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Abstract—This paper presents two methods developed to ex-
tract quantitative information from video recordings of neonatal
seizures in the form of temporal motion strength and motor ac-
tivity signals. Motion strength signals are extracted by measuring
the area of the body parts that move during the seizure and the
relative speed of motion using a combination of spatiotemporal
subband decomposition of video, nonlinear filtering, and segmen-
tation. Motor activity signals are extracted by tracking selected
anatomical sites during the seizure using a modified version
of a feature-tracking procedure developed for video, known as
the Kanade–Lucas–Tomasi (KLT) algorithm. The experiments
indicate that the temporal signals produced by the proposed
methods provide the basis for differentiating myoclonic from focal
clonic seizures and distinguishing these types of neonatal seizures
from normal infant behaviors.

Index Terms—Focal clonic seizure, motion strength signal,
motor activity signal, myoclonic seizure, neonatal seizure, spa-
tiotemporal video decomposition, temporal feature tracking, video
processing and analysis.

I. INTRODUCTION

NEONATAL seizures are often the first and, in some
situations, the only clinical sign of central nervous system

dysfunction in the newborn. Identification of seizures in the
newborn initiates a prompt evaluation for a wide range of
etiologies and, whenever possible, treatment of the under-
lying pathological processes. In some situations, antiepileptic
medication is provided to diminish the likelihood of recurrent
seizures and to lower the risk of physiologic instability during
seizures. The presence of seizures may also affect prognosis,
particularly with regard to neurodevelopmental sequelae and
risk for certain forms of epilepsy. Thus, prompt recognition of
seizures by nursery personnel is important with regard to diag-
nosis and management of underlying neurological problems.

Despite the importance of seizure recognition, most neonatal
intensive care units and nurseries have limited resources for
seizure identification. The attention of nursing personnel is dis-
tributed across a large number of newborns, many of whom are
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ill and require continuous bedside care. Neonatal seizures are
often brief and may not be recognized since nurses and physi-
cians cannot provide continuous surveillance of all infants in
the neonatal intensive care unit. In addition, although neonatal
intensive care unit nurses are highly trained in many aspects of
care, there is significant variability in the level of skill and expe-
rience in seizure recognition among nurses. These factors illus-
trate the clear need for improved seizure surveillance methods
that supplement direct observation by nurses and physicians and
that are practical and economically feasible for routine use in the
neonatal intensive care environment.

Early attempts to characterize neonatal seizures involved
primarily bedside observation and relatively brief electroen-
cephalogram (EEG) recordings. The more recent development
of portable EEG/video/polygraphic monitoring techniques
allows investigators to assess and characterize neonatal seizures
at the bedside and permits retrospective review [17]. Investiga-
tions using these techniques have confirmed that the majority
of neonatal seizures are either electroclinical (electrographic
and clinical features that are temporally linked) or clinical only
(clinical features with no consistent electrographic correlate)
in character [27], [29], [49]. These techniques are generally
used for only a few hours of monitoring and are not routinely
available in many centers. Most research involving neonatal
seizures has focused on analysis of EEG features and no
investigations have used quantitative techniques to characterize
visual features. This observation contrasts with the fact that the
majority of seizures in the newborn are clinically expressed,
either with or without an electrographic signature. Thus,
automated video processing and analysis may supplement and
extend human analysis of clinical seizure behaviors and may
provide new information leading to more useful classification
schemes.

