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We have designed and modeled new techniques, based on the 3v method, to measure thermal
conductivity of liquidsskld and solidssksd under hydrostatic pressuresPd. The system involves a
solid sample immersed in a liquid pressure medium, both of which have unknown thermal
properties. The temperaturesTd and P dependance ofkl are first determined through the use of a
modified 3v technique. This method uses a conducting wire(Pt, in this work), which is immersed
in the pressure medium, as the heater/sensor. In addition tokl, this allows for the accurate
determination of the specific heat per volume of the liquid and Pt,srCdl and srCdPt, respectively.
The information ofkl and srCdl can then be used to make corrections to measurements ofks, in
which the sample is immersed in the pressure medium, and a metal strip acts as the heater/sensor.
We present theT and P dependence ofkl and srCdl for the widely used pressure medium 3M
Fluorinert FC77 up to 0.8 GPa. The measurement ofks for a thermoelectric clathrate material,
Sr8Ga16Ge30, in FC77 is analyzed in detail, and the refined data achieves an accuracy of 1%. The
setup can be modified to measurek andrC up to 3.5 GPa. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1805771]

I. INTRODUCTION

Measuring thermal transport properties of solid samples
under hydrostatic pressure presents a technical challenge due
to the large heat loss associated with the pressure medium.
The heat flux though the pressure medium, e.g., 3M Flouri-
nert FC77, at the room temperature is comparable to that
through a Pyrex glass sample of 131310 mm3 in the
steady-state method. The complicated geometry, the possibil-
ity of convection, and the deformation associated with pres-
sure make the related corrections difficult if not impossible.
The transient method has been proposed to overcome the
problems.1 In this measurement, a heater and a sensor are
positioned either between two identical solid samples(so-
called pseudoinfinite specimen) or on the surface of the
sample immersed in liquid medium. The temperature relax-
ation, after a heating pulse, is measured by the sensor. The
relaxation profile, which can be described as a 2D thermal
diffusion through either a homogeneous medium or two half-
space media, can be mathematically fit with the thermal con-
ductivity k and the volume thermal capacitancerC as free
parameters, wherer and C are the density and the mass
thermal capacitance, respectively. The heat loss is reduced,
and an accurate correction is possible due to the simple ge-
ometry of the system. The same transient method has been

used to measure thekl of liquid.2 Fast and accurate tempera-
ture sampling, however, becomes the key in such relaxation
profile measurements. The integral time constant(i.e., the
high frequency cutoff) and the associated sensitivity of the
voltmeter in turn set the limits for the spacial resolution and
the pulse power, respectively. Although reasonable accuracy
was reached, improvement is highly desired. The 3v
method3,4 offers a more convenient way to realize the ther-
mal transport inside a pressure medium. A similar arrange-
ment of heater-on-surface is typically used in this method.
The sample is heated by sending an ac current of angular
frequencyv through a metal strip. The temperature is de-
duced from the third harmonic voltage across this heater. The
conflict that exists in the transient method between a fast
response and a high sensitivity is largely overcome by the ac
lock-in technique. Extremely small sample size as well as
space-resolvable measurement in the multilayer configura-
tion are possible. The faster time window adopted also
largely suppresses the interference from convection, whose
effect decreases with frequency.

The correction for the heat lost to the liquid is still
needed, however, without adopting the inconvenient pseudo-
infinite geometry. Previously, the “boundary mismatch”
model has been proposed to take this correction into
account.5 The total thermal flux is regarded as the summation
of the flows into the semi-infinite space of the sample and
that of the liquid, with a ratio which requires the average
temperatures at two surfaces of the heater to be equal.
Essentially, the model ignores the thermal flux across
sample-medium boundary, which is reasonable if the two
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have similar values ofk /rC. A further simplification, as will
be discussed below, was adopted, and a simple equation,
ks+l =kl +ks, follows. Here,ks+l, kl, and ks are the conduc-
tivities of the apparent sample-medium combination, the liq-
uid medium, and the solid sample, respectively. However,
the justification for this simple correlation is only approxi-
mate, and our improved experimental resolution enables us
to introduce a higher order correction, which eliminates the
modeling uncertainty to around 1%.

