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used to extract motion-related information from video 
recordings of neonatal seizures. This experimental outcome 
provided the motivation for the study outlined in this paper, 
which focused on the development of a working feature 
tracker based on an affine motion model. 

Abstract—This paper presents a new feature tracking 
method for video. This method estimates the 
displacement of a feature between two successive frames 
by minimizing an error function defined in terms of the 
feature intensities at these frames. Feature tracking 
relies on an affine motion model, which can be used to 
track features that may be translated and deformed 
from one frame to the next. The proposed method is used 
to extract temporal motor activity signals from video 
recordings of neonatal seizures. 

II. EXTRACTION OF TEMPORAL MOTOR ACTIVITY 
SIGNALS FROM VIDEO 

 Figure 1 illustrates the mechanism that can be used for 
generating temporal signals tracking the movements of 
different parts of the infant’s body during focal clonic and 
myoclonic seizures [4]. Figure 1 depicts a single frame 
containing the sketch of an infant’s body with four selected 
anatomical sites. In this particular configuration, XLL and 
YLL represent the projections of the site located at the left 
leg to the horizontal and vertical axes, respectively. The 
projections of the sites located at the right leg, left hand, and 
right hand are denoted by XRL and YRL, XLH and YLH, and 
XRH and YRH, respectively. As the infant moves its 
extremities, the locations of the sites in the frame will 
change, as will the projections of the sites to the horizontal 
and vertical axes. Recording the values of the projections 
from frame to frame of the videotaped seizure will generate 
four pairs of temporal signals, namely the signals XLL(t) and 
YLL(t) for the left leg, the signals XRL(t) and YRL(t) for the 
right leg, the signals XLH(t) and YLH(t) for the left hand, and 
the signals XRH(t) and YRH(t) for the right hand. For a given 
set of anatomical sites, each seizure will produce signature 
signals depending on its type and location. 

Keywords—Affine model, feature tracking, motor activity 
signal, deformable motion model, translation 

 

I. INTRODUCTION 

 Seizure occurrence represents the most frequent clinical 
sign of central nervous system disorders in the newborn [2], 
[6]. Video recording is typically used with synchronized 
EEG and other polygraphic measures to analyze the 
characteristics of a seizure after its recording [1], [6]-[8]. 
Computerized processing and analysis of video recordings 
of neonatal seizures can extract quantitative information that 
is relevant only to the seizure. This information can be used 
to: 1) refine the characterization of repetitive motor 
behaviors, and 2) facilitate the differentiation of certain 
clinical seizures from other abnormal paroxysmal behaviors 
not due to seizures. 

 Neonatal seizures can be quantified in terms of 
temporal motion strength and motor activity signals [3], [4]. 
Motor activity signals were extracted in a recent study by 
tracking certain features located at moving body parts 
affected by the seizure. Feature tracking relied on the KLT 
algorithm [5], [10]. Although the KLT algorithm was 
generally successful, in some cases the algorithm lost 
features that were located at moving body parts tracked 
throughout the frame sequence. The improvement of the 
feature tracking method employed by the KLT algorithm 
focused on various aspects of feature tracking, including the 
use of a motion model involving an affine transformation in 
addition to translation [9], [11]. Despite the computational 
overhead due to the use of an affine motion model, the 
tracker proposed in [9] did not perform well when  
       

III. DEFORMABLE MOTION MODELS 

 Consider a frame sequence { ( , )}I tu , where 

, aT[ ]u x y=

( , )

T denotes the transpose of a vector a, x and y 
are the coordinates of a pixel in the frame, and 
I tu represents the intensity of the pixel from frame t 
located at ( , )x y . Let ( , )I t τ+v  be the intensity of a small 
region (i.e., a feature) at frame t τ+ , where ( )f=v u  
represents the new coordinates of the pixels within this 
region at frame t τ+ . The function  determines the 
model of motion employed for feature tracking. If feature 
tracking is based on a pure translation model, the location of 
the feature at frame 

