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The pressure effects on superconducting transition temperature Tc and thermopwer S were
studied up to 16 GPa for HgBa2Cam−1CumO2m+2+δ with m = 1–3 over a broad doping
range. Direct measurement for a HgBa2Ca2Cu3O8+δ sample with Tc = 115 K shows that
the charge transfer is negative and unusually small, i.e. ∼ −0.0004 holes/(CuO2·GPa).
The Tc (P ) over a broad doping levels, on the other hand, suggests that factors not being
considered in the charge transfer model may play important roles. Site-selective cation-
substitution shows that the local environment of Hg may be one of the factors.

1 Introduction

The charge-transfer induced by pressure P 1 and the van Hove singularity2

have been used to interpret the large Tc-enhancement under pressure in
HgBa2Cam−1CumO2m+2+δ, but contradictions exist3. To clarify the situation, Tc(P )
was measured up to 16 GPa over a broad n-range, and dn/dP was deduced from the
measured dS/dP , where n is the carrier density and S is the thermopower. Our data
demonstrate not only that the dn/dP of HgBa2Cam−1CumO2m+2+δ is too small to
contribute significantly to the Tc-enhancement, but also that other factors not being
considered before may play important roles. We observed that the Tc-enhancement
is very sensitive to substitutions at the Hg-site, suggesting the local environment of
Hg is one of the factors.

2 Experiments

All samples were single phase polycrystalline with a sharp superconducting transi-
tion. Instruments for providing quasi-hydrostatic pressure (QHP) up to 18 GPa and
hydrostatic pressure up to 1.6 GPa were reported before.3,4 The thermopower was
measured using a homemade apparatus5 designed to reduce the pressure-medium ef-
fects. The pressure effects of the p-Chromel/Cu thermocouples, which were used to
measure the temperature gradient across the sample, was calibrated.
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3 Data and Discussion

The traditional charge transfer models1 obtain dTc/dP = dTmaxc /dP -2α(n −
nop)·(dn/dP ) from the proposed Tc = Tmaxc [1-α(n − nop)2], and assume that both
dTmaxc /dP and dn/dP are independent of P and n, where α and nop are uni-
versal constants. Therefore, dn/dP = −(∂2Tc/∂P∂n)/(2α) can be deduced from
the n-dependence of dTc/dP . dn/dP of HgBa2Cam−1CumO2m+2+δ so obtained has
been given previously as ∼ 0 ± 0.0001,6 +0.0008,4 and −0.0013 holes/(CuO2·GPa)7

for m = 1, 2 and 3 respectively (Inset of Fig. 1). These values are rather small,
e.g., about one tenth of the dn/dP ∼ 0.011 holes/(CuO2·GPa) in YBa2Cu3O7−δ.8

However, these small dn/dP still contributes a significantly m-dependent term of
−αTmaxc (P ·dn/dP )2, ∼ 0, −7 and −15 K at 30 GPa for m = 1, 2 and 3 respectively,
following the model in Ref. 1. Such predicted m-dependence seems to be too large
based on the observed ∆Tc = Tc(P )−Tc(0), which is m-independent within 3 K (Fig.
1). Therefore, a direct measurement of dn/dP is desired.

Figure 1: Universal ∆Tc vs pressure for op-
timal doped HgBa2Cam−1CumO2m+2+δ. In-
set: dTc/dP vs hole concentration for
HgBa2Cam−1CumO2m+2+δ.

Figure 2: Thermopower raw data near
room temperature under pressure for
HgBa2Ca2Cu3O8+δ (Tc = 115 K).

We deduced dn/dP by measuring the thermopower S under pressure. It has been
suggested that n vs S at 290 K obeys a universal trend in cuprates.10 The proposed
correlation has been tested in HgBa2Cam−1CumO2m+2+δ with m = 1–3 at the ambient
pressure.5 dn/dP can be deduced, therefore, from dS(290 K)/dP if the proposed
universal S vs n trend is hold under pressure. It should be note that a change of
n usually causes a significant change of S in most metal and semiconductors where
the proposed S vs n universality is not valid. An underdoped HgBa2Ca2Cu3O8+δ