Video recording is typically used with synchronized EEG and
other polygraphic measures to analyze the characteristics of a
clinical seizure after its recording [1], [3]–[5], [8], [10], [11],
[17]–[19], [22], [24], [28], [31]–[33], [35], [47]. This technique
is limited in terms of duration of recording and the availability of
trained physicians for analysis. However, post-seizure analysis
in the neonate can facilitate the classification of the event as
epileptic or nonepileptic, determine the type of the ictal event
(e.g., clonic, tonic, myoclonic, motor automatisms, and spasms),
determine the EEG localization and associated clinical features
of onset and evolution (focal, generalized, multifocal, alter-
nating, migrating, etc.), reveal the precise sequence of motor
components within a single seizure, and establish the temporal
relationship of the observed motor activity to EEG activity.
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Most studies using video as a diagnostic tool for seizure char-
acterization deal with problems associated with video recording
itself. Synchronization has been one of the major practical ob-
stacles for the simultaneous recording of EEG and motor ac-
tivity [11]. The synchronization problem has been overcome
by the development of integrated recording systems capable of
recording motor activity as depicted on video, along with syn-
chronized EEG and projecting both on a split screen.

This paper presents video processing and analysis techniques
developed to extract quantitative information regarding the be-
havioral characteristics of neonatal seizures. More specifically,
this paper describes two methods developed to extract temporal
motion strength and motor activity signals from video record-
ings of neonatal seizures using a combination of spatiotemporal
subband decomposition of video and two-dimensional (2-D)
tracking of selected anatomical sites.

II. V IDEO PROCESSING ANDANALYSIS OFNEONATAL SEIZURES

The extraction of temporal motion strength and motor ac-
tivity signals from video recordings of neonatal seizures is the
first step toward the development of an automated video pro-
cessing and analysis system for use in clinical settings [39]. A
video system based upon automated analysis potentially offers a
number of advantages. Infants in the neonatal intensive care unit
could be monitored continuously using relatively inexpensive
and noninvasive video techniques that would supplement direct
observation by nursery personnel. This would represent a major
advance in seizure surveillance and offers the possibility for ear-
lier identification of potential neurological problems and sub-
sequent intervention. From a research perspective, automated
video processing and analysis holds great potential for refined
characterization of clinical events. Characterization of clinical
events has relied primarily upon visual analysis and consensus
among pediatric neurologists, neonatologists, and clinical neu-
rophysiologists regarding which paroxysmal behaviors repre-
sent clinical seizures. This has contributed to controversy re-
garding definitions of neonatal seizures and at times even skilled
and experienced clinical neurophysiologists have different opin-
ions regarding whether a specific behavior represents seizure
activity.

Quantitative analysis using computerized video techniques
may supplement and extend human analysis and may generate
novel methods for extracting relevant information from parox-
ysmal behaviors. In certain types of neonatal seizure behaviors,
refined analysis may shed light on specific motor activity pat-
terns or attributes that constitute seizures, as compared with
repetitive behaviors that do not represent seizures and do not
have the same clinical relevance. Development of a quantita-
tive, computerized method could lead to a more rigorous def-
inition of neonatal seizures and could uncover key motor sig-
natures that are not recognized using traditional visual anal-
ysis or limited monitoring of body/limb motion by EMG or ac-
celerometry. Specific examples include: 1) the differentiation of
focal clonic seizures from other repetitive movements such as
tremor or semirhythmic nonpurposeful movements and 2) the
assessment of movement characteristics in myoclonic seizures,
such as amplitude and velocity of movements and synchrony of

movements between left and right extremities. These examples
represent common occurrences in the clinical setting and au-
tomated video techniques directed at analysis of specific com-
ponents of movement will contribute to a more objective and
quantitative analysis. In addition, these techniques may provide
the basis for further work directed toward understanding the
pathophysiology of certain seizure behaviors (epileptic versus
nonepileptic mechanisms) and formulating more refined capa-
bilities regarding prediction of outcome based upon the clinical
presentation of neonatal seizures.

