Chapter 4 Magmas, Igneous Rocks, and Intrusive Activity

Three Types of Rocks

Igneous Sedimentary Metamorphic

Magma and Igneous Rock

- <u>Magma</u> forms from the partial melting of rock in the subsurface.
 - Composed of mainly silicon and oxygen, so when it cools it crystalizes to an <u>igneous rock composed of silicate minerals</u>
 - Magma at the surface is called lava.
- Igneous rock forms as magma commenced minerals crystallize from the magnetic structure from the magnetic structure from the magnetic structure for the magnetic structure structure
 - Composed of silicate minerals

Copyright @ 2008 Pearson Prentice Hall, Inc.

Magma Consists of Three Components

– Liquid portion = the melt

- The liquid is a **silicate melt** (not water based)
- Composed of mostly Si and O.
- Solids, if any, are crystals of silicate minerals
- Volatiles dissolved gases in the melt that volatilize from the magma at low near-surface pressures
 Most common volatiles in magma
 - water vapor (H₂O)
 - carbon dioxide (CO₂)
 - sulfur dioxide (SO₂)

Lava

- Lava is magma that comes to the surface.
- Magma most often comes to the surface at
 - subduction zones
 - spreading margins
 - hot spots.

Copyright © 2005 Pearson Prentice Hall, Inc.

Formation of igneous rock from magma crystallization

The type of Igneous Rock depends on where it crystalizes (solidifies, turns to a solid)

- Volcanic rocks or extrusive igneous rocks- are rocks that formed from magma that crystalizes at the surface
- **Plutonic rocks or intrusive igneous rocks are rocks** that formed from magma that crystalizes at depth

Crystallization occurs as magma cools and forms interlocking crystals.

We refer to these as crystals even though, in general, you cannot see individual crystal faces. When crystals grow in a confined space they grow into one another (interlock), so the crystal faces do not form.

The <u>size</u> of the interlocking crystals gives information on the <u>rate of crystal growth</u>

The slower the magma cools, the slower the crystals form, and thus the larger they can grow.

The <u>size</u> of the interlocking crystals gives information on <u>depth of origin</u>

- <u>Large crystals</u> form in intrusive igneous rocks, because they crystalize at depth and thus cool very slowly
- <u>Small crystals (you can barely see</u> without magnification), form in extrusive igneous rocks because the magma can cool rapidly.
- <u>Glass</u> (no crystals) forms in extrusive igneous rock subjected to extremely fast cooling
 - This occurs when lava is ejected into the air or flows into water
 - Obsidian, pumice, volcanic ash, scoria

Intrusive
large crystals
GraniteExtrusive
small crystals
BasaltThe second se

Seen with a magnifying glass 1 cm

Seen through a polarizing microscope ______1mm

Types of glassy volcanic rocks

Obsidian - volcanic glass formed as lava flows into water and cools quickly Pumice - intertwined glassejected from the volcano Scoria – extremely vesicular volcanic ejecta Volcanic Ash – very small loose pieces of volcanic glass ejected from volcano Tuff – a rock formed from compacted volcanic ash

C. Glassy (pumice) Copyright © 2008 Pearson Prentice Hall, Inc

e geology.com

Volcanic ash

Pyroclastic

- <u>Pyroclastic</u> is any rock fragment ejected from the volcano
- pumice, scoria, ash, cinder, volcanic bombs
- can be fine ash mixed with large angular blocks embedded in the ash

Pyroclastics

Bombs Cinder Pumice Ash

- <u>Volcanic bomb</u> a steamlined pyroclastic fragment ejected a the volcano while still semi-molten
- <u>Cinder</u> ejected lava that forms pea- to walnutsized fragments

Vesicular Texture

- Vesicular texture describes a rock with numerous vesicles
 - <u>vesicles</u> are small holes resulting from the magma hardening around bubbles of escaping gas
 - Vesicles only form in <u>extrusive volcanic</u> rocks because the rapid pressure decrease upon extrusion allows the volatiles to escape
- Vesicles result in an extremely lightweight (low density) rocks that in some cases can float in water.
- Examples of extrusive volcanic rocks with vesicular texture
 - vesicular basalt, pumice, scoria

Igneous rock compositions

- Igneous rocks are composed of silicate minerals
- For describing ingenious rocks we separate the silicate minerals into two groups.
 - Dark or ferromagnesian silicate minerals
 - Have the dominant cations: <u>Fe-Mg rich</u>
 - Examples: olivine, pyroxene, hornblende, biotite mica
 - These are referred to as <u>mafic minerals</u>
 - Light or <u>nonferromagnesian silicate minerals</u>
 - Have the dominant cations: <u>Na-Ca-K rich</u> (compared to Fe-mg)
 - Examples: quartz, muscovite mica, and feldspars
 - These are referred to as <u>felsic minerals</u>
 - (note: light in this case means light in color, not in weight)

Mafic/felsic minerals and rocks

- <u>Mafic mineral</u> is a dark colored silicate mineral where Fe and Mg dominate
 - <u>Mafic rock (or basaltic rock)</u> is composed of predominantly mafic minerals (although there will be some felsic minerals in it)
- Felsic mineral is a light colored silicate mineral where Na, K and Ca dominate
 - <u>Felsic rock (or granitic rock)</u> is composed of predominantly felsic minerals (although there will be some mafic minerals in it.

