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1 Data and sample

1.1 Construction of the Muslim characteristic

We construct a Muslim indicator based on observed candidate names and common fragments

(substrings) of names. We proceed as follows. First, with the aid of a research assistant from

India, we used the candidate affidavit data, covering all elections from 2008-2019, to obtain

a library of Muslim names and common substrings, or “name fragments,” found in Muslim

names. Indian Muslim names have Arabic or Farsi origins but are often spelled differently

or modified from the original name in some other way. For this reason, in constructing our

library we used names of candidates in India as opposed to a general list of Muslim names

to ensure a higher degree of name matching accuracy.

Muslim names are quite distinctive from other Indian names and contain fragments that

clearly distinguish them, making it quite easy to identify Muslim names in the affidavit data.

Conversely, non-Muslim fragments would also be easy to isolate. For example “shankar”

would not show up in a Muslim name and “ahmed” would not show up as part of a non-

Muslim name. There are a total of 470 names and fragments in the Muslim library. We

do the same for non-Muslim names.1 There are a total of 1210 names and fragments in

the non-Muslim library. We then compute two measures for every single name in our data

which we wish to classify as Muslim or non-Muslim. The first measure is the “distance”

between the name to each of the two libraries. Denote the library of Muslim names as M

and the library of non-Muslim names as H. Then, for every candidate name namei in our

data, we calculate the Levenshtein distance to every item in each of M and H.2 We take the

distance of namei and library M to be the minimum of these distances for names in library

M . Similarly, the distance between namei and library H is the smallest distance between

namei and all names in H. Let d(namei,M) and d(namei, H) denote these distances.

Next, we use the name fragments to construct another measure. Specifically count, for

every name in the data, how many Muslim fragments and how many non-Muslim fragments

appear in the name, and divide this by the number of fragments in the respective library to

get a frequency. Denote these as frag(namei,M) and frag(namei, H) respectively.

Finally, namei is assigned “Muslim” identity if either frag(namei,M) > frag(namei, H)

or {frag(namei,M) = frag(namei, H) and d(namei,M) < d(namei, H)}, and it is assigned

“non-Muslim” identity otherwise.

1While the majority of non-Muslim names will have Hindu or Sikh origins, there is also a substantial
population with Christian names.

2The Levenshtein distance simply counts the number of single edits required to turn one string into
another. For example the Levenshtein distance between “car” and “stare” is 3.
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1.2 Sample construction

Our dataset is limited by the state constituencies for which we can obtain demographic

information from the SHRUG. Because we analyze national elections, we also need to ag-

gregate the state constituencies up to the national constituency level. There are reasons to

believe that state constituencies that are missing in a national constituency are systemati-

cally different from other state constituencies (e.g., they are more likely to be large urban

areas). Therefore we only include in our analysis national constituencies for which we have

information on all the state constituencies they contain. This drops from the sample several

states in their entirety (mostly small states with only a few national constituencies).

The states excluded and the total number of their national constituencies are: Arunachal

Pradesh (2), Goa (2), Manipur (2), Meghalaya (2), Mizoram (1), Nagaland (1), Puducherry

(1), Punjab (13), Sikkim (1), Tripura (2), Uttarakhand (5), Delhi NCT (7).

From the remaining 18 states, we drop 3 because we either only have less than 20% of

their constituencies or because they have very few constituencies to begin with. Specifically,

we drop Chhattisgarh, with only 2 out of 11 constituencies, Himachal Pradesh, with 2 out

of 4 constituencies, and Jammu & Kashmir, with 1 out of 6 constituencies.

The remaining 15 states contain 478 of the 538 constituencies in India, and we have

constituency characteristics from the SHRUG for 234 of these. We drop 2 constituencies

because some of their candidates have unrealistically high numbers of criminal convictions,3

leaving us with a total of 232 constituencies in the dataset.

1.3 Missing characteristics

The specification of both voters’ and parties’ choices requires that all relevant candidate

characteristics be observed. In the data, education, assets, and criminal history have missing

values, and we impute these characteristics based on the candidate’s gender, age, and caste

(which have no missing values). Specifically, we impute assets, number of criminal cases, and

number of completed years of education using the average by gender, caste and age range,

where the age range is specified as +/- 1 year relative to the candidate’s age. For example,

a 30 year old male general caste candidate’s imputed asset is the average of all male general

caste candidates aged 29-31. We then create the variables used in the estimation and the

clustering algorithm (log(assets + 1), an indicator for at least one criminal case, and an

indicator for at least twelve years of education).

In practice, the main impact of imputing these characteristics is that we are using all

candidates in the data when creating types.

3Both of these are in Tamil Nadu, and both have a candidate with close to 400 criminal cases.
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The state election data has 36,766 observations. We drop 2 observations because they

have missing characteristics and have no similar candidates (based on gender, caste and age)

that we could use for imputing these missing values. The asset variable has 6,301 missing

values and an additional 562 zeros which we also treat as missing. Criminal history has

6,301, and education 7,629 missing values.

The national election data has 6,581 observations. We drop 4 observations with missing

characteristics that cannot be imputed. After aggregating small parties and independent

candidates, we have 2,649 observations. Assets, criminal history, and education have, re-

spectively, 170, 195 and 250 missing values. Among the 897 candidates of the UPA and the

NDA, the corresponding numbers are 43, 41, and 58, respectively.