Recent developments in video processing and analysis re-
search can facilitate the analysis of neonatal seizures. These de-
velopments have been stimulated by the transition from analog
to digital video, which is expected to expand the use of com-
puting devices into video processing and analysis. One of the
major problems associated with video processing and analysis
is the huge amount of data involved. Nevertheless, video record-
ings of neonatal seizures are highly redundant since infants may
not move excessively in their beds while focal clonic and my-
oclonic seizures affect specific parts of their bodies, such as
their extremities. Thus, the extraction of quantitative informa-
tion from video-taped seizures must focus only on the moving
parts of the infant’s body that are relevant to the seizure. Quanti-
tative analysis of video-taped neonatal seizures requires the de-
velopment of mechanisms for tracking and quantifying motion
of the infant’s body parts during the seizure. This can be accom-
plished by two different, but complementary, methods proposed
in this paper.

III. EXTRACTION OF TEMPORAL MOTION STRENGTHSIGNALS

The extraction from video recordings of quantitative infor-
mation that is relevant only to the seizure can be accomplished
by exploiting the redundancy typically found in video signals,
namely the redundancy between adjacent frames (interframe re-
dundancy) and the redundancy within each frame (intraframe
redundancy). The intraframe and interframe redundancy can be
utilized for identifying the infant’s moving parts by performing
spatiotemporal subband decomposition of the image sequences
that compose the video recording. Subband decomposition al-
lows the processing and analysis of signals, images, and image
sequences (i.e., video) at different resolutions from a set of fre-
quency selective subbands [7], [13], [15], [16], [23], [34], [43],
[46]. The spatiotemporal decomposition of an image sequence
begins with temporal decomposition, which is followed by spa-
tial decomposition of the resulting temporal subbands. Tem-
poral decomposition of image sequences is typically performed
by a filter of length two, i.e., the shortest possible nontrivial
filter, in order to minimize the computational burden associated
with temporal filtering. Spatial decomposition is typically per-
formed by longer wavelet filters in order to improve the fre-
quency selectivity of the resulting subbands.

Fig. 1 illustrates an 11-band spatiotemporal subband decom-
position of a video signal. In the temporal decomposition phase,
the frames of the image sequence are passed block-by-block
through a filter bank containing a low-pass temporal ()
filter and a high-pass temporal ( ) filter. If temporal de-
composition is performed by a filter of length two, each block
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(a)

(b)

Fig. 1. Spatiotemporal subband decomposition of image sequences based on wavelets.

contains two consecutive frames of the sequence. Therefore,
the temporal filtering results in two subbands: the low-pass
temporal (LPT) subband and the high-pass temporal (HPT)
subband. The LPT subband is computed by averaging two
successive frames of the image sequence and carries low fre-
quencies. The HPT subband represents the difference between
two successive frames and thus, can be used to detect mo-
tion. In the spatial decomposition phase, each of the LPT
and HPT subbands is passed through a filter bank which per-
forms low-pass filtering along the horizontal dimension ( )
and high-pass filtering along the horizontal dimension ( ).
Low-pass and high-pass filtering is followed by downsampling
by a factor of two. Each of the resulting subbands is passed
through a filter bank which performs low-pass filtering along
the vertical dimension ( ) and high-pass filtering along the
vertical dimension ( ). Low-pass and high-pass filtering

is once again followed by downsampling by a factor of two.
This sequence of operations completes one level of spatial
decomposition of the LPT and HPT subbands. If necessary, the
resulting subbands can be further decomposed. As an example,
Fig. 1(a) describes an additional level of spatial decomposition
of the subband produced by the , , and filtering
operators. Fig. 1(b) shows the 11 subbands produced by the
spatiotemporal decomposition scheme described in Fig. 1(a).
The LPT subband produces seven subbands after two levels
of spatial decomposition. Subbands 5, 6, and 7 result directly
from the first level of spatial decomposition. Subbands 1–4
are the result of the second decomposition level applied on the
upper-left subband, which is produced by the first decomposi-
tion level and contains low frequencies in both horizontal and
vertical dimensions. Subbands 8–11 are produced by applying
one level of spatial decomposition on the HPT subband. The
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time-sequence composed of subband 1 is a low-resolution (both
spatially and temporally) version of the original video. Be-
cause of its significant role, subband 1 is frequently called the
dominant subband. The time sequences composed of subbands
2–11 are auxiliary video signals containing high-frequency de-
tailed information. The nondominant subbands 2–11 are sparse
and highly structured. Subband 8 contains the low-frequency
components of the HPT subband in both horizontal and ver-
tical dimensions. As a result, this particular subband carries
most of the energy among subbands 8–11 produced by the
decomposition of the HPT subband [43]. Subband 8 is often
used as a motion detector instead of the HPT subband since it
contains most of the information carried by the HPT subband
and is reduced in size by a factor of 1/4 [13].