(.)f

t τ+  is given by 
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                                        ,         (1) =  + uv u d

where  =   x yd d  
T

ud  is the displacement vector. 
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       Consider a linear motion model that implements an 
affine transformation, that is,  
                                      ,            (2)  =  +  + uv u Au d
where 

     ,         (3) 11 12

21 22
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and . According to this motion model, the 
feature tracked may be displaced and deformed. The pure 
translation model in (1) is a special case of the linear motion 
model (2) that corresponds to . If , then the 
motion of the pixels within the feature tracked can be 
described by a vector z that is formed in terms of the 
parameters of the motion model as 

. In such a case, the model 

(2) can also be written as , where 

 =   x yd d
T

ud
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 It is assumed that, under the affine motion model 
, the intensities of the pixels within the 

feature tracked remain the same, that is, 
 =  +  + uv u Au d

    ( , ) ( ,I t I tδ τ+ + =z z z         (5) 

The assumption is valid only for sufficiently high temporal 
sampling rates. 

IV. FEATURE TRACKING 

 Tracking of a feature (i.e., a block of pixels) throughout 
a sequence of frames requires the development of a 
procedure for estimating the unknown vector δ z  between 
two successive frames in terms of the pixel intensities in 

these frames. This can be accomplished by minimizing the 
error [5], [10] 

          21 ( , ) ( , )
2

[ ]
W

I t I tε δ τ= + + −∑ z z z ,      (6) 

where W is a window located at the center pixel of the 
feature tracked. The minimization of ε  can be made 
analytically tractable by approximating ( ,I t )δ τ+ +z z  
using a first-order Taylor expansion about z as 
                z( , )  ( , )  I t I tδ τ τ+ + = + + Tz z z g δ z ,        (7) 
where z  ( , )I t τ∇ +zg z�  denotes the gradient of (.)I  with 
respect to z , defined as 

                        
T

z
1 2 n

      .I I I
z z z

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

g …         (8) 

Using this approximation, the error defined in (6) becomes  Figure 1: Extraction of temporal motor activity signals by
projecting four selected anatomical sites to the horizontal
and vertical axes. 
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2

[ ]
W

I t I tε τ= + − +∑ zz z g  2δ z .           (9) 

The unknown vector δ z  can be obtained in terms of the 
gradient δ ε∇ z  of ε  with respect to δ z  by solving the 
equation 
  T( , ) ( , )[ ]

W

I t I tδ ε τ δ∇ = + − + =∑z z zg  z z g z 0 .   (10) 

The equation (10) can also be written as [5], [10] 

δ =G z e ,                  (11) 

where  
    T = 

W
∑ z zg  gG ,              (12) 

and  
  ( , ) ( , )[

W

I t I t τ= − +∑ z  z z ]e g .      (13) 

The estimate δ z

neδ z

 obtained by solving (11) may not be 
particularly accurate. An alternative approach is to minimize 
the error in (9) by using an iterative optimization procedure, 
such as the Newton-Raphson method. In such a case, the 
new estimate  of the unknown vector w δ z  is obtained 
in terms of the current estimate  as oldδ z
   1new old

δδ δ −= − ∇ zz z H ε
)

,      (14) 
where (δ ε δ∇ = − −z e G z  is the gradient of ε  with respect 
to δ z , and  is the Hessian matrix. The Hessian matrix for 
the error function in (9) can be obtained as , where 

 is defined in (12). For 

H
H = G

(G )δ ε δ−e G∇ =  and −z z
1 1− −G=H , the update equation (14) becomes 

     .       (15) 1newδ −=z G e
In this particular case, each iteration of the Newton-Raphson 
method is equivalent to solving the equation (11). 
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V. FEATURE TRACKING BASED ON DEFORMABLE 
MOTION MODELS 