2 Specification choice for voter preferences

Following Gandhi and Houde (2019), we first enter the differentiation IVs as controls in a

Logit specification. This specification still includes all the controls described above, and

instruments the endogenous characteristics with the 8 instruments created from the state

election data. The results are in Table A.1. In column 1, the differentiation IVs for Muslim

and assets are statistically significant while the differentiation IVs for education and crime

are not. This suggests that the former two are capable of capturing departures from the

Logit model. As an alternative diagnostic, we also run a specification that includes the

differentiation IVs as instruments instead of controls. The last row of the table (IIA p-val)

shows the p-value of the overidentification J-test for this specification. The fact that this

specification is clearly rejected also provides support for focusing on the nonlinear specifica-

tions (Gandhi and Houde 2019). In column 2 we use only the differentiation IVs for Muslim

and assets and obtain similar conclusions.

Column 3 of Table A.1 shows a random coefficients specification where voter demograph-

ics di in equation (6) in the paper are replaced with random variables drawn from a standard

normal distribution. We use a separate i.i.d. variable for each of the four candidate char-

acteristics, and estimate this specification using the BLP procedure with the differentiation

IVs as instruments. This specification indicates the presence of significant heterogeneity in

voters’ preference for candidate assets, but not for the other three characteristics.
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Table A.1: Specification choice: differentiation IVs and random coefficients

Logit Logit Random coefficients
(1) (2) (3)

Education -0.63 -0.62 -0.38
(0.40) (0.40) (0.51)

Muslim -0.37 -0.39 -0.42
(0.17) (0.17) (0.32)

Crime -0.00 0.16 0.33
(0.34) (0.31) (0.38)

Assets 1.67 1.66 2.65
(0.27) (0.28) (0.56)

diffIV(educ) 0.05
(0.03)

diffIV(Muslim) -0.07 -0.08
(0.03) (0.02)

diffIV(crime) -0.04
(0.03)

diffIV(assets) -0.08 -0.07
(0.04) (0.04)

πeducation -0.04
(8.00)

πMuslim -0.06
(6.82)

πcrime 0.04
(9.82)

πassets -1.63
(0.46)

J p-val 0.10 0.07 0.02
IIA p-val 0.00 0.00
Notes: Columns (1) and (2) are specification checks proposed by Gandhi
and Houde (2019). The dependent variable is vote shares. Candidate char-
acteristics are instrumented with the instruments described in section 5.2.1
in the paper, and the ”differentiation IVs” are entered as controls. Speci-
fications also control for state, year, party and alliance fixed effects, indi-
cators for imputed characteristics, and reserved constituencies. J p-val is
the p-value of the overidentification J test. IIA p-val is the p-value of the
overidentification J test when the diffIV variables are used as instruments
instead of controls. Column (3) is a random-coefficients specification, using
standard Normal draws instead of voter demographics, and using the four
diffIV variables as instruments. Robust standard errors in parentheses.

6



Table A.2: Specification choice: differentiation IVs and constituency demographics

(1) (2) (3) (4) (5) (6)
diffIV(Assets x Literacy) -0.20 -0.30

(0.05) (0.16)
diffIV(Assets x Rural) -0.09 0.17

(0.04) (0.09)
diffIV(Assets x Roads) -0.15 -0.18

(0.04) (0.07)
diffIV(Assets x Workers) -0.24 0.08

(0.08) (0.26)
diffIV(Assets x Caste) -0.12 0.12

(0.09) (0.12)
J p-val 0.07 0.04 0.06 0.05 0.03 0.20
IIA p-val 0.00 0.00 0.00 0.00 0.02 0.00
Notes: Specification checks proposed by Gandhi and Houde (2019). The dependent variable is vote
shares. Candidate characteristics are instrumented with the instruments described in section 5.2.1
in the paper, and the ”differentiation IVs” are entered as controls. Only the coefficients on the
differentiation IVs are shown. Specifications also control for state, year, party and alliance fixed
effects, indicators for imputed characteristics, and reserved constituencies. J p-val is the p-value of
the overidentification J test. IIA p-val is the p-value of the overidentification J test when the diffIV
variables are used as instruments instead of controls. Robust standard errors in parentheses.

3 Identification of model parameters

Here we formally establish identification of the parameters of the model of candidate selection

and discuss the intuition of the identification results. Throughout, we assume that choice

probabilities, win probabilities, and expected vote shares are known to the researcher - these

are estimated in a first stage. Let the probability that party p ∈ {1, 2} chooses action ap = k

for k = 1, ..., K given observable payoff variables z (i.e., constituency characteristics) be

given by Pp(k, z), and write expected winning probability of party p as:

wP
p (k, z) = Ep[wp(ap, a−p, z)|ap = k] (1)

where the expectation Ep[wp(ap, a−p, z)|ap = k] is an integration over a−p using player −p’s

choice probability (see Section 3). Similarly, write the expected vote share as:

sPp (k, z) = Ep[sp(ap, a−p, z)|ap = k] (2)

We establish identification in the baseline model where parties have preferences over win

probability, expected vote share and have type specific costs, as most of the intuition can be
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gleaned from this case, and allowing for additional cost parameters (i.e., recruting costs) as

in our full model does not substantially change the identification argument.

To build intuition, we begin with a simple case where ck = 0 ∀k, so that the only

parameters to identify are (bw, bs). With identification in this simple case established, we

then re-introduce cost parameters below and derive full identification results.

In the model with no costs, Party p’s choice probability satisfies:

Pp(k, z) = Λ
(
bw × wP

p (k, z) + bs × sPp (k, z)
)

(3)

where, given our assumption about the error distribution:

Λ
(
bw × wP

p (k, z) + bs × sPp (k, z)
)
=

exp
{
bw × wP

p (k, z) + bs × sPp (k, z)
}∑

k′ exp
{
bw × wP

p (k
′ , z) + bs × sPp (k

′ , z)
} (4)

As the argument for identification is symmetric across players, we drop the p subscript in

what follows for expositional purposes.