To improve upon the procedure of measuringks under
pressure, a modified version of the 3v method has been de-
veloped to accurately determine the thermal properties of the
dielectric liquid under pressure. Once the thermal properties
of the pressure medium have been calibrated under pressure,
these values are incorporated into a standard 3v measure-
ment, which utilizes acorrected boundary mismatch ap-
proximation. In addition, theks at the ambient pressure was
independently measured and the boundary mismatch model
was experimentally verified. Our results suggest thatks un-
der pressure can be deduced with a possible deviation less
than a few percent.

II. EXPERIMENTAL SETUP AND INSTRUMENTATION

The hydrostatic pressure is generated inside a Teflon
cell, housed in a Be–Cu high pressure clamp.6 The electrical
leads are Pt wires attached to the heater/thermometer by sil-
ver epoxy (EPO-TEC H20E). These leads are soldered to
wires with enamel insulation that are fed through a #72 hole
and sealed by epoxy. The 3M Fluorinert FC77 is used as the
pressure medium in order to achieve highlyhydrostaticpres-
sure. The pressure was calculated by the force over area at
room temperature. Our previous experiments used supercon-
ducting Pb as a magnometer to measure pressure near liquid
helium temperature and demonstrated that the pressure ob-
tained using this method is within 10% throughout the tem-
perature range of 4 K to 300 K.7 This setup can be modi-
fied to obtain hydrostatic pressure up to 3.5 GPa.8

The 3v setup has been documented in detail by Cahill.4

In brief, a narrow, thin metal strip is deposited on the surface
of the sample. This strip is used as both heater and tempera-
ture sensor. An ac signal of angular frequencyv flows
through the strip and generates heat at the angular frequency
2v. This heat further induces a temperature fluctuation,
which is limited by the thermal diffusion of the sample. This
temperature fluctuation can be measured through the heater’s
resistancesRd, if its temperaturesTd dependence is known. In
the most simple case of a linearR–T correlation, the third
harmonic component of the voltage across the heater will
represent the temperature fluctuation. Measuring the fre-
quencysfd dependence of this 3v voltage, therefore, allows
both k andrC to be determined since the thermal diffusion
of solids, i.e., the “cooling power” of the sample, varies with
k, rC, andv in a well defined way.

We use two different 3v setups for measuringks andkl.
The measurement ofks is similar of that of Cahill’s, except
that in our case the sample is immersed in the pressure me-
dium FC77. To measurekl, a Pt wire of radiusa=5.0 mm
and lengthl <7 mm is immersed in the pressure medium.

This wire now acts as the heater/thermometer. The heat
transport equation can be solved exactly in a 2D cylindrical
geometry. The 3v signal is then fit to this solution to deduce
kl, srCdl and srCdPt. The measurements have been carried
out for FC77 at several pressures.

The measurement of the 3v signal is achieved using a
Stanford Research SR830 digital lockin amplifier, which can
measure multiple harmonics of the reference signal. It should
be pointed out that the 3v signal is typically 104 times
weaker than the fundamental 1v signal, therefore an analog
balance circuit is necessary. A constant amplitude ac current
source is also desired. A programmable balance bridge with
very low 3v distortion is preferred since the balance varies
significantly with the sample temperature. A homemade cir-
cuit box was built and is shown in Fig. 1.V1f is the ac
voltage output of the SR830 at the frequencyv=2pf. The
unit U1 is an instrumentation amplifier that converts the ac
voltage source to an ac current source. The ac current with
constant amplitude is fed to the serially connectedR3f (the
heater/sensor that generates 3v signal) and Rpot (a 100V
adjustable potentiometer). The voltage acrossR3f is supplied
to a unity-gain differential amplifier U2. The signal is then
fed into one of the differential inputs of the SR830(A). The
voltage output fromRpot, which should be proportional to the
1v component acrossR3f, is supplied to the unit U3, a 12-bit
multiplying DAC that is controlled by an IBM PC parallel
port. This unit, together with the buffer unit U4, enables the
automation of the balancing of the 1v signal with varying
temperature. The signal is then fed into another differential
inputs of SR830(B). Using this setup, the 1v signal from A
can be measured to calibrate the curveRsTd, together with
the average sample temperature; the 1v signal from the dif-
ferential signal, A–B, can be minimized. The 3v component
from the signal A–B is finally measured. This process is
entirely computer controlled, and there is no need for physi-
cal rewiring.

