. First, comprehensive data must be collected to capture the signs of system changes. With the rapid growth of sensor-based technologies, more reliable and comprehensive real-time data will become available for describing the project environment. Second, comprehensive and accurate construction-process knowledge must be defined in order to interpret collected data and identify system changes. To achieve a truly robust self-adaptive modeling process, further research is required in the area of intelligent data analysis and knowledge representation. Finally, the self-adaptive modeling capability streamlines the model updating and validation procedure, but it cannot replace the judgment of a scheduler and user intervention is still required to verify system changes identified by the computer algorithm.
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