Temporal motion strength signals were extracted from
video-taped neonatal seizures by measuring the area of the
body parts moving between successive frames and the relative
speed of motion. This method relied on the spatiotemporal
decomposition of the image sequence that constitutes the video
recording. Temporal decomposition was performed by the Haar
filter of length two while spatial decomposition was performed
by the Daubechies wavelet filter of length 20 [7]. Motion was
detected and measured on subband 8 of the decomposed image
sequence, which detects motion between successive frames
of the sequence. Fig. 2(b) shows subband 8 computed on the
four frames of the video-taped myoclonic seizure shown in
Fig. 2(a). Subband 8 corresponding to frame 14 shows clearly
the infant’s left leg, which moves to the right and toward the
top of the frame between frames 10 and 16 (Fig. 2 shows only
frame 14). The infant’s left leg is not visible in subband 8
computed on frames 100 and 200 since there was no motion
between frames 99 and 100 or between frames 199 and 200.

The experiments indicated that subband 8 contains the
moving body parts, but it is also corrupted by spiky noise, prob-
ably due to camera jitter and other recording imperfections. The
noise appears as spurious patches (i.e., spikes) that occupy very
small areas in comparison with those of the moving body parts.
Most of these spurious patches were removed from subband
8 by applying median filtering [12], a computationally simple
nonlinear operator that is particularly effective for this kind of
noise. More specifically, subband 8 was filtered using a 2-D
median filter of size 3 3 pixels. It was found that this filter
size guarantees sufficient noise removal without any noticeable
blurring effect on the moving body parts. Fig. 2(c) shows
the frames shown in Fig. 2(b) after median filtering. Median
filtering eliminated most of the spurious patches appearing in
Fig. 2(b). As a result, the infant’s left leg is clearly traced in
frame 14. However, frame 100 contains some spurious clusters
of pixels even after median filtering.

Following median filtering, the time sequence constituted
by subband 8 was segmented in order to isolate the moving
body parts from background noise and other spurious clusters
of pixels that have typically lower intensity values than those
of the moving body parts. Segmentation was performed by
an adaptive version of the-means (or -means) algorithm
[9]. This adaptive clustering algorithm clustered all pixels of
each frame from the sequence formed by subband 8 in3
clusters. The clusters produced by the-means algorithm on the

previous frame were used to initialize the clustering procedure
for the current frame. This was done in order to speed up the
segmentation process by exploiting the correlation between
adjacent frames. Following the clustering process, one of the
three clusters produced for each frame contains the pixels
belonging to moving body parts, while the other two clusters
contain background pixels as well as pixels representing
background and other spurious information. The segmentation
process was completed by assigning to all pixels belonging to
the cluster of the highest intensities the same intensity value
of 255 (corresponding to white color in a black-and-white
image). All other pixels were assigned the intensity value
of zero (corresponding to black color in a black-and-white
image). Thus, the segmentation process produced a sequence
of black-and-white frames that display the moving body parts
as white areas in a black background. Fig. 2(d) shows the four
frames produced by segmenting the frames shown in Fig. 2(c).
Segmentation eliminated all spurious clusters of pixels in
frames 0, 100, and 200, which contained no moving body
parts. Segmentation also eliminated the low-intensity clusters
of pixels from frame 14, which led to a better definition of the
moving body part. The traces of the infant’s left leg are shown
in frame 14 as white patches in a black background.