Consider the affine motion model defined in (2). Since 
, = +v u K z

                 ( , )  ( )  ( , )I t I tτ τ∇ + = ∇ ∇ +T
z z vz v v ,        (16) 

where 
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v v v v v vv



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   (17) 

Since , . The gradient = +v u K z
( , )I t

( ) ( )∇ = ∇ + =z zv u K z
τ∇v +v

  ( , )
 can be computed in terms of the gradient 

I t∇u ug u� , defined as 

      I I
x y

 ∂ ∂
=  ∂ ∂ 

T

u

g .       (18) 

This can be accomplished by using (5), which can also be 
written as 
    ( , ) ( , )I t I tτ+ =v u .       (19) 
Since , taking the gradient with respect to u of 
both sides of (19) gives  

= +v u K z

   T( )  ( , ) ( , )I t Iτ+ = ∇u v uv v u t∇ ∇ ,     (20) 
where 

    ( )   .
x y

 ∂ ∂
 ∂ ∂ 

u
v vv∇ = 

A

ug

       (21) 

Since , . 
Thus, (20) gives 

 =  +  + uv u Au d ( ) (  +  + )∇ = ∇ = +u u uv u Au d I

   ∇ + .     (22) 1 T( , ) [( ) ]  I t τ −= +v v I A
The gradient ( , )I t τ= ∇ +z zg z  of (.)I  with respect to  
can be obtained by combining (22) and (16) as 

z

    g I .      (23) 1 T[( )  ]  −= +z A K gu

0

For comparison, the gradient g  was obtained in [9] for the 
same model as 

z

     .       (24) z = ug Κ  gΤ

For , (24) differs from the gradient formula (23) 
derived in this paper. 

  ≠A

VI. EXPERIMENTAL RESULTS 

 Figures 2 and 3 show the motor activity signals 
extracted from the video recordings of neonatal seizures by 
utilizing the feature tracking methods based on pure 
translation and deformable motion models. The locations of 
the moving body parts during the clinical event are shown in 
representative frames of each video recording. The frames 
of the video recordings shown in the figures can be used as a 
reference to verify the consistency of the temporal motor 
activity signals with the corresponding clinical events. The 
values of the signals corresponding to the frames shown at 
the top of each figure are indicated by dots, while the 

moving body part in each video recording is shown within a 
box. 

Figure 2 shows the temporal motor activity signals 
produced for a myoclonic seizure affecting the infant’s right 
foot by the feature tracking methods relying on pure 
translation and deformable motion models. Both methods 
identified significant motor activity in the horizontal 
direction right after frame 160. The temporal signals shown 
in Figure 2(c) also reveal some motor activity along the 
vertical direction after frame 160, which was identified only 
by the feature tracking method relying on the deformable 
motion model. Frame-by-frame visual inspection of the 
entire frame sequence indicated that there is substantial 
motion in a short time internal around frame 160 but there is 
no substantial motion outside this interval (see frames 120, 
162, and 200 in Figure 2). Note also that the temporal motor 
activity signals shown in Figure 2 are consistent with the 
rapid and “jerky” movements of the infants’ extremities 
affected by myoclonic seizures. 

 Figure 3 shows the temporal motor activity signals 
produced by the feature tracking methods tested in the 
experiments for a focal clonic seizure afflicting the infant’s 
right leg. Both feature tracking methods managed to track a 
feature located at the infant’s right leg. In fact, both feature 
tracking methods tested on this focal clonic seizure captured 
and quantified the rhythmicity that is the signature 
characteristic of such clinical events; however, they 
produced slightly different motor activity signals. 