Igneous Rock types

(classified on whether intrusive or extrusive and on composition)

Composition	Intrusive (Plutonic)	Extrusive (Volcanic)
Granitic (felsic; rhyolitic)	Granite	Rhyolite
Andesitic (intermediate)	Diorite	Andesite
Basaltic (mafic)	Gabbro	Basalt
Ultramafic	Peridotite	

Granite

- Granitic/felsic composition
- Minerals
 - Quartz, feldspar, hornblende (or biotite)
- Predominantly light-colored nonferromagnesian silicate minerals
 - felsic stands for *feldspar and silica rich*
 - High silica (SiO₂) content
- Major constituent of the continental crust

Basalt

Basaltic/mafic composition

- Minerals
 - Predominantly dark
 ferromagnesian silicates minerals
 - The termed mafic is for magnesium and ferrum, for iron
 - Higher density than granitic rocks
- Comprise the ocean floor and many volcanic islands

ht @ 2008 Pearson Prentice Hall Inc

A. Granite is a felsic, coarse-grained igneous rock composed of lightcolored silicates-quartz and potassium feldspar.

B. Basalt is a fine-grained mafic igneous rock containing substantial amounts of dark colored silicates and plagioclase feldspar.

(white)

Pyroxene (black)

Igneous compositions

- Other compositional groups
 - Intermediate (or andesitic) composition
 - Contain 25% or more dark silicate minerals
 - Associated with explosive volcanic activity
 - Ultramafic composition
 - Rare composition that is high in magnesium and iron
 - Composed entirely of ferromagnesian silicates
 - Peridotite of the mantle is ultramafic

Review

Igneous Rocks Classified by

- Texture
 - crystal size
 - glassy
 - vesicular
- Chemical Composition
 - % SiO₂ Na, K
 - % Fe, Mg
- Mineral Composition
 - felsic
 - intermediate
 - mafic
 - ultramafic

Review Igneous Rock types				
Composition	Intrusive (Volcanic)	Extrusive (Plutonic)		
More Si, Na, K rich; lower melting temperature				
Granitic (felsic; rhyolitic)	Granite	Rhyolite		
Andesitic (intermediate)	Diorite	Andesite		
Basaltic (mafic)	Gabbro	Basalt		
More Fe, Mg rich; higher melting temperature				

Review

Review - silicate minerals in igneous rocks

ferromagnesian minerals

- olivine
- pyroxene
- amphibole group
 - (hornblende)
- biotite mica

nonferromagnesian minerals

- quartz
- muscovite mica
- feldspars
 - plagiclase (Na-Ca feldspar)
 - orthoclase (K feldspar)

Bowen's Reaction Series

 Gradual cooling of basaltic magma results in a sequence of mineral crystallization called the Bowen's Reaction Series

Predicts Minerals found together in Igneous Rock

 Minerals that form in the same temperature regime are generally found together in the same igneous rocks

Minerals formed over the same temperature range are found together in the same rock

How does magma form? Why rock melts.

increase temperature

- <u>geothermal gradient</u> temperature increases as go deeper in the earth
- add water to the rock
 lowers melting temperature
- decrease pressure (decompression melting)
 - lowers melting temperature
 - pressure decreases as decrease weight of overlying rock

How does magma form? Why rock melts.

increase temperature

- <u>geothermal gradient</u> temperature increases as go deeper in the earth
- add water to the rock
 - lowers melting temperature

- decrease pressure (decompression melting)
 - lowers melting temperature
 - pressure decreases as decrease weight of overlying rock

Origin of <u>Basaltic</u> Composition Magma

- Partial melting of upper mantle
 - mantle is Mg-Fe rich and Si poor so produces basaltic composition magma
- Found at:
 - <u>oceanic spreading centers</u> (oceanic ridges)
 - Oceanic hot spots

Basaltic mantle ascends but does not solidify as it cools because of decreasing pressure.²

Origin of Intermediate to <u>Granitic</u> Composition Magma

- Melt a mixture of oceanic crust (basaltic) and continental crust (granitic)
 - Forms intermediate (andesitic) composition magma
- Melt continental crust
 - Forms granitic composition magma
- Forms at
 - subduction zones
 - Continental hot spots

Volcanic arc

Importance to Volcanic Processes

Basaltic magma

- silica poor
- low viscosity
- more fluid
- quiet eruptions

Granitic-Intermediate magma

- silica rich
- high viscosity
- less fluid
- violent eruptions

the end

Some portions of this course contain material used under the Fair Use Exemption of US copyright law. Further use may be prohibited by the copyright owner.