The experimental results indicated that the segmented frames
may still contain a few spurious bright patches due to noise
in the original video recording. The contribution of such spu-
rious patches to the measurements extracted from video record-
ings was prevented in this study by tracking the centroids of
the bright patches in the frame sequence produced by the seg-
mentation process. Tracking was performed by considering only
those areas whose centroids were present within a small ra-
dius between successive frames. Averaging all such areas over
successive frames produced the temporal signal , which
measures the average area occupied by the moving body parts
over time. The experiments also indicated that seizure identi-
fication and recognition may benefit by a scaling scheme that
can magnify fast motion of small body parts while suppressing
slow motion of bigger body parts that may not be caused by
a seizure. Scaling was performed in this study by multiplying
the areas of the moving parts by the distance covered by them
between adjacent frames. This scheme produced the temporal
signal , which depends rather heavily on motion speed.
The signal can potentially facilitate the identification of
seizures involving small body parts.

IV. EXTRACTION OF TEMPORAL MOTORACTIVITY SIGNALS

Measuring the motor activity of certain parts of the human
body is a challenging problem due to the amount of data pro-
duced by locomotion in a three-dimensional (3-D) space. This
problem is often simplified by data reduction techniques based
on the projection of selected kinematic data into a space of
lower dimensionality [6], [30], [40]–[42], [48], [50]. Neonatal
seizures occur in a 3-D space, but infants viewed in bed by a
video system are confined in a 2-D plane. In this application,
data reduction can be accomplished by projecting the location
of selected anatomical sites to the horizontal and vertical axes.
As the seizure progresses in time, these projections will produce



KARAYIANNIS et al.: EXTRACTION OF SIGNALS FROM VIDEO RECORDINGS OF NEONATAL SEIZURES 969

Fig. 2. Extraction of temporal motion strength signals. (a) Selected frames from a video-taped myoclonic seizure. (b) Frames produced by computing subband 8
using spatiotemporal decomposition. (c) Frames produced by applying median filtering on subband 8. (d) Frames produced by segmenting the filtered version of
subband 8.

temporal signals recording motor activity of the body parts of
interest.

Fig. 3 illustrates the mechanism that was used for extracting
temporal signals tracking the movements of different parts of the

infant’s body during focal clonic and myoclonic seizures. Fig. 3
depicts a single frame containing the sketch of an infant’s body
with four selected anatomical sites. In this particular configura-
tion, and represent the projections of the site located
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Fig. 3. Extration of temporal motor activity signals by projecting four sites of
an infant’s body to the horizontal and vertical axes.

at the left leg to the horizontal and vertical axes, respectively.
The projections of the sites located at the right leg, left hand,
and right hand are denoted by and , and ,

and , respectively. As the infant moves its extremi-
ties, the locations of the sites in the frame will change, as will
the projections of the sites to the horizontal and vertical axes.
Recording the values of the projections from frame to frame of
the video-taped seizure will generate four pairs of temporal sig-
nals, namely the signals and for the left leg,
the signals and for the right leg, the signals

and for the left hand, and the signals
and for the right hand. For a given set of anatomical
sites, each seizure will produce signature signals depending on
its type and location.