III. CONFIGURATIONS AND MODELING

We designed two different configurations for 3v thermal
conductivity measurements. To measureks for a solid
sample, a finite-width strip heater/sensor, which is at the in-
terface between the solid sample and liquid medium is used.
In order to calibratekl under high pressure, a different con-
figuration with a metal wire heater/sensor surrounded by the
liquid pressure medium is adopted. In Sec. III A 1 we briefly
discuss the most general 3v configuration, which is a finite-
width strip on a semi-infinite medium. Then, we generalize
to the case in which the strip is on the interface between two
semi-infinite media in Sec. III A 2. In Sec. III B we give the
solution for the new 3v configuration in which the heater/
sensor is a wire immersed in the pressure medium.

All the ac values have a time-dependent factor ofeimvt

with m=1, 2, and 3 for excitation voltagesVd, excitation
power sPd or temperature risesdTd, and the 3v voltage
sV3vd, respectively. For convenience, this factor will be ig-
nored in what follows. Each value is typically complex, with
the real part being the in-phase component and the imaginary
part being out-phase component. The dc component will be
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ignored since it does not contribute to the finalV3v, and
therefore, the thermal conductivity determination.

A. The 3v method with a finite-width strip heater

1. A finite-width strip heater on the surface
of a semi-infinite medium

Consider an infinitely thin and infinitely long heater on
the surface of a semi-infinite medium of thermal conductiv-
ity k. The ac power per unit length used to heat this line is
PL. The steady-state solution to the heat equation of the
system is a thermal wave of the form9

dTsrd =
PL

pk
K0sqrd, s1d

whereK0 is the zeroth order modified Bessel function, and

q=Îs2vrC/kdi.

In practice, the heater will have a finite width, 2b, so the
appropriate superposition of solutions, of the form of Eq.(1),
is needed. The steady-state solution for the average tempera-
ture on the heator/sensor then becomes4

dT =
PL

pk
E

0

` sin2skbd
skbd2sk2 + q2d1/2dk=

PL

pk
Fsqbd, s2d

where

Fscd =E
0

` sin2 f

f2sf2 + c2d1/2df. s3d

Whenb→`, the problem becomes 1D and the solution
is sPA/Î2vrCkde−isp/4d, wherePA=PL /2b is the power per
unit area.

In most cases, there will be an interfacial thermal resis-
tanceR between the strip and the sample. In the case of a

FIG. 1. The circuit diagram for a homemade electronic box for a 3v measurement. The units U1–U4 are AMP01, AMP03, AD7541A, and OP27 from analog
devices, respectively.Rg=10 kV, Rs=500–2000V, R1=100V, R2=200V, Rpot=100V, R3=33 V, C1=C2=10 pF, andC3=33 pF. The outputs A and B are
connected to the A and B connectors of an SR830 lockin. Note that the unit U1 has a high frequency cutoff of 2 kHz in practice and should be replaced by
an amplifier with a wider bandwidth if higher frequency is desired.
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thin insulating layer with an electrically conducting sample,
the effect of the layer can also be approximated by an effec-
tive R. Equation(2) then becomes

dT =
PL

pk
Fsqbd +

PLR
2b

. s4d

2. A finite-width strip heater on the boundary of two
semi-infinite media

Now let us consider the case that the strip heater is on
the boundary of two semi-infinite medias and l. We denote
the corresponding physical properties of these two media by
subscript withs and l, respectively, if no further notes are
given.

In the 1D case, the solution can be simply obtained by
defining the power dissipated to mediums and mediuml to
be Pssd and Psld, respectively, so thatP=Pssd+Psld. The ratio
of Pssd andPsld can be determined by equalizing the average
boundary temperatures:dTssd=dTsld. The final solution is5

dT =
PA

Î2vrsCsks + Î2vrlClkl

e−isp/4d. s5d

For the general 2D case, a boundary mismatch model
has been previously proposed.5 This approximation models
the problem as two separate semi-infinite media without heat
flow across the boundary. Only the average temperatures on
the strip are made equal, while the temperature mismatch at
the boundary is tolerated. It has been further assumed that
ks+l =ks+kl.

5 ks+l is the apparent thermal conductivity of the
two media combination, which is treated by fitting the data
as if there is only one semi-infinite medium. In this article,
ks+l is defined as the apparent thermal conductivity by fitting
the real part of Eq.(2) or 4 with parametersks+l, qs+l, andR
in the case of Eq.(4).

