ECE 6364 Spring 2016 HW 04 due 2/16

Problem 1.

Recall, given a continuous image g(x, y), an ideal point sample of g(x, y) is simply $g(mT_x, nT_y)$ where T_x and T_y are the sample spacing in the x and y directions. Mathematically, we can form $g(mT_x, nT_y)$ as

 $g(mT_x, nT_y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) \, \delta(x - mT_x, y - nT_y) \, dx \, dy$, but this is simply the same as evaluating g(x, y) at the point $(x, y) = (mT_x, nT_y)$.

Consider a CCD. Let us set up our coordinate-system so that (x,y)=(0,0) is at the very *center* of the upper-left cell of the CCD. Then the CCD forms a discrete image by integrating the photons from some continuous image f(x, y) that is projected onto the CCD by the lens. The $(m,n)^{th}$ sample $f_d(m,n)$ from the CCD in formed by integrating photons from within the continuous region of f(x, y) that corresponds to the $(m,n)^{th}$ cell of the CCD. We can express this with the equation

$$f_d(m,n) = \int_{(n-0.5)T_y}^{(n+0.5)T_y} \int_{(m-0.5)T_x}^{(m+0.5)T_x} f(\gamma,\beta) d\gamma d\beta$$

Let us define a window function $w_{T_x,T_y}(x,y) = \begin{cases} 1 & |x| \le 0.5T_x \text{ and } |y| \le 0.5T_y \\ 0 & else \end{cases}$

(a) Draw a 2-D graph of $w_{T_x,T_y}(x, y)$, labeling pertinent points on the x and y axes.

Now, consider a second continuous function g(x, y), related to f(x, y) as

$$g(x, y) = \int_{-\infty}^{+\infty} \int f(\gamma, \beta) \ w_{T_x, T_y}(\gamma - x, \beta - y) \ d\gamma \ d\beta.$$

Notice:

(1) the integrand f(γ,β) w_{T_x,T_y} (γ - x,β - y) is a product of two functions, each of which is a function of independent variables (γ,β), and the integral forms g(x, y) by integrating the product over all values of (γ,β).
(2) w_{T_x,T_y} (γ - x,β - y) is a function of (γ,β) formed by shifting w_{T_x,T_y} (γ,β) by an amount (x, y) in the (γ,β) directions.

(3) $f_d(m,n) = g(mT_x, nT_y)$; i.e. the CCD-samples are equal to point-samples of the continuous image g(x, y). (4) The window function $w_{T_x,T_y}(x, y)$ is symmetric about the origin, so that

$$w_{T_x,T_y}(\gamma - x,\beta - y) = w_{T_x,T_y}(x - \gamma, y - \beta) \text{ by which}$$
$$g(x,y) = \int_{-\infty}^{+\infty} \int f(\gamma,\beta) w_{T_x,T_y}(x - \gamma, y - \beta) d\gamma d\beta = f(x,y) * * w_{T_x,T_y}(x,y)$$

By taking the continuous Fourier transform of both sides of the above equation, we obtain $G(u, v) = F(u, v) W_{T_x, T_v}(u, v)$

(b) To show that g(x, y) is a low-pass version of f(x, y), compute the Fourier transform $W_{T_x, T_y}(u, v)$ of

 $w_{T_x,T_y}(x, y)$. Graph $|W_{T_x,T_y}(u, v)|$. Label pertinent points on the u, v axes of the graph. Find the particular values of u, v where $|W_{T_x,T_y}(u, v)| = 0$. Compute and label the amplitude $|W_{T_x,T_y}(0,0)|$ as a function of T_x, T_y .

(c) Find the -3 dB frequencies u_{-3dB} and v_{-3dB} for $W_{T_X,T_y}(u,v)$ as a function of T_x and T_y ; i.e. where

$$\frac{1}{\sqrt{2}} \left| W_{T_x, T_y}(0, 0) \right| = \left| W_{T_x, T_y}(u_{-3dB}, 0) \right| = \left| W_{T_x, T_y}(0, v_{-3dB}) \right|$$

Conclusions: You should now be able to see that

(1) The CCD-samples $f_d(m,n)$ are equivalent to ideal point-samples of a continuous image g(x, y) where g(x, y) is the low-pass-filtered version $f(x, y)^{**}w_{T_x, T_y}(x, y)$ of the continuous image f(x, y) that is projected onto the CCD by the lens.

(2) The -3 dB cutoff frequencies of the lowpass filter $w_{T_x,T_y}(x, y)$ are important from the viewpoint of the sampling theorem. These frequencies, as you computed in 4c above, are sufficiently low as to preclude aliasing when a CCD forms a discrete image $\{f_d(m,n)\}$ whose samples are equivalent to point samples of $f(x, y) * w_{T_x,T_y}(x, y)$, a lowpass filtered f(x, y).

(3) If you consider $W_{T_x,T_y}(u,v)$ as approximating an ideal lowpass filter whose cutoff frequency is equal to the -3 dB cutoff freq of $W_{T_x,T_y}(u,v)$, then the CCD sample spacing is sufficiently small as to recover the lowpass image g(x, y) from the point samples $\{f_d(m,n)\}$. That is, you cannot recover f(x, y) from $\{f_d(m,n)\}$, but you can recover g(x, y) where $g(x, y) = f(x, y) * w_{T_x,T_y}(x, y)$ from $\{f_d(m,n)\}$.

(4) A CCD has a sort of self-regulating lowpass filter $W_{T_x,T_y}(u,v)$ that is proportional to the size of the CCD

cells. If the cells are larger, then the -3 dB cutoff frequencies of $W_{T_{\chi},T_{\chi}}(u,v)$ are lower, making the image

g(x, y) that can be recovered from $\{f_d(m, n)\}$ a more lowpass filtered version of f(x, y) than would be the case if the cells of the CCD were smaller.

Problem 2.

of the linear convolution such that the size of the output image C is the same size as input image A. Column order 4x4 image \underline{A} into 16x1 vector \vec{a} and column-order 4x4 result \underline{C} into vector \vec{c} to form the linear system $\vec{c} = \underline{H} \vec{b}$. Fill-in the top 8 rows of \underline{H}

Problem 3.

Fundamentals of Digital Image Processing - Jain: Problem 4.2

Problem 4.

Part A: Add Gaussian white noise to your blurred image generated in HW03. J = imnoise(I, 'gaussian', M, V)

Use mean M=0.0 and variance V computed to yield the SNRs below. Generate 4 images: one each at the four SNRs 100, 10, 1, 0.1.

Eq (1) $SNR = \frac{average \ image \ pixel}{\sqrt{\sigma_{noise}^2}}$.

Display the four images. Comment on their appearance.

Part B: Form J-I and compute the sample average of the standard deviation of the noise in J.

Eq (2)
$$\hat{\sigma}_{noise} = \sqrt{\frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} [J_{m,n} - I_{m,n}]^2}$$

Now compute your sample average estimate of the SNR of the noisy blurred image using Eq (2).

Eq (3) estimated SNR =
$$\frac{average \ image \ pixel}{\hat{\sigma}_{noise}}$$

In each case (SNRs 100, 10, 1, 0.1.) are the estimated SNR and the SNR you used to form J = imnoise(I, 'gaussian', M, V) close to the same value? List the values you obtained.

Part C: Find the max and min pixel values in noisy image J.

Are any pixels less than zero?

Since the blurred noise-free image I has pixel values 0-255, does noisy blurred image J have any pixels greater than 255?

Write down your conclusions.