Temporal motor activity signals were extracted from
video-taped neonatal seizures by projecting a selected anatom-
ical site to both horizontal and vertical axes. This method
relied on an automated algorithm developed to track the site of
interest in successive frames of video-taped neonatal seizures.
The site-tracking algorithm was developed in this study by
modifying and extending the KLT algorithm, a feature-tracking
procedure developed for video by Tomasi and Kanade [44]
based on earlier work by Lucas and Kanade [21]. The KLT
algorithm automatically selects “good features” from the first
frame of an image sequence. A good feature is one that can
be tracked well throughout the entire image sequence. The
selection of good features is based on the requirement that
the spatial gradient matrix computed on the corresponding
frame location is above noise level and well conditioned. The
noise requirement implies that both eigenvalues of the gradient
matrix must be sufficiently large, while the conditioning
requirement means that the eigenvalues cannot differ by several
orders of magnitude. Thus, a window is accepted as a good
feature if the two eigenvalues and of the corresponding
gradient matrix satisfy the condition , where

is a predetermined threshold. The features selected from the
first frame are then tracked through the image sequence by
using a Newton–Raphson optimization method to minimize
the difference between the windows in successive frames.
The tracking scheme was improved by Shi and Tomasi [38],
who extended the Newton–Raphson search method to operate
under affine image transformations. This modification led to
an optimal feature selection criterion and a feature monitoring
scheme that can detect occlusions, disocclusions, and points
that do not correspond to visually important features.

The latest version of the KLT algorithm was utilized in this
study to track selected anatomical sites in video-taped neonatal
seizures. Fig. 4(b) shows the location of 400 features selected
and tracked by the KLT algorithm in the four frames of the
video-taped myoclonic seizure shown in Fig. 4(a). It is clear
from Fig. 4(b) that the features selected by the KLT algorithm
in the first frame of the sequence (i.e., frame 0) are almost
uniformly distributed over the entire frame area. However, the
KLT algorithm became increasingly selective as the seizure pro-
gressed. In frames 14, 100, and 200, the features are located
at the frame area occupied by the infant’s body (including the
moving body part) and the textured and nonhomogeneous areas
of the background. It is also remarkable that the KLT algorithm
did not track throughout the entire sequence the features lo-
cated between the infant’s legs at the lower-right quadrant of the
frames. This can be attributed to the uniform intensity profiles of
the windows considered by the algorithm in this homogeneous
area.

Although the KLT algorithm was generally successful,
in some cases the algorithm lost some features that were
particularly important for this application. Lost features are
typically tracked by the algorithm in the initial sequence of
frames, but are not selected for tracking in subsequent frames.
The experiments also indicated that the KLT algorithm failed
to track moving body parts through the entire frame sequence
when those parts contained a large amount of lost features. The
susceptibility of the KLT algorithm to “lost features” motivated
the tracking of a sufficiently large number of features within a
predetermined radius from the selected anatomical site in the
frame sequence. Fig. 4(c) shows the features tracked by the
KLT algorithm within a predetermined radius from the site in
the infant’s left foot. In the first frame of the sequence (i.e.,
frame 0), the KLT algorithm selected four features within the
neighborhood of the site indicated by a circle. It is apparent
from Fig. 4(c) that one of the original features has been lost in
frame 14. Only two of the features in the neighborhood of the
site were tracked by the KLT algorithm in subsequent frames
of the sequence. One of these features provided the reference
for tracking the site through the entire sequence.

The strategy described above allowed the tracking of the site
through the frame sequence even in cases where some of the
features in its close neighborhood were lost by the KLT algo-
rithm at some point in time. When the radius was sufficiently
small, there were no noticeable differences between the ideal
temporal signals (i.e., the signals corresponding to projections
of the site) and the resulting temporal signals (i.e., the signals
corresponding to the projections of the features tracked by the
algorithm). This is clear from Fig. 4(d), which shows the feature
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Fig. 4. Extraction of temporal motor activity signals. (a) Selected frames from a video-taped myoclonic seizure. (b) Frames containing the featurestracked by the
KLT algorithm. (c) Frames containing the features within a close neighborhood of the site. (d) Frames containing the feature whose projections to thehorizontal
and vertical axes produced the motor activity signals.

selected in each frame to produce the corresponding values of
the temporal signals.

The experiments indicated that the selection of a small ra-
dius improved the accuracy of the tracking process, but also
increased the likelihood of losing all features close to the site.