However, an improved solution can be deduced even
under the boundary mismatch approximation. The same en-
ergy conservationP=Pssd+Psld combined with Eq.(2) actu-
ally leads to

1

dTs+l
=

pks

PLFsqsbd
+

pkl

PLFsqlbd
. s6d

This equation can be further converted to

pks+l

PLFsqs+lbd
=

pks

PLFsqsbd
+

pkl

PLFsqlbd
, s7d

or,

1

dTs+l
=

1

dTs
+

1

dTl
. s8d

Note the difference between the notations with super-
script or subscript forP or dT, e.g.,dTssd and dTs. For the
superscript case, the values are for the same measurement in
the two media configuration, thusdTssd=dTsld=dTs+l; while
for the subscript case, the valuesdTs+l, dTs anddTl are from
three different measurements with two media, single medium
s and homogeneous mediuml respectively, with powerPL.
In the case that the same heator/sensor is used, Eq.(8) can be
further expressed in terms of the 3v voltage:

1

Vs+l
=

1

Vs
+

1

Vl
. s9d

Without loss of generality, we can assumeksùkl. It is
natural to approximate Eq.(7) to

ks+l = ks + akl , s10d

with the assumption Fsqs+lbd<Fsqsbd, and a
=Fsqs+lbd /Fsqlbd under the boundary mismatch approxima-
tion. In fact, Eq.(10) is a handy generic formula sincea can
be artificially adjusted to correct the boundary mismatch ap-
proximation, the approximation thatFsqs+lbd<Fsqsbd, and
the small variation ina with f.

A matrix formalism provides an exact solution for the
case of a strip-heater between two media, even with a non-
zero interfacial thermal resistance,R, between the strip and
the solid sample.10 The solution is

dT =
PL

p
E
0

`

sin2skbd
kb

1 + gsR
gl + gs + glgsR

dk, s11d

where gi =ki
Îk2+qi

2. Compared to this exact solution, Eq.
(10) is a simple and intuitive way to estimate both the value
and the error ofk.

B. 3v wire method to measure kl

1. Solution of the 2D diffusion equation

Consider a Pt wire of lengthl and diametera which is
immersed in an electrically insulating liquid. An ac heating
voltage ofV is supplied. In the case ofl @a, the system can
be treated as 2D. We assume that the heat transferred by
liquid flow is negligible and that the heating is uniform over
the Pt wire, such that the power per unit volumesPVd is
s1/pa2ldsV2/Rd, where R is the resistance of the Pt wire.
Due to symmetry, in the cylindrical 2D subspacesr ,ud, the
steady-state temperature isTsrd. If we use index 1 to denote
r øa and 2 forr .a, we have

d2T1

dr2 +
1

r

dT1

dr
− q1

2T1 = −
PV

k1
, s12d

d2T2

dr2 +
1

r

dT2

dr
− q2

2T2 = 0, s13d

whereq1=Îs2vr1C1/k1di andq2=Îs2vr2C2/k2di.
The exact solution exists analytically:

T1 = hI0sq1rd +
PV

k1q1
2 , s14d

T2 = jK0sq2rd, s15d

whereI0 andK0 are the zeroth order modified Bessel func-
tions.

The parametersh andj can be determined by requiring
that the temperature and the heat flux are continuous at the
boundaryr =a:

hI0sq1ad +
PV

k1q1
2 = jK0sq2ad, s16d
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− hk1q1I1sq1ad = jk2q2K1sq2ad, s17d

whereI1 andK1 are the first order modified Bessel functions.

2. A simplification of the exact solution
Recall that we assume that the heating power is distrib-

uted uniformly throughout the Pt wire, and the temperature
variation across the Pt wire is negligible. This assumption is
natural sincek1 of the Pt wire is rather high andr is small,
thus uq1au!1 andI0sq1rd is almost constant whenr øa. To
demonstrate this, we plot the real part and imaginary part of
T1srd / uT1s0du at the frequencies 20 Hz and 2000 Hz for 0
ø r øa, wherea=5.0 mm (Fig. 2). The result shows the de-
viation is less than 0.2% even for our highest frequency.
Therefore, the assumption is verified. Furthermore, we can
treatT1sad or T2sad as the average temperature of the Pt wire.

