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Abstract relatively expensive, are generally used for only a few hours 
of monitoring, and may not be routinely available in many 
centers. Automated processing and analysis of video 
recordings of neonatal seizures can generate novel methods 
for extracting quantitative information that is relevant only 
to the seizure. The extraction of quantitative information 
from video recordings of neonatal seizures can be 
accomplished by two complementary procedures designed 
to extract temporal motion strength and motor activity 
signals from video [5], [6]. In principle, motor activity 
signals are obtained by projecting to the horizontal and 
vertical axes an anatomical site located at the body part 
affected by the seizure. The extraction of motor activity 
signals from video recordings of neonatal seizures relies on 
a procedure that can track the anatomical site of interest 
throughout the frame sequence. This paper presents the 
results of a study that relied on adaptive block matching to 
extract motor activity signals from the video recordings of 
neonatal seizures and other clinical events associated with 
high motor activity. 

 
 This paper presents a procedure developed to extract 
quantitative information from video recordings of 
neonatal seizures in the form of temporal motor activity 
signals. The motor activity signals are extracted by 
tracking selected anatomical sites during the seizure using 
adaptive block matching. The motion of a block of pixels 
is quantified by searching for the most similar block of 
pixels in subsequent frames; this search is facilitated by 
employing various update strategies to account for the 
changing appearance of the block. The experiments 
indicate that the temporal motor activity signals extracted 
by the proposed procedure constitute an effective 
representation of videotaped clinical events and can be 
used for seizure recognition and characterization. 
 
1.  Introduction 
 
 Seizure occurrence represents the most frequent 
clinical sign of central nervous system disorders in the 
newborn [2], [10], [16]. These disturbances in cerebral 
function may result in significant long-term adverse 
sequelae such as neurological handicaps, mental 
retardation, and postnatal epilepsy [1], [10], [16]. Thus, 
the prompt recognition of seizures in the neonatal 
intensive care unit is very important with regard to 
diagnosis and management of underlying neurological 
problems.  

 
2.  Extraction of temporal motor activity 
signals from video 
 
       The extraction of quantitative information from video 
recordings of neonatal seizures can be accomplished by 
projecting the location of selected anatomical sites to the 
horizontal and vertical axes. As the seizure progresses in 
time, these projections will produce temporal motor activity 
signals for the body parts affected by the seizure.  The development of portable EEG/video/polygraphic 

monitoring techniques allows investigators to assess and 
characterize neonatal seizures at the bedside and permits 
retrospective review [1], [9], [10]. These techniques are 
 

 Figure 1 illustrates the mechanism that can be used for 
generating temporal signals tracking the movements of 
different parts of the infant’s body during focal clonic and 
myoclonic seizures. Figure 1 depicts a single frame 
containing the sketch of an infant’s body with four selected 
anatomical sites. In this particular configuration, XLL and 
YLL represent the projections of the site located at the left 
leg to the horizontal and vertical axes, respectively. The 
projections of the sites located at the right leg, left hand, and  
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Figure 1: Generation of temporal motor activity signals by 
projecting four selected anatomical sites to the horizontal 
and vertical axes. 
 
right hand are denoted by XRL and YRL, XLH and YLH, and 
XRH and YRH, respectively. As the infant moves its 
extremities, the locations of the sites in the frame will 
change, as will the projections of sites to the horizontal 
and vertical axes. Recording the values of the projections 
from frame to frame of the videotaped seizure will 
generate four pairs of temporal signals, namely the signals 
XLL(t) and YLL(t) for the left leg, the signals XRL(t) and 
YRL(t) for the right leg, the signals XLH(t) and YLH(t) for 
the left hand, and the signals XRH(t) and YRH(t) for the 
right hand. For a given set of anatomical sites, each 
seizure will produce signature signals depending on its 
type and location. 
 The development of an automated procedure capable 
of tracking the site of interest in successive frames of the 
video recording was accomplished in [6] by employing a 
feature-tracking procedure often referred to as the KLT 
algorithm [8], [14]. The KLT algorithm automatically 
selects “good features” from the first frame of an image 
sequence. A good feature is one that can be tracked well 
throughout the entire image sequence [12], [14]. Although 
the KLT algorithm was generally successful, in some 
cases the algorithm lost some features that were located at 
moving body parts tracked throughout the image 
sequence. The susceptibility of the KLT algorithm to “lost 
features” motivated the tracking of a sufficiently large 
number of features within a predetermined radius from the 
selected anatomical site in the frame sequence. This paper 
presents an alternative procedure for the extraction of 
temporal motor activity signals, which relies on block 
matching. 
 