with Tc ∼ 115 K was measured under hydrostatic pressure up to 1.6 GPa. Two
Cu/p-Chromel thermocouples were used to measure the temperature difference ∆T
with the Cu-wires also serving as the voltage leads. The thermopower raw data
Sraw(P ) calculated assuming Sp−Chromel(P ) = Sp−Chromel(0) and SCu(P ) = SCu(0),
will be related to the actual S(P ) as [Sraw(P ) − SCu(0)]/[Sp−Chromel(0) − SCu(0)] =
[S(P ) − SCu(P )]/[Sp−Chromel(P ) − SCu(P )], where S(P ), Sp−Chromel(P ) and SCu(P )
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are the thermopowers of the sample, p-Chromel and Cu under pressure respectively.
The observed Sraw shifted parallel with the pressure (Fig. 2). The random data-
scattering was better than 10 nV/K or 0.00002 holes/CuO2, and SCu(P ) ≈ SCu(0)
is a good approximation. However, a large systematic uncertainty may be caused by
Sp−Chromel(P )−SCu(P ). By carefully calibrating Sp−Chromel(P )−SCu(P ) against two
Pt-thermometers, we reduce the total uncertainty to < 0.3 µV/(K·GPa) or 0.0007
holes/GPa.

The deduced dn/dP of the HgBa2Ca2Cu3O8+δ samples is −0.0004 ± 0.0007
holes/(CuO2·GPa) using the universal S(290) vs n trend. Although this value is
not directly in contrast to that of ∼ −0.0013 holes/(CuO2·GPa) obtained from the
charge transfer model, the smaller value of −0.0004 seems to be more reasonable
based on the observed universal ∆Tc(P ). This may suggest that the actual charge
transfer is not even equal to −(∂2Tc/∂P∂n)/(2α) if further investigations confirm our
results.

dn/dP of HgBa2Ca2Cu3O8+δ has been calculated theoretically. Novikov2 gave a
rather large value of 0.027 holes/(CuO2·GPa) over 0–9.4 GPa and Singh11 reported
a dn/dP = 0.0022 holes/(CuO2·GPa). Both results are in disagreement with our
data and further investigations are needed. Such negligible dS/dP can neither be
accommodated with the proposed van Hove singularity.2 S should change drastically
when the Fermi surface approaches a singularity, which is in direct contrast with our
data.

Figure 3: Isobaric plot of Tc vs carrier concen-
tration for HgBa2CuO4+δ. Inset: dTc/dP for
HgBa2CuO4+δ with different δ.

Figure 4: Tc vs QHP for HgBa2Ca2Cu3O8+δ

(©), (Hg0.8Pb)Ba2Ca2Cu3O8+δ (4) and
Hg(Ba0.75Sr0.25)2Ca2Cu3O8+δ (2).

To further verify the charge transfer models, Tc of HgBa2CuO4+δ was measured
up to 16 GPa over a broad n range (Fig. 3). The isobaric Tc vs δ plot will only parallel
shift with P , i.e. only Tmaxc changes, under the charge transfer model1 and accepting
dn/dP ∼ 0 as we have demonstrated. Although our data (Fig. 3) can be reasonably
fitted with Tc = Tmaxc · [1 − β(δ − δop)2], all three parameters Tmaxc , δop and β vary
with P . The value of β, for example, increases nearly 50% with P up to 16 GPa. The
obtained d(δop)/dP ∼ −0.002 oxygen/(CuO2·GPa), which ∝ d(nop − n)/dP , is also
too large to be accommodated with the observed dn/dP , suggesting a large negative
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dnop/dP as proposed by us before.3 These observations suggest that many factors not
being considered in the charge transfer models play important roles in the pressure
effects in HgBa2Cam−1CumO2m+2+δ.

To explore these factors, substitutions were carried out at the Ba and Hg sites
for HgBa2Ca2Cu3O8+δ. The optimal Tc at ambient pressure changed with these sub-
stitutions only moderately, i.e. ∼ −2 K with 20% substitution of Hg by Pb and
∼ −8 K with 25% substitution of Ba by Sr. However, the pressure effects of these
substitutions were very different. The maximum Tc-enhancement under pressure in
the Pb-substituted samples is only half of that of pure HgBa2Ca2Cu3O8+δ (Fig. 4).
On the other hand, the enhancement remains almost unchanged, or even increases
slightly with the Sr-substitution. Therefore, we relate the unusual pressure effects to
the local environment of Hg, especially the linear coordination of O-Hg-O.

4 Conclusion

In conclusion, both Tc and S were measured for HgBa2Cam−1CumO2m+2+δ at various
doping levels. The results show that the charge transfer induced by pressure is very
small and has negligible contribution to the Tc-enhancement under pressure. However,
many factors not being considered in the charge-transfer models may play important
roles. One of the factors may be the local environment of Hg.
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