Sinceuq1au!1 is well satisfied, we can approximate the
boundary conditions in Eqs.(16) and (17) to

h +
PV

k1q1
2 = jK0sq2ad, s18d

− 1
2hk1q1

2a = jk2q2K1sq2ad. s19d

This gives the same result derived by Birge11

T2sad =
PVa2

2k2q2a
K1sq2ad
K0sq2ad

− k1sq1ad2

s20d

or, in a format that is easy to fit vs frequency,

T2sad =
PVa2

2k2Î f

f2
s1 + id

K1SÎ f

f2
s1 + idD

K0SÎ f

f2
s1 + idD + i4pa2r1C1f

,

s21d

where f2=s1/2pa2dsk2/r2C2d.
Compared to the exact solution[Eq. (14)] with four un-

known parameters, the approximate solution[Eq. (20)] has

only three unknown parameters. As we will discuss with the
data[Eq. (20)] is not only more suitable for data fitting, but
also more physically intuitive.

IV. DATA AND NUMERICAL FITTING

A. Thermal conductivity of the liquid FC77

In order to adapt the 3v method to a wire in a small
pressure cell containing a pressure medium, we chose Pt wire
with a radius of 5.0mm and,7 mm long. The wire, which
is connected to electrical leads by silver epoxy, is manage-
able but still has a reasonable 10V 4-wire resistance at room
temperature. As estimated from Sec. III B 2, the temperature
along the radius of the Pt wire can be treated as constant
(Fig. 2), but the heat capacity of the Pt wire can no longer be
ignored.

The 3v voltage vs frequency for the Pt wire immersed in
FC77 at room temperature is plotted in Fig. 3. The symbols
are experimental data and the curves are the fittings using
Eq. (21). We can see that the model fits the data well without
inclusion of the interfacial thermal resistance between the
wire and the liquid. The k2 obtained for FC77 is
0.063 W m−1 K−1, in good agreement with the data from the
manufacturer. The value ofr2C2 obtained for FC77 is
2.1 J/cm3, andr1C1 for Pt is 2.9 J/cm3, both in good agree-
ment with known values of the respective materials.

It is obvious that the first term in the denominator of Eq.
(20) is determined by the properties of the material surround-
ing the Pt wire, and the second term is contributed by Pt
wire. In fact, this first term is the solution given by Carslaw
and Jaeger,12 provided that the heat flux at the boundary
equalsPVa/2, i.e., when the heat capacitance of the Pt wire
is ignored. A close look at the second term in the denomina-
tor of Eq.(21) shows that it is only a function ofr1C1, while
the value ofk1 is insignificant. In fact, the approximation
adopted in Sec. III B 2 is essentially the assumption thatk1

@2pa2fr1C1. Equation(21) also shows that when one wants
to obtain more accurate information on the valuek2, the
frequency range should cover frequencies low enough com-
pared tof2, in our case 30–120 Hz. Frequencies higher than
f2 are required to determine reliable information onk2/r2C2

when the magnitude of the interface thermal resistance is

FIG. 2. Normalized temperature variation along the radius of the Pt
wire at frequenciesf =20 Hz and 2000 Hz. The solid lines are the real parts
and the dashed lines are the imaginary parts. The values used here
are k1=71.6 W m−1 K−1, r1=21.43103 kg/m3, C1=130 J/kg K, k2

=0.063 W m−1 K−1, r2=1.13103, C2=1.783103 J/kg K.

FIG. 3. Real and imaginary parts of the 3v voltage vs the logarithm of
frequency. The solid circles represent the real part of the 3v voltage, the
solid triangles represent the negative imaginary part of the 3v voltage. The
solid and dashed lines are the fit using Eq.(21).
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large and unknown. The frequencyf*, at which the real and
imaginary parts ofT2sad are equal, is rather difficult to de-
termine. However, simulations indicate that it will not differ
greatly fromf2. This method can, in principle, be adopted to
measure heat capacity of nanowires, although, one must be
aware thatf * , f2~a−2 and could be a challenge for very
small a.