3.  Feature tracking based on block matching 
 
 Block matching is a popular correlation-based 
approach to motion estimation [4] and tracking [11], [13]. 
Block matching relies on the assumption that a block of 
pixels remains constant over time and motion [4]. This 
assumption is valid only if the frame rate is sufficiently 
high and the time period is short. The anatomical site to be 
tracked is typically defined as the center of a square block 
of pixels (e.g.15x15, 11x11), which is referred to as the 
reference block. The reference block is tracked by 
searching for the most similar block in subsequent frames 
according to some similarity measure. The search is 
typically constrained to a search window, which has to be 
chosen appropriately. A large search window allows to 
track any rapid motion that would have been lost if the 
search window were smaller. However, a very large 
window would increase the likelihood of mismatch. 
Moreover, increasing the size of the search window 
increases considerably the computational effort associated 
with block matching. The computation time can be greatly 
reduced by employing signature-based and suboptimal 
block matching techniques, such as the 2-D logarithmic 
search, three-step search, orthogonal search, one-at-a-time 
search, and cross search [3], [4], [7]. Although 
computationally effective, such block matching 
techniques may be inferior in terms of their reliability. 
The reference block, to which the block of pixels is 
matched, has to be updated in order to take into 
consideration the changes in the appearance of the target. 
Such an extension of block matching is often referred to 
as adaptive block matching. The update of the reference 
block can be implemented according to a variety of 
strategies, which include the single-frame, multiframe, 
and FIR update strategies tested and evaluated in this 
study. 
 
4.  Extraction of motor activity signals from 
video based on adaptive block matching 
 
       The application of adaptive block matching (ABM) in 
the extraction of temporal motor activity signals from 
video recordings of neonatal seizures involves several 
choices, which include the block size, the similarity 
measure, and the update strategy for the reference block. 
 
4.1. Similarity measures  
 
         A distortion function is used to quantify the 
similarity between the target block and candidate blocks. 
Let }{ ( , )A p q and }{ ( , )B p q be the pixels of the M N×  
target and candidate blocks, respectively. The mean 
absolute difference ( MAD ) function is defined as  
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The mean square difference ( MSD ) function is defined 
as  

( )2

1 1

1 ( , ) ( , ) .
M N

p q
MSD A p q B p q

MN = =

= −∑∑            (2) 

The differences between the MAD  and MSD  criteria 
are often too subtle to be perceived in practice. 
 
4.2. Size of reference block 
 
 The application of adaptive block matching in 
feature tracking requires the selection of the size of the 
reference block. The experiments tested reference blocks 
of sizes 5    and 15  The width of 
each reference block was deliberately chosen to be an odd 
number in order for the block to contain a center pixel that 
can be projected to the horizontal and vertical axis to 
produce motor activity signals. The experiments indicated 
that large reference blocks contain more information and 
are less susceptible to noise. Nevertheless, increasing the 
size of the reference block increases the computational 
effort associated with the extraction of motor activity 
signals. In addition, large reference blocks may include 
regions of the frames that represent background. In such a 
case, the reference block is likely to match the background 
of a certain set of frames instead of a site located on a 
body part affected by a seizure. 
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4.3. Update strategies 
 
 According to the adaptive block matching method, 
the reference block is tracked by searching for the most 
similar block in subsequent frames according to some 
similarity measure. Tracking of the reference block 
requires the adoption of a strategy to be used for updating 
the reference block throughout the frame sequence. The 
update strategies employed in this experimental study are 
described below [11]: 
 
4.3.1. Single-frame update strategy.  The simplest 
update strategy that can be employed for adaptive block 
matching is the single-frame strategy. According to this 
strategy, the reference block is replaced after every  
frames by the block of pixels at the current tracking 
position. If  the reference block is updated after 
every frame. On the other hand, the reference block is 
never replaced if  If the reference block is 
updated too often, then the feature tracked may be lost 
because of the accumulation of errors due to camera jitter 
and even finite precision. If the reference block is not 

updated often enough, the feature tracked may be lost 
again. This is due to the fact that the feature tracked can 
change with time to a degree that no good match exists 
between the feature and the reference block.  
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4.3.2. Multiframe update strategy. The multiframe 
update strategy searches for the best match in the current 
frame (say the n th frame) based on MN  reference blocks, 
with  The reference blocks employed by this 
update strategy are the best-matched blocks found in the 