Inverting the choice probability gives:

Λ−1
(
P (k, z)

)
= ln

(
P (k, z)

)
− ln

(
P (K, z)

)
(5)

= bw × (wP (k, z)− wP (K, z)) + bs × (sP (k, z)− sP (K, z))

where we have taken type K as the reference type.

Define:

∆P
w(k, z) ≡ wP (k, z)− wP (K, z) (6)

∆P
s (k, z) ≡ sP (k, z)− sP (K, z) (7)

The difference ∆P
w(k, z) represents the increased expected probability of winning when selecting

type k relative to the reference type K, and similarly for ∆P
s (k, z).

Now, consider two constituencies, 1, 2 with values of z of z(1) and z(2). Using these two

constituencies we get a system of equations[
Λ−1

(
P (k, z(1))

)
Λ−1

(
P (k, z(2))

]
=

[
∆P

w(k, z
(1)) ∆P

s (k, z
(1))

∆P
w(k, z

(2)) ∆P
s (k, z

(2))

][
bw

bs

]
(8)

The parameters (bw, bs) are identified if the matrix

[
∆P

w(k, z
(1)) ∆P

s (k, z
(1))

∆P
w(k, z

(2)) ∆P
s (k, z

(2))

]
has full rank.
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This is the case if,:

∆P
w(k, z

(1))

∆P
w(k, z

(2))
̸= ∆P

s (k, z
(1))

∆P
s (k, z

(2))
(9)

This is the key condition for identification of (bw, bs). Essentially, there must be at least two

constituencies where the difference across constituencies in win probability associated with

type k is not equal to the difference across constituencies in expected vote share associated

with type k. As vote shares can change without turning a loss into a win, this condition is

easy to satisfy.

Solving the system in (8) we get:

bw =
∆P

s (k, z
(2))Λ−1(P (k, z(1)))−∆P

s (k, z
(1))Λ−1(P (k, z(2)))

∆P
s (k, z

(2))∆P
w(k, z

(1))−∆P
s (k, z

(1))∆P
w(k, z

(2))
(10)

and:

bs =
∆P

w(k, z
(1))Λ−1(P (k, z(2)))−∆P

w(k, z
(2))Λ−1(P (k, z(1)))

∆P
s (k, z

(2))∆P
w(k, z

(1))−∆P
s (k, z

(1))∆P
w(k, z

(2))
(11)

To get some intuition for these identified values, assume first that the denominator is

positive (the case with a negative denominator is symmetric) so that:

∆P
w(k, z

(1))

∆P
w(k, z

(2))
>

∆P
s (k, z

(1))

∆P
s (k, z

(2))
(12)

In this case the relative returns to win probability with type k are greater in constituency

1 than constituency 2, and the relative returns to expected vote share are greater in con-

stituency 2 than 1.

First, bw > 0 if and only if:

Λ−1(P (k, z(1)))

Λ−1(P (k, z(2)))
>

∆P
s (k, z

(1))

∆P
s (k, z

(2))
(13)

This is intuitive - the inverse function Λ−1(·) is strictly increasing. What this says then, is,

holding fixed the preference for vote share bs, the ratio of the rate at which the party chooses

type k in constituency 1 relative to the same rate in constituency 2 is larger than the ratio

of returns in vote share associated with that type. This gap must be explained by a positive

preference for win probability bw.
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Similarly, bs > 0 if and only if:

Λ−1(P (k, z(2)))

Λ−1(P (k, z(1)))
>

∆P
w(k, z

(2))

∆P
w(k, z

(1))
(14)

The intuition is similar here. We have assumed

∆P
w(k, z

(1))

∆P
w(k, z

(2))
>

∆P
s (k, z

(1))

∆P
s (k, z

(2))
(15)

so that the returns to selecting type k in expected vote share are relatively higher in con-

stituency 2 than constituency 1. So bs > 0 if, holding fixed the preference for win probability

bw, the ratio of the rate at which the party chooses type k in constituency 1 relative to the

same rate in constituency 2 is larger than the ratio of returns in win probability associated

with that type. This gap must be explained by a positive preference for expected vote share

bs.

One of our key findings is that bw > 0 > bs. Given the derivations above, this means

that:

1. The party chooses type k at a relatively higher rate than can be explained by returns

to expected vote share, so bw > 0.

2. The party chooses type k at a relatively lower rate than can be explained by win

probability, so bs < 0

Adding costs to the payoff function is straightforward. In this case the inverted choice

probability satisfies:

Λ−1
(
P (k, z)

)
= ln

(
P (k, z)

)
− ln

(
P (K, z)

)
(16)

= bw × (wP (k, z)− wP (K, z)) + bs × (sP (k, z)− sP (K, z)) + ck − cK

Now, consider two values of z, say z(1) and z(2). Differencing (16) across these two values

we eliminate the cost parameters, assumed to be independent of z, and get:

Λ−1
(
P (k, z(1))

)
− Λ−1

(
P (k, z(2))

)
= bw ×

(
∆P

w(k, z
(1))−∆P

w(k, z
(2))

)
(17)

+bs ×
(
∆P

s (k, z
(1))−∆P

s (k, z
(2))

)
or:

Λ−1
(
P (k, z(1))

)
− Λ−1

(
P (k, z(2))

)
= bw ×∆P

w(k, z
(1,2)) + bs ×∆P

s (k, z
(1,2)) (18)