Figure 4 shows thekl vs T for FC77 at various pressures.
We can see thatkl increases with pressure from
77 K to 300 K. The large data scattering at low temperature
region is due to the drifting of the temperature during the
measurement. Greater control of the temperature will im-
prove the data fluctuation to within 1%, as demonstrated for
data near room temperature, where the temperature drifting
is slower. For room temperature values,kl increases from
0.06 W m−1 K−1 to 0.18 W m−1 K−1 when pressure is in-
creased from 0.0 GPa to 0.8 GPa. The sign of]ksT,Pd /]T
is negative forP=0.0 GPa, which is consistent with the
manufacturer’s data. However, the overall]ksT,Pd /]T be-
comes positive forP=0.4 and 0.8 GPa. The change of sign
for ]ksT,Pd /]T near room temperature forP=0.8 GPa is
coincident with the glass transition of FC77 under high
pressure.13 Similar data were discussed in detail by Birge.11

In fact, the glass transition effect is more prominent in the
rC data. Figure 5 shows thesrCdl vs T at various pressures.
The only notable change under pressure are the peaks around

240 K at P=0.4 GPa and around room temperature atP
=0.8 GPa. Evidence that the anomalies are due to the glass
transition of the FC77 can be seen in the inset of Fig. 5.
Here, srCdPt, which was obtained together withsrCdl, is
plotted versus temperature at the previously mentioned pres-
sures. No anomalies are detected around the corresponding
temperature regions, thus demonstrating that the peaks in the
srCdlsTd curves are not experimental artifacts.

This wire-heater method can also be applied to measure
the thermal conductivity of solids if the heater can be em-
bedded in the sample with good thermal contact. It can also
be generalized for an electrically conducting liquid if the
insulation issue can be handled, and if the extra thermal re-
sistance due to insulating layer is considered/modeled. The
wire-heater method can also be used to measurerC of
nanowires if high enough frequencies can be achieved.

B. Thermal conductivity of solid samples

A clathrate sSr8Ga16Ge30d sample was measured both
with and without FC77 medium at ambient pressure. The
heater/thermometer is,90 mm wide and insulated from the
sample by a SiO2 layer that is,1 mm thick. As an example,
the 3v voltagesVs+l, Vs andVl =1/ss1/Vsd−s1/Vs+ldd at the
ambient pressure are shown in Fig. 6. For simplicity, only the
real parts of the 3v voltages are plotted. Over the entire
frequency range, the experimental resolution is much better
than the differences1/Vssvdd−s1/Vs+lsvdd, which enables us
to quantitatively evaluate the deviation for both the boundary
mismatch model[Eqs. (6)–(9)] and the approximationks+l

=kl +ks. Fitting the valuesVs, Vs+l, andVl by Eq. (4) gives
values of ks=1.25 W m−1 K−1, ks+l =1.35 W m−1 K−1 and
kl =0.090 W m−1 K−1. Thus,kl obtained using boundary mis-
match approximation is 43% larger than the actual value,
which was acquired from the wire-heater method. Empiri-
cally, we obtaina=1.6 for the newcorrectedboundary mis-
match approximation[Eq. (10)]. In other words, the approxi-
mation used by Moon itet al.5 gives a value that is 60%
larger than the actualkl.

Since we have the exact solution for the 2-medium prob-
lem [Eq. (11)], we can indeed fitVs+l using the valuekl

=0.063 W m−1 K−1 and the valueR=5.0310−7 m2 K/W
which was obtained by fittingVs with Eq. (4). This fitting

FIG. 4. kl vs T at differentP for the pressure medium FC77.(Circles: P
=0.0 GPa, squares:P=0.4 GPa, triangles:P=0.8 GPa.)

FIG. 5. rC vs T at differentP for the pressure medium FC77. Inset:rC vs
T at differentP for the Pt wire extracted from the same data set.(Squares:
P=0.4 GPa, triangles:P=0.8 GPa.)

FIG. 6. A demonstration of using boundary mismatch approximation to
solvekl using a relative method.Vl was obtained fromVs+l andVs. The solid
line is the fit using Eq. (4) and gives a value of kl

=0.090±0.003 W m−1 K−1.
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gives ks=1.25 W m−1 K−1, in perfect agreement with the
measured result without the liquid medium. Simulations
show thata in Eq. (10) is a slowing varying coefficient vs
the above parameters and is in good agreement with the ex-
perimentally determined value 1.6.14 Further, the simulations
demonstrate that the sensitivity ofa on the above parameters
decreases as the value ofb decreases, withR being the ex-
ception. The effect of interfacial thermal resistance scales as
R /b. For the parameters above, the optimal value ofb is
approximatelyb=10 mm. In this case,a varies slowly from
1 to 1.1 whenkl /ks decreases from 1 to 0.05. The heater
half-width b used by Moonet al. is 30 mm5 and the devia-
tion of a from 1 is acceptable.
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