1.MN >

MN  previous frames. Let  be a candidate block of 
pixels in the current frame and let 

nB

kM be the best match in 
the th frame. According to the multiframe update 
strategy, the best match in the current frame is determined 
based on the following similarity measure 

k
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can be determined to ensure that the search 
for the best match in the current frame is influenced more 
intensely by the best matching blocks found in the most 
recent frames. Such a scheme can be realized by setting 
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4.3.3. FIR update strategy. This update strategy searches 
for the best match in the current frame based on a 
reference block obtained as a linear combination of the 
best-matched blocks in the previous FN  frames. 
According to this update strategy, the reference frame 
block for the th frame is obtained as  n

        ,                        (5) 
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n k
k
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where kM is the best matching block in the th frame and k

{ }ka are real coefficients. The name of this update 
strategy underlines the resemblance of (5) to a linear finite 
impulse response (FIR) filter. If  ,S FN N≤ 1,

SNa =  and 

0ka = ,∀ ,Sk N≠  then the update strategy based on (5) 
reduces to the single-frame strategy described above. In 
general, the coefficients { can be selected to be 
decreasing functions of  in order to ensure that the 
reference block resembles the best matching blocks in 
the most recent frames. The use of (5) ensures that the 
reference block adapts to the changing appearance of the 
feature tracked. This makes this update strategy capable of 
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tracking the features throughout the given frame sequence. 
On the other hand, the weighted averaging involved in (5) 
tends to cancel the noise that might be present in the best-
matched blocks. This makes this update strategy resistant 
to noise. 
 
5.  Experimental results 
 
 The three update strategies described above were 
employed to extract motor activity signals from two 
myoclonic and two focal clonic seizures selected from a 
database available at the Methodist Hospital in Houston. 
Temporal signals were also produced for two video 
recordings of normal infant behavior (random infant 
movements). This section presents some of the results of 
this study. Myoclonic and focal clonic seizures generally 
affect the infants’ extremities. The anatomical sites to be 
tracked were located at the infants’ extremities affected by 
the seizures. The experiments indicated that a reference 
block of size 15  balances the tradeoff between 
performance and computational effort. The search window 
was a square block of size  Feature tracking was 
attempted in the experiments by employing the single-
frame update strategy with  It was found 
that the single-frame strategy with  combined 
resistance to noise with the capacity to track features 
throughout the frame sequence. The multiframe update 
strategy was used in the experiments with 
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 and the same set of weights used in the 
multiframe strategy. Figures 2 and 3 show the temporal 
motor activity signals produced by the three update 
strategies tested in the experiments for a myoclonic and a 
focal clonic seizure, respectively. The locations of the 
moving body parts during the clinical event are shown in 
representative frames of each video recording. The frames 
of the video recordings shown in Figures 2 and 3 can be 
used as a reference to verify the consistency of the 
temporal signals with the corresponding clinical events. 
The values of the signals corresponding to the frames 
shown at the top of each figure are indicated by dots, 
while the moving body part in each video recording is 
shown within a box.  
 In the myoclonic seizure shown in Figure 2, the 
infant’s left leg moves to the right of the frame between 
frames 10 and 16 (Figure 2 shows only frame 14). This 
movement was captured by the temporal signal obtained 
as the projection of the moving part to the horizontal axis. 
The temporal signal obtained as the projection of the 
moving part to the vertical axis indicates that the left leg 
also moves toward the top of the frame, which can be 
verified by comparing frames 0 and 14 of the sequence. 
The infant’s left leg remains at an almost fixed position 

between frames 50 and 150. In this time interval, the 
temporal motor activity signals are almost flat. According 
to Figure 2, there is a noteworthy difference between the 
motor activity signals produced by the three update 
strategies. In this case, the main difference can be 
observed in the signals produced by projecting the 
anatomical site located on the infants left leg to the 
horizontal axis. The signal produced by the FIR update 
strategy reveals that the infant’s leg moves to the right and 
then to the left just before frame 14. The same movement 
was also captured by the multiframe strategy. The 
multiframe update strategy revealed a weaker horizontal 
movement before frame 14. The amplitude of this 
movement was even lower in the motor activity signals 
produced by the single-frame update strategy. Finally, the 
motor activity signals produced for the myoclonic seizure 
shown in Figure 2 are consistent with the “jerky” 
movements that are the typical signatures of such events. 
 
 Figure 3 shows the temporal motor activity signals 
produced by adaptive block matching for a focal clonic 
seizure affecting the infant’s right hand. Figure 3 indicates 
that the temporal signals produced by the two proposed 
procedures captured and quantified the rhythmicity that 
characterizes the movements of such clinical events. 
Frame-by-frame inspection of the video recording 
indicated that the temporal motor activity signal YRH(t) 
produced by the single-frame update strategy does not 
constitute a satisfactory representation of this clinical 
event. On the other hand, the multiframe and FIR update 
strategies produced similar motor activity signals. In fact, 
the difference between the motor activity signals produced 
by these two update strategies for the focal clonic seizure 
shown in Figure 3 are too subtle to actually affect the 
quantification of motor activity.  
 