10



We can do the same at another pair of value of z, say z(1) and z(3), which then gives us

a system of two equations and two unknown parameters (bw, bs). Defining ∆P
Λ(k, z

(1,2)) ≡
Λ−1

(
P (k, z(1))

)
− Λ−1

(
P (k, z(2))

)
and ∆P

Λ(k, z
(1,3)) similarly, we can write the system as:[

∆P
Λ(k, z

(1,2))

∆P
Λ(k, z

(1,3))

]
=

[
∆P

w(k, z
(1,2)) ∆P

s (k, z
(1,2))

∆P
w(k, z

(1,3)) ∆P
s (k, z

(1,3))

][
bw

bs

]
(19)

The parameters (bw, bs) are identified if the matrix

[
∆P

w(k, z
(1,2)) ∆P

s (k, z
(1,2))

∆P
w(k, z

(1,3)) ∆P
s (k, z

(1,3))

]
has full

rank. This is the case if, for at least one triple (z1, z2, z3):

∆P
w(k, z

(1,2))

∆P
w(k, z

(1,3))
̸= ∆P

s (k, z
(1,2))

∆P
s (k, z

(1,3))
(20)

This is the key condition for identification of (bw, bs), analogous to the condition in Equation

9 in the simpler case above, except we now need variation in win probability and expected

vote share across more values of z - this is how we identify bw, bs separately from the cost

difference ck − cK .

Solving the system in (19) we get expressions analogous to what we had in the simple

case with no costs:

bw =
∆P

s (k, z
(1,2))∆P

Λ(k, z
(1,3))−∆P

s (k, z
(1,3))∆P

Λ(k, z
(1,2))

∆P
s (k, z

(1,2))∆P
w(k, z

(1,3))−∆P
s (k, z

(1,3))∆P
w(k, z

(1,2))
(21)

and:

bs =
∆P

w(k, z
(1,3))∆P

Λ(k, z
(1,2))−∆P

w(k, z
(1,2))∆P

Λ(k, z
(1,3))

∆P
s (k, z

(1,2))∆P
w(k, z

(1,3))−∆P
s (k, z

(1,3))∆P
w(k, z

(1,2))
(22)

With bw and bs identified we can now obtain an expression for the cost difference ck − cK

by substituting the identified values into (16) to get:

ck − cK = Λ−1
(
P (k, z)

)
− bw × (wP (k, z)− wP (K, z))− bs × (sP (k, z)− sP (K, z)) (23)

where bw, bs are as defined in (21) and (22), respectively.
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4 Candidate wealth and party payoffs

To illustrate the importance of wealth as a determinant of candidate choice, we compute

parties’ payoff from the candidates chosen in the data. The upper panel of Figure A.4 shows

these (normalized) payoffs ordered by constituency and candidate type for the UPA. Lighter

colors correspond to higher payoffs. On the lower panel, we present the same information but

ordering candidates by wealth, regardless of type. Figure A.5 shows corresponding graphs

for the NDA. These graphs reveal that the wealth of the candidate plays an important role

in increasing the payoff of political parties.

5 Model fit and validation

Here we provide further results about how model fit depends on the inclusion of party

preferences over candidates.

In Table A.3 we present the analogue of Table 8 but in a model that assumes parties

only care about voter preferences (and thus the probability of winning). This is the model

estimated in the first column of Table 7.

Table A.3: Model fit with no cost parameters

upa actual upa predicted nda actual nda predicted All actual All predicted
Type 1 217 106.23 229 106.14 446 212.37
Type 2 24 107.10 43 108.95 64 216.05
Type 3 49 105.39 22 103.76 71 209.15
Type 4 144 115.28 140 115.15 287 230.43
Notes: Number of candidates of each type observed in the data and predicted by the model (average across 100 simulations) using
the estimates from column 1 of Table 7. Types 1-4 are the Educated, Uneducated, Muslim, and Criminal types, respectively.

When parties are restricted to care only about voter preferences, the model considerably

under-predicts the selection of the educated type (type 1) and over-predicts the other types,

in particular the uneducated type (type 2) and the Muslim type (type 3).
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Payoff by candidate

Payoff ordered by asset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure A.4: Candidate wealth and the UPA’s payoffs
The upper panel shows the payoffs of candidates chosen in the data grouped by type. Types are separated

by the red vertical lines. Payoffs are normalized by subtracting the minimum value and dividing by the

range. Lighter colors indicate higher payoffs. The lower panel shows the same payoffs when candidates are

ordered by wealth, from lowest to highest.

Payoff by candidate

Payoff ordered by asset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure A.5: Candidate wealth and the NDA’s payoffs
The upper panel shows the payoffs of candidates chosen in the data grouped by type. Types are separated

by the red vertical lines. Payoffs are normalized by subtracting the minimum value and dividing by the

range. Lighter colors indicate higher payoffs. The lower panel shows the same payoffs when candidates are

ordered by wealth, from lowest to highest.
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6 Clustering

6.1 Details of k-means clustering

Let the characteristics of candidate i be given by xi, and for a given value of K, denote the

centroid of cluster Ck by bk, k = 1, ..., K. The Within-Cluster Sum of Squares is then

WCSS(K) =
K∑
k=1

∑
i∈Ck

||xi − bk||2

To define the Silhouette Coefficient, let C(i) denote the cluster of candidate i, and define:

Si =
bi − ai

max{ai, bi}

where

ai =
1

|C(i)| − 1

∑
j ̸=i,j∈C(i)

||xi − xj||

is the average distance between i and all other points in the same cluster, and

bi = min
k:Ck ̸=C(i)

1

|Ck|
∑
j∈Ck

||xi − xj||

is the average distance between i and the points in the cluster nearest to i other than the

one it was assigned to. Notice that Si ∈ [−1,+1], and a value of Si ≃ 1 implies that i is close

to other points in its assigned cluster, and far from other clusters, while a value of Si ≃ −1

implies that i is close to points in other clusters relative to points in its own. The Silhouette

Coefficient is the average over all candidates in the sample:

SC(K) =
1

N

∑
i

Si

Note that, unlike the WCSS, the Silhouette Coefficient need not be monotonic in K.

