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Problem 1.  
Recall, given a continuous image ),( yxg , an ideal point sample of  ),( yxg  is simply ),( yx nTmTg  where xT  

and yT  are the sample spacing in the x  and y  directions . Mathematically, we can form ),( yx nTmTg  as 

dydxnTymTxyxgnTmTg yxyx ∫
+∞

∞−
∫ −−d= ),(),(),( , but this is simply the same as evaluating ),( yxg  at the 

point ),(),( yx nTmTyx = . 
 
Consider a CCD. Let us set up our coordinate-system so that 
(x,y)=(0,0) is at the very center of the upper-left cell of the CCD. 
Then the CCD forms a discrete image by integrating the photons 
from some continuous image ),( yxf  that is projected onto the 

CCD by the lens. The thnm ),(  sample ),( nmfd  from the CCD in 
 formed by integrating photons from within the continuous region 
 of ),( yxf  that corresponds to the thnm ),(  cell of the CCD.  
We can express this with the equation 
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Let us define a window function 
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(a) Draw a 2-D graph of ),(, yxw
yTxT , labeling pertinent points on the x  and y  axes. 

Now, consider a second continuous function ),( yxg , related to ),( yxf  as 

βγ−β−γβγ= ∫
+∞

∞−
∫ ddyxwfyxg yTxT ),(),(),( , . 

Notice: 
(1) the integrand ),(),( , yxwf yTxT −β−γβγ  is a product of two functions, each of which is a function of 

independent variables ),( βγ , and the integral forms ),( yxg  by integrating the product over all values of ),( βγ . 
(2)  ),(, yxw yTxT −β−γ  is a function of ),( βγ  formed by shifting ),(, βγyTxTw  by an amount ),( yx  in the 

),( βγ  directions. 
(3)  ),(),( yx nTmTgnmfd = ; i.e. the CCD-samples are equal to point-samples of the continuous image ),( yxg . 

(4) The window function ),(, yxw
yTxT  is symmetric about the origin, so that 

),(),( ,, β−γ−=−β−γ yxwyxw yTxTyTxT  by which 

),(**),(),(),(),( ,, yxwyxfddyxwfyxg yTxTyTxT =βγβ−γ−βγ= ∫
+∞

∞−
∫  . 

By taking the continuous Fourier transform of both sides of the above equation, we obtain 
),(),(),( , vuWvuFvuG yTxT=  
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(b) To show that ),( yxg is a low-pass version of ),( yxf , compute the Fourier transform ),(, vuW
yTxT  of 

),(, yxw
yTxT . Graph ),(, vuW

yTxT  . Label pertinent points on the vu,  axes of the graph. Find the particular 

values of  vu,  where 0),(, =vuW yTxT . Compute and label the amplitude )0,0(, yTxTW   as a function of yTxT , .  

 
(c) Find the -3 dB frequencies dBu 3−  and dBv 3−  for ),(, vuW

yTxT  as a function of xT  and yT ; i.e. where 
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Conclusions: You should now be able to see that 
(1) The CCD-samples ),( nmfd are equivalent to ideal point-samples of a continuous image ),( yxg  where 

),( yxg  is the low-pass-filtered version ),(**),( , yxwyxf yTxT  of the continuous image ),( yxf  that is 

projected onto the CCD by the lens.  
(2) The -3 dB cutoff frequencies of the lowpass filter ),(, yxw yTxT  are important from the viewpoint of the 

sampling theorem. These frequencies, as you computed in 4c above, are sufficiently low as to preclude aliasing 
when a CCD forms a discrete image { }),( nmfd  whose samples are equivalent to point samples of 

),(**),( , yxwyxf yTxT , a lowpass filtered ),( yxf  . 

(3)  If you consider ),(, vuW
yTxT  as approximating an ideal lowpass filter whose cutoff frequency is equal to  

the -3 dB cutoff freq of ),(, vuW
yTxT , then the CCD sample spacing is sufficiently small as to recover the 

lowpass image ),( yxg  from the point samples { }),( nmfd . That is, you cannot recover ),( yxf  from { }),( nmfd , 
but you can recover ),( yxg  where ),(,**),(),( yxyTxTwyxfyxg =  from { }),( nmfd . 

(4) A CCD has a sort of self-regulating lowpass filter ),(, vuW
yTxT that is proportional to the size of the CCD 

cells. If the cells are larger, then the -3 dB cutoff frequencies of ),(, vuW
yTxT  are lower, making the image 

),( yxg  that can be recovered from { }),( nmfd  a more lowpass filtered version of ),( yxf  than would be the 
case if the cells of the CCD were smaller. 
 
Problem 2.   

Let 
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** == CMA   where C is the central part 

of the linear convolution such that the size of the output image C is the same size as input image A. 
Column order 4x4 image A  into 16x1 vector a  and column-order 4x4  result C  into vector c to form the linear 
system bHc


= . Fill-in the top 8 rows of H  
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Problem 3.  
Fundamentals of Digital Image Processing - Jain: Problem 4.2 
 
Problem 4.  
 
Part A: Add Gaussian white noise to your blurred image generated in HW03. 
J = imnoise(I,'gaussian',M,V) 
Use mean M=0.0 and variance V computed to yield the SNRs below. 
Generate 4 images: one each at the four SNRs 100, 10, 1, 0.1. 

Eq (1)    
2
noise

pixelimageaverageSNR
s

= . 

 
Display the four images. Comment on their appearance. 
 
Part B: Form J-I and compute the sample average of the standard deviation of the noise in J. 
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Now compute your sample average estimate of the SNR of the noisy blurred image using Eq (2). 
 

Eq (3)   
noise

pixelimageaverageSNRestimated
ŝ

=  

In each case (SNRs 100, 10, 1, 0.1.) are the estimated SNR and the SNR you used to form  
J = imnoise(I,'gaussian',M,V) close to the same value? 
List the values you obtained. 
 
Part C: Find the max and min pixel values in noisy image J. 
Are any pixels less than zero? 
Since the blurred noise-free image I has pixel values 0-255, does noisy blurred image J have any pixels greater 
than 255? 
Write down your conclusions. 
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