 VII. CONCLUSIONS 

This paper introduced a new method for tracking features in 
video. The proposed method relies on an affine motion 
model that can track features that may be translated and 
deformed from one frame to the next. The proposed method 
was used to extract motor activity signals from the video 
recordings of neonatal seizures of the myoclonic and focal 
clonic type. The same task was also performed by a feature 
tracking method relying on a pure translation motion model. 
Unlike the feature tracking method developed in [9] using 
the same affine model, the feature tracking method proposed 
in this paper was successful in quantifying motor activity 
from video recordings of neonatal seizures. This 
experimental study did not reveal any significant differences 
between the feature tracking methods relying on the pure 
translation and deformable motion models. This can be 
attributed to the fact that the features tracked in these 
experiments occupied relatively small and uniform regions 
located at the body parts affected by the seizures. Thus, the 
pure translation motion model was probably sufficient for 
quantifying the motion of the features tracked in the two 
video recordings used in the experiments. 

 
 
 



 4 of 4

 
Frame Number: 120 Frame Number: 162 Frame Number: 200
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Figure 2: (a) Selected frames of a video recording of a 
myoclonic seizure affecting the infant’s right foot, (b) motor 
activity signals produced by the feature tracking method 
based on a pure translation motion model, and (c) motor 
activity signals produced by a feature tracking method based 
on a deformable motion model. 
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Figure 3: (a) Selected frames of a video recording of a focal 
clonic seizure affecting the infant’s right leg, (b) motor 
activity signals produced by the feature tracking method 
based on a pure translation motion model, and (c) motor 
activity signals produced by a feature tracking method based 
on a deformable motion model. 
 
 
 

REFERENCES 
[1] C. D. Binnie, A. J Rowan, J. Overweg, H. Meinard, T. Wisman, A. 

Kamp, F. L. da Silva, “Telemetric EEG and video monitoring in 
epilepsy,” Neurology, vol. 31, pp. 98-303, 1981. 

[2] G. M. Fenichel, Neonatal Neurology, 3rd ed. New York, NY: 
Churchill-Livingstone, 1990. 

[3] N. B. Karayiannis, “Advancing videometry through applications: 
Quantification of neonatal seizures from video recordings,” 
Proceedings of Fourteenth International Conference on Digital Signal 
Processing, Santorini, Greece, July 1-3, 2002, pp. 11-21. 

[4] N. B. Karayiannis, S. Srinivasan, R. Bhattacharya, M. S. Wise, J. D. 
Frost Jr., and E. M. Mizrahi, “Extraction of motion strength and motor 
activity signals from video recordings of neonatal seizures,” IEEE 
Transactions on Medical Imaging, vol. 20, no. 9, pp. 965-980, 2001. 

[5] D. Lucas and T. Kanade, “An iterative image registration technique 
with an application to stereoscopic vision,” Proceedings of 
International Joint Conference on Artificial Intelligence, Vancouver, 
Canada, August 1981, pp. 674-679. 

[6] M. Mizrahi, “Neonatal seizures,” in Pediatric and Adolescent 
Medicine, S. Shinnar, N. Amir, D. Branski (Eds.), Basel, Karger, vol. 
6, pp. 18-31, 1995. 

[7] M. Mizrahi and P. Kellaway,. “Characterization and classification of 
neonatal seizures,” Neurology, vol. 37, pp. 1837-1844, 1987. 

[8] F. Pierelli, G-E. Chatrian, W. W. Erdly, P. D. Swanson, “Long-term 
EEG-video-audio monitoring: Detection of partial epileptic seizures 
and psychogenic episodes by 24-hour EEG record review,” Epilepsia, 
vol. 30, pp. 513-523, 1989. 

[9] J. Shi and C. Tomasi, “Good features to track,” Proceedings of IEEE 
Conference on Computer Vision and Pattern Recognition, Seattle, WA, 
June 1994, pp. 593-600.  

[10] C. Tomasi and T. Kanade, “Detection and tracking of point features,” 
Carnegie Mellon University Technical Report CMU-CS-91-132, April 
1991. 

[11] T. Tommasini, A. Fusiello, E. Trucco, and V. Roberto, “Making good 
features track better,” Proceedings of IEEE Conference on Computer 
Vision and Pattern Recognition, Santa Barbara, CA, June 1998, pp. 
178-183.  


	REFERENCES