6.2 Alternative clustering procedure

In this section we show that a common alternative to the k-means approach for clustering

data, Hierarchical Clustering Analysis (HCA), yields clusters that are similar to what we

obtain using k-means, but that the k-means approach we take in the paper yields superior

validation results.
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Figure A.6: WCSS and Silhouette: k-means vs HCA

Conceptually HCA, begins by treating each of the N individual observation as its own

“cluster,” then iteratively agglomerates the clusters.4 In the first iteration, we take the two

points that are closest together in the sense that they have the lowest variance among any

pair of points in the sample (the Ward merging criterion), and then combine those to form

a new cluster. We now have N − 1 clusters. Then again, we find the two clusters that are

closest together in terms of variance and combine those, and so on. The number of clusters

is determined by where we stop this iterative agglomeration process.

First, on the left panel of Figure A.6 we compare the within-cluster sum of squares,

WCSS, over a number of possible clusters across the two methods. The k-means approach

is uniformly better by this metric (i.e., produces lower WCSS scores).5

On the right panel of Figure A.6 we compare the Silhouette score associated with the

two approaches across a range of possible numbers of clusters. While HCA performs better

at low number of clusters (2 or 3), k-means performs better from 4 clusters on. Moreover,

k-means scores with 4 or more clusters dominate any HCA score below 4 clusters. Finally,

note that we only ever hit a Silhouette score of 0.5 with k-means and the number of clusters

at least 4. In cluster analysis, a Silhouette score of 0.5 is often used as a rule of thumb

for“good clustering” (Rousseeuw 1987).

These patterns indicate that k-means is preferable to HCA for our application. We

nevertheless computed the types that the HCA algorithm predicts when we set k = 4. The

types are in Table A.7.

The types recovered by HCA look remarkably similar to what we obtain using k-means.

4This is hierarchical agglomerative clustering. A much less used alternative that we do not consider here
is hierarchical divisive clustering.

5Note that k-means is based on “centroids” (the average of all points in the cluster), while HCA is not.
To generate Figure A.6, we compute the “centroid” of each HCA cluster analogously.
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Table A.7: Centroids of candidate types using HCA

Assets Crimes Education Muslim
Type 1 13.68 0.00 0.79 0.00
Type 2 15.21 0.00 0.00 0.00
Type 3 14.30 0.17 0.44 1.00
Type 4 15.06 1.00 0.68 0.00
Notes: Centroids resulting from the HCA clustering algo-
rithm with k = 4. The algorithm is run on standardized
variables; the table shows the centroids transformed back
to the original scale for ease of interpretation.

Similar to k-means, HCA clusters all Muslim candidates together, and then among the

remaining candidates clusters all criminals together. The one difference is that the HCA

algorithm puts some uneducated individuals into Type 1 so that there is a larger gap in

assets between the Type 1 and Type 2 candidates than there is using k-means.

7 Criminals as strategic complements

Table A.8: Correlation of estimated choice probabilities

UPA
Type 1 Type 2 Type 3 Type 4

Type 1 0.27 0.12 0.12 -0.29
NDA Type 2 0.18 0.42 -0.10 -0.14

Type 3 0.03 -0.12 0.26 -0.16
Type 4 -0.26 -0.15 -0.14 0.30

Notes: Types 1-4 are the Educated, Uneducated, Muslim, and
Criminal types, respectively.

Table A.8 shows the correlation between the two parties’ estimated choice probabilities for

the different candidate types. The correlation between the two parties’ choice probabilities

for criminals is positive, while the correlation between criminals and other types is always

negative. This provides suggestive evidence of strategic complementarity between criminal

candidates.

To obtain a precise measure of strategic complementarity, write party p’s choice proba-

bility associated with choosing some type a′ as

Pp(a
′) =

exp
{
Ũp(a

′, P )
}∑4

a=1 exp
{
Ũp(a, P )

}
16



where Ũp(a, P ) = EP [b
wwp(a) + bssp(a)] + cp(a). Letting ∆P (a) ≡ Ũp(a, P ) − Ũp(4, P ), we

have

Pp(4) =
1

1 +
∑3

a=1 exp
{
∆P (a)

}
Differentiating with respect to the opponent’s probability of choosing type 4, we get

∂Pp(4)

∂P−p(4)
= −

3∑
a=1

exp
{
∆P (a)

} ∂∆P (a)
∂P−p(4)(

1 +
∑3

a=1 exp
{
∆P (a)

})2
= −

3∑
a=1

Pp(4)Pp(a)
∂∆P (a)

∂P−p(4)
(24)

We have
∂∆P (a)

∂P−p(4)
= bw

∂EP [wp(a)− wp(4)]

∂P−p(4)
+ bs

∂EP [sp(a)− sp(4)]

∂P−p(4)
.

where

∂EP [wp(a)− wp(4)]

∂P−p(4)
= wp(a, 4)− wp(4, 4) +

3∑
t=1

[wp(a, t)− wp(4, t)]
∂P−p(t)

∂P−p(4)
, (25)

and similarly for ∂EP [sp(a)−sp(4)]

∂P−p(4)
.