6.  Conclusions 
 
 This paper showed that adaptive block matching can 
be used to extract motor activity signals from video 
recordings of neonatal seizures. Adaptive block matching 
was tested in this application by employing three different 
update strategies for the reference block, namely the 
single-frame, multiframe, and FIR strategies. The outcome 
of the experiments indicated that the performance of 
adaptive block matching depends rather strongly on the 
update strategy employed for the reference block. More 
specifically, the FIR update strategy outperformed both 
the multiframe and single-frame update strategies. On the 
other hand, the multiframe update strategy performed 
better than the single-frame update strategy. Although the 
multiframe and FIR update strategies are more effective 
than the single-frame strategy, they incur higher  
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Figure 2:  Temporal signals produced for a video 
recording of a myoclonic seizure affecting the infant’s left 
leg: (a) selected frames of the sequence, temporal motor 
activity signals produced by adaptive block matching 
relying on: (b) the single-frame update strategy, (c) the 
multiframe update strategy, and (d) the FIR update 
strategy. 

Figure 3: Temporal signals produced for a video recording 
of a focal clonic seizure affecting the infant’s right hand: 
(a) selected frames of the sequence, temporal motor 
activity signals produced by adaptive block matching 
relying on: (b) the single-frame update strategy, (c) the 
multiframe update strategy, and (d) the FIR update 
strategy. 

  
computational and memory cost. This study relied on 
exhaustive search to determine the best match for the 
reference block within the search window. The 
computational effort associated with adaptive block 
matching can be reduced considerably by employing 
signature-based and/or suboptimal search algorithms. 
Such search algorithms may have a negative impact on the 
reliability of the tracking procedure. Nevertheless, the 
tradeoff between tracking reliability and computational 

effort is worth investigating in order to enhance the 
practical value of the proposed procedure.  
 An interesting problem currently under 
investigation is the extraction of motor activity signals 
based on a predictive block matching method. Such an 
approach would attempt to predict the location of the 
block in the next frame according to some method similar 
with that employed by the KLT algorithm. The adoption 
of such an approach instead of a blind search is expected 

  



  

to improve the reliability of the block matching procedure 
while speeding up the search for the best match by 
allowing the reduction of the search window size. 
 It was found that adaptive block matching 
occasionally failed to deal effectively with the problem of 
occlusion, that is, the problem occurring when other body 
parts occlude the anatomical site tracked throughout the 
frame sequence. Occlusion over a short period of time 
does not have any substantial effect on the tracking 
because of the update strategies employed for the given 
reference block by adaptive block matching. However, 
partial occlusion over a long period of time can lead to 
mismatches that may result in lost features. A potential 
solution to this problem could be to divide the reference 
block into smaller blocks of the same size. Adaptive block 
matching would provide the motion vectors, which could 
be regularized using a vector median filter. The motion 
vectors of the unoccluded region would provide the basis 
for tracking the anatomical site of interest even if the site 
being tracked becomes partially occluded.  
       Further improvement and refinement of the procedure 
developed in this study can produce temporal motor 
activity signals that constitute a consistent and effective 
representation of focal clonic seizures, myoclonic 
seizures, and clinical events not due to seizures that are 
characterized by substantial motor activity of the infants’ 
extremities. This can be accomplished by fine-tuning the 
proposed procedure on a large database of video 
recordings of neonatal seizures and clinical events not due 
to seizures, which is currently in progress. The fine-tuning 
of the proposed procedure is expected to enhance the 
statistical significance of the results and to verify the 
validity of the resulting motor activity signals. 
       The proposed approach was developed for myoclonic 
and focal clonic seizures and may not be suitable for other 
types of neonatal seizures involving subtle movements of 
body parts other than the extremities, such as ocular and 
oral-buccal-lingual seizures. Nevertheless, focal clonic 
and myoclonic seizures are characterized by movements 
of the extremities and constitute a large portion (up to 
75%) of seizures observed in the neonate. Systems 
capable of identifying more subtle seizure types may be 
feasible with further development and refinement of the 
procedure outlined in this paper. The extension of the 
proposed procedure to more subtle neonatal seizures can 
certainly benefit from current technological developments 
in the recording and storage of high-resolution digital 
video. 
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