Using our parameter estimates, we compute (24) for both parties in every constituency.

We do this by assuming that ∂P−p(t)

∂P−p(4)
in (25) is the same for t = 1, 2, 3 (if we instead set

∂P−p(t)

∂P−p(4)
= −1 for some t we obtain very similar results). A positive derivative ∂Pp(4)

∂P−p(4)
indicates

strategic complementarity between criminal candidates.

The result is shown on Figure 3 in the paper: the derivative is positive for both parties

in 77% of the constituencies, and positive for at least one of the parties in 94%.

8 Other robustness checks and counterfactuals

8.1 Robustness

In this section we consider a series of other checks of the robustness of our main estimates

in Table 12.

8.1.1 Alternative payoff specifications

First, In Table A.10 we allow for additional non-linearities in party preferences over vote

shares (of course, the winning probability itself is a highly non-linear function of vote shares).

17



As a benchmark, in column 1 we reproduce the estimates from the baseline model. In column

2 we include the expected squared vote share, and in column 3 we add the expected cubic

vote share. We find that the linear term is the only one that is always statistically signifi-

cant. In addition, in column 2 the quadratic term is significant at 10%. Figure A.9 shows

the equilibrium choice probabilities implied by each specification. Equilibrium behavior is

virtually identical, which further supports our focus on the more parsimonious specification.
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Figure A.9: Distribution of choice probabilities with and without additional non-linearities
Kernel density plots of equilibrium choice probabilities corresponding to the specifications in Table A.10.

Types 1-4 are the Educated, Uneducated, Muslim, and Criminal types, respectively.

Second, in Table A.11 we replace the expected vote share in parties’ objective functions

with their expected vote share margin. For winners, this is the difference compared to

the runner-up; for losers, it is the difference compared to the winner (which is negative).

Qualitatively there is no change in the results. Parties have a preference for winning, but

are averse to bigger wins as measured by the vote share margin.

Third, we consider a model where instead of expected share, parties’ payoff is affected by

the expected number of votes received. This also introduces additional cross-constituency

variation depending on the size of the constituency. The estimates are in Table A.12, and

they again show no qualitative difference relative to our main results.
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Table A.10: Party objective function estimates - Further non-linearities in vote shares

(1) (2) (3)

bw 3.24 2.64 2.59
(1.02) (1.09) (1.09)

bs -14.15 -9.51 -12.91
(1.73) (2.95) (4.54)

bssq - - 5.06 5.31

- (2.65) (10.95)
bscu - - -10.13

- - (10.53)
c02,NDA -1.57 -1.57 -1.57

(0.27) (0.27) (0.27)
c03,NDA -2.58 2.49 2.54

(0.30) (0.31) (0.31)
c04,NDA 0.58 0.43 0.53

(0.23) (0.25) (0.27)
c02,UPA -2.09 -2.09 -2.09

(0.32) (0.32) (0.32)
c03,UPA -1.93 -1.85 -1.90

(0.29) (0.29) (0.30)
c04,UPA 0.40 0.27 0.38

(0.23) (0.24) (0.26)
ceduc2 -0.53 -0.53 0.53

(0.34) (0.34) (0.34)
ceduc3 -0.63 -0.62 -0.61

(0.34) (0.35) (0.35)
ceduc4 -0.41 -0.43 -0.42

(0.23) (0.22) (0.22)
ccrime
2 -0.03 -0.03 -0.03

(0.24) (0.24) (0.24)
ccrime
3 0.36 0.36 0.34

(0.23) (0.23) (0.23)
ccrime
4 1.10 1.10 1.10

(0.15) (0.15) (0.15)
casset2 0.32 0.32 0.32

(0.26) (0.25) (0.23)
casset3 -0.12 -0.11 -0.11

(0.26) (0.26) (0.26)
casset4 -0.06 -0.10 -0.09

(0.16) (0.17) (0.17)
cMuslim
2 -0.07 -0.07 -0.08

(0.41) (0.41) (0.41)
cMuslim
3 1.48 1.46 1.46

(0.29) (0.29) (0.29)
cMuslim
4 0.03 0.02 0.03

(0.24) (0.24) (0.24)
Log likelihood -836.21 -834.16 -833.62

Notes: Estimates of party objective functions allowing for further
non-linearities in vote share. Column 1 reproduces column 3 from
Table 7. Column 2 adds the expected value of s2 and column 3 also
the expected value of s3, with corresponding parameters bssq and bscu.
Standard errors in parentheses. Types 1-4 are the Educated, Unedu-
cated, Muslim, and Criminal types, respectively. Number of markets:
434. 19



Table A.11: Party objective function estimates: Expected Margin

(1) (2) (3)

bw 4.06 2.37 2.24
(0.74) (0.85) (0.90)

bm -3.84 -6.11 -9.65
(0.804) (0.96) (1.15)

c02,NDA -1.56

(0.27)
c03,NDA -2.60

(0.30)
c04,NDA 0.60

(0.24)
c02,UPA -2.08

(0.32)
c03,UPA -1.98

(0.29)
c04,UPA 0.47

(0.23)
ceduc2 -2.00 -0.53

(0.26) (0.34)
ceduc3 -2.32 -0.65

(0.26) (0.34)
ceduc4 -0.60 -0.38

(0.20) (0.22)
ccrime
2 -0.47 -0.03

(0.22) (0.24)
ccrime
3 -0.31 0.37

(0.21) (0.22)
ccrime
4 1.04 1.08

(0.14) (0.15)
casset2 -0.74 0.30

(0.19) (0.25)
casset3 -1.04 -0.04

(0.20) (0.26)
casset4 0.02 -0.14

(0.14) (0.17)
cMuslim
2 0.44 -0.07

(0.32) (0.41)
cMuslim
3 1.71 1.45

(0.27) (0.28)
cMuslim
4 0.15 0.05

(0.24) (0.24)
Log likelihood -1187.20 -920.22 -835.75

Notes: Estimates of party objective functions in (12) with expected
vote share replaced by the expected vote margin (the difference com-
pared to the runner-up for winners, and the difference compared to
the winner for losers). Types 1-4 are the Educated, Uneducated, Mus-
lim, and Criminal types, respectively. Number of markets: 434.
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Table A.12: Party objective function estimates: Expected number of votes

(1) (2) (3)

bw 3.74 3.29 3.05
(0.83) (0.94) (1.00)

bt -0.32 -0.70 -0.98
(0.09) (0.11) (0.12)

c02,NDA -1.59

(0.27)
c03,NDA -2.51

(0.30)
c04,NDA 0.45

(0.23)
c02,UPA -2.12

(0.32)
c03,UPA -1.84

(0.29)
c04,UPA 0.23

(0.22)
ceduc2 -2.02 -0.53

(0.26) (0.34)
ceduc3 -2.31 -0.66

(0.26) (0.35)
ceduc4 -0.64 -0.36

(0.20) (0.22)
ccrime
2 -0.46 -0.03

(0.22) (0.24)
ccrime
3 -0.31 0.34

(0.21) (0.23)
ccrime
4 1.07 1.12

(0.14) (0.15)
casset2 -0.73 0.34

(0.19) (0.26)
casset3 -1.10 -0.21

(0.20) (0.26)
casset4 0.16 -0.14

(0.14) (0.16)
cMuslim
2 0.44 -0.08

(0.32) (0.41)
cMuslim
3 1.75 1.48

(0.27) (0.28)
cMuslim
4 0.11 0.03

(0.24) (0.24)
Log likelihood -1187.20 -916.90 -837.36

Notes: Estimates of party objective functions in (12) with expected
vote share replaced by the expected number of votes. Types 1-4 are
the Educated, Uneducated, Muslim, and Criminal types, respectively.
Number of markets: 434.
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Table A.13: Party objective function estimates: Constituency-level heterogeneity

Election year 2014 Reservation Rural population Unobserved heterogeneity

bw 2.91 3.24 3.43 3.29
(1.02) (1.02) (1.03) (1.03)

bs -14.43 -13.90 -14.45 -14.00
(1.73) (1.74) (1.75) (1.75)

c∗2 -0.76 0.23 0.57 -
(0.33) (0.29) (1.40) -

c∗3 0.19 -0.69 -0.92 -
(0.32) (0.33) (1.30) -

c∗4 -0.61 -0.37 1.36 -
(0.21) (0.20) (0.87) -

c02,NDA -1.41 -1.66 -2.04 -1.94

(0.28) (0.29) (1.19) (0.79)
c03,NDA -2.67 -2.37 -1.83 -2.08

(0.32) (0.31) (1.11) (0.95)
c04,NDA 0.82 0.66 -0.53 1.22

(0.25) (0.24) (0.74) (0.57)
c02,UPA -2.02 -2.20 -2.57 -2.46

(0.32 ) (0.34 ) (1.21) (0.81)
c03,UPA -1.99 -1.70 -1.16 -1.40

(0.29) (0.30) (1.12) (0.57)
c04,UPA 0.60 0.51 -0.73 1.07

(0.24) (0.23) (0.76) (0.57)
ceduc2 -0.46 -0.55 -0.56 -0.45

(0.34) (0.35) (0.35) (0.35)
ceduc3 -0.65 -0.60 -0.60 -0.60

(0.35) (0.34) (0.35) (0.35)
ceduc4 -0.37 -0.40 -0.46 -0.40

(0.22) (0.22) (0.22) (0.22)
ccrime
2 0.00 -0.02 -0.04 -0.01

(0.24) (0.24) (0.25) (0.24)
ccrime
3 0.35 0.37 0.40 0.37

(0.23) (0.23) (0.24) (0.23)
ccrime
4 1.12 1.08 1.06 1.08

(0.15) (0.15) (0.15) (0.15)
casset2 0.70 0.36 0.36 0.23

(0.31) (0.26) (0.27) (0.27)
casset3 -0.21 -0.19 -0.18 -0.20

(0.31) (0.26) (0.28) (0.28)
casset4 0.24 -0.10 0.02 -0.08

(0.20) (0.17) (0.17) (0.17)
cMuslim
2 -0.06 -0.04 -0.07 -0.07

(0.42) (0.41) (0.41) (0.42)
cMuslim
3 1.45 1.39 1.48 1.37

(0.29) (0.29) (0.29) (0.29)
cMuslim
4 0.00 -0.02 0.05 0.00

(0.25) (0.24) (0.24) (0.25)
Log likelihood 829.48 -831.80 -834.40 -829.69

Notes: Estimates of party objective functions in (12) allowing for additional heterogeneity. In the first three columns
the headings indicate which variable is interacted with candidate types. The parameters on the interactions are denoted
c∗2, c

∗
3, c

∗
4, respectively. In the fourth column, we include interactions with fixed effects for constituency “types” following

Bonhomme, Lamadon and Manresa (2022). Types 1-4 are the Educated, Uneducated, Muslim, and Criminal types, respec-
tively. Number of markets: 434. 22



8.1.2 Constituency-level heterogeneity

In Table A.13 we study the robustness of our payoff function estimates to various types of

observable and unobservable heterogeneity. In the first column we consider the possibility

that selection decisions are systematically different across election years (2009 and 2014).

The two elections were different - the 2014 election was a breakthrough year for the BJP

(and NDA more generally) and marked the end of the INC’s near continuous hold on power

since the birth of the Indian state. As such, we allow for the possibility that the payoffs to

different types of candidates might vary across the two years. We let c∗2, c
∗
3, c

∗
4 denote the

interaction between the type dummies and an indicator for election year 2014. The estimates

suggest that parties were less likely to select type 2 and type 4 candidates in 2014 than they

were in the 2009 election. However, there is little change in other estimates relative to

column 3 of Table 7.

Second, India’s constitution allows for reservation of some electoral constituencies for

Scheduled Castes (SC) and Tribes (ST). In these constituencies all candidates must be from

one of the designated minority groups. As the pool of candidates that parties can choose

from might vary in an important way between reserved and unreserved constituencies, we

allow for costs to depend on reservation status. The parameters c∗2, c
∗
3, c

∗
4 now denote the

interaction of the type dummies with an indicator for reserved constituencies. The only

estimate that is significantly different from 0 (at the 5% level) is c∗3 - the additional cost of

selecting the Muslim type in a reserved constituency. This is not surprising as casteism is

largely a Hindu phenomenon. Again, none of our estimates is affected by allowing for this

type of heterogeneity.

In the third column we allow for the possibility that selection decisions may depend on the

rural/urban split in the constituency. The parameters c∗2, c
∗
3, c

∗
4 now denote the interaction of

the type dummies with the share of rural population. Allowing for these differences causes

little change in our estimates.

Finally, it is possible that constituency level unobservable factors - fixed effects - confound

our estimates. As an example, it could be that parties systematically avoid picking criminal

candidates in precisely the constituencies where they are most popular for some unobservable

reason. Including a full set of constituency dummies in the model is not an option, however.

There are 217 electoral constituencies in our data, and we would need to interact these

dummies with K−1 of the K type choices, which would imply 651 additional parameters in

our model with K = 4. The resulting incidental parameters problem makes this infeasible.

As an alternative we consider the approach of Bonhomme, Lamadon and Manresa (2022),

who propose to reduce the dimensionality of the fixed effects by clustering units based on

observable characteristics into groups in a first step. Applied to our context, the idea is
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that constituencies in the same cluster likely have similar unobservables. We use kmeans as

proposed by Bonhomme, Lamadon and Manresa (2022) to cluster constituencies. The ob-

servables we include are the constituency level demographic characteristics in Table 1: Rural

population share, Literate population share, ST and SC reservation status, Population with

paved roads, Working population and Rural working population. The algorithm identifies

four constituency types, and we include dummies for these types (interacted with candidate

types) and re-estimate the model in Table A.13.

Controlling for constituency level unobserved heterogeneity yields virtually identical bw

and bs estimates to our main specification, and causes little change in the cost parameters.

8.2 Additional counterfactual results

In the paper we find that bs < 0, so that parties receive a disutility from candidates with

higher expected vote shares (for given winning probability). This result is qualitatively

robust across the many specifications we consider. In Table A.14 we present the results of

a counterfactual experiment where we set bs = 0 to get a sense of the implications of this

finding for different types.

The most striking result is that criminal candidates are more than twice as likely to be

chosen in this counterfactual scenario than at baseline. At baseline, the parties each choose

criminal candidates 33% of the time, and in the counterfactual scenario the UPA chooses

criminals 69% of the time while the NDA chooses criminals 75% of the time.

Next, we repeat our counterfactual exercise of a criminal ban combined with bs = 0. The

resulting choice probabilities are summarized in the last column of Table A.14, and the third

column shows the counterfactual results from the paper for comparison. As can be seen,

under a ban, parties’ behavior is much less dependent on party organization as reflected by

the value of bs.
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Table A.14: Different types’ probability of being chosen when bs = 0, with and without a
criminal ban

Baseline Setting bs = 0 Baseline ban Ban with bs = 0
All candidates
Type 1 51.4 22.5 76.8 79.7
Type 2 7.4 3.6 11.5 13.5
Type 3 8.2 2.0 11.7 6.8
Type 4 33.1 72.0 0.0 0.0

UPA
Type 1 50.0 25.2 75.4 80.2
Type 2 5.5 3.0 8.7 10.1
Type 3 11.3 3.0 15.9 9.7
Type 4 33.2 68.8 0.0 0.0

NDA
Type 1 52.8 19.9 78.2 79.2
Type 2 9.2 4.1 14.4 17.0
Type 3 5.1 0.9 7.4 3.8
Type 4 32.9 75.1 0.0 0.0
Notes: Types 1-4 are the Educated, Uneducated, Muslim, and Criminal types, re-
spectively. Values shown are the averages across all the constituencies in the data.
The first column reproduces the baseline equilibrium from the paper. The next col-
umn replaces the bs parameter estimate with 0. The third column reproduces the
counterfactual criminal ban from the paper. The last column shows the results when
bs = 0 and criminals are banned.
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Figure A.15: Distribution of changes in types’ choice probabilities after criminal ban
Kernel density plots of the change in choice probabilities for each type as a result of a criminal ban

(counterfactual choice probability minus baseline choice probability). Types 1-3 are the Educated,

Uneducated, and Muslim types, respectively.
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