The tradeoff typically associated with the selection of the radius
motivated an extension of the KLT algorithm that improves its
ability to recover the site even if all features in its close neigh-
borhood are lost. In such a case, the location of the site in the
next frame is predicted using the history of its motion in the
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previous frames. Prediction was realized in this study through
interpolation of the previous locations of the site. After the site
was recovered by the method used for prediction, the KLT algo-
rithm was used to track a new set of features in its close neigh-
borhood.

V. DATA SELECTION AND PREPROCESSING

The two methods developed for extracting motion strength
and motor activity signals from video recordings were tested and
evaluated on video-taped clinical seizures selected from a data-
base developed by the Clinical Research Centers for Neonatal
Seizures (CRCNS). The CRCNS were established by the Na-
tional Institute of Neurological Disorders and Stroke (NINDS)
in 1991. The overall goal for this initiative was to develop a com-
prehensive understanding of the clinical and EEG features, pre-
disposing risk factors, etiology, and outcome of seizures in the
newborn. A comprehensive database has been created which in-
cludes detailed demographic information and maternal and in-
fant risk factors, medical and neurological problems, neurolog-
ical examinations, weekly tracking of subjects throughout hos-
pitalization, and long-term follow-up at 6, 12, and 24 months
of age. As part of this work, bedside video/EEG/polygraphic
monitoring was performed (minimum of two hours for initial
study), followed by repeat one-hour studies 3–5 days after the
initial seizure characterization and at the time of discharge. Ad-
ditional studies were performed whenever clinically indicated,
particularly when new seizure behaviors occurred.

The CRCNS database contains several hundred individual
clinical seizures, which are available to establish a library
of motor signature patterns that are characteristic of focal
clonic and myoclonic seizures in the newborn. Data from
bedside video/EEG/polygraphic monitoring is available on
videocassettes, including video recordings as well as digitized
signals from EEG and polygraphic recordings. The seizures
included in the CRCNS database have been characterized and
classified by a team of clinical neurophysiologists and neonatal
electroencephalographers in terms of their electrographic and
behavioral features and the associated physiological manifesta-
tions have been documented. In making these determinations,
the team members studied each video recording together with
simultaneously recorded EEG. Decisions on characterization
of seizures were made during group reviews (face-to-face
discussions) in a way that a consensus was reached for each
seizure included in the CRCNS database.

All seizures contained in the CRCNS database have been
recorded in analog video. Analog-to-digital conversion of video
involves the determination of the temporal and spatial sampling
rates [43]. The temporal sampling rate specifies the number of
frames that must be stored per second and depends mainly on
the maximum velocity of the infant’s moving body parts. The
video-taped events were digitized in this study using a temporal
sampling rate of 30 frames/s, which is typically used in appli-
cations requiring digital video of high temporal resolution. The
spatial sampling rates specify the number of pixels that must be
stored for each frame. In this particular application, the spatial
sampling rates are not particularly important since the infants’
upper and lower extremities occupy a large area of the video

frames. Thus, the video-taped seizures selected from the avail-
able database were digitized to produce frames of the standard
size of 352 240 pixels.

VI. EXPERIMENTAL RESULTS

The two methods developed for extracting temporal signals
from video recordings of neonatal seizures were tested on
two myoclonic and two focal clonic seizures selected from
the CRCNS database of neonatal seizures. Temporal signals
were also produced for two video recordings of normal infant
behavior (random infant movements). These video recordings
are ordinarily used to test the ability of trained nurses to
distinguish neonatal seizures from normal infant behaviors.
The results of these experiments are summarized in Figs. 5–10,
which show the four temporal signals extracted from each
video-taped clinical event together with four representative
frames of each sequence. These frames show the locations of
the moving body parts during the clinical event and can be
used to verify the consistency of the temporal signals with the
clinical event captured by the video recording. The values of
the signals corresponding to the frames shown at the bottom of
each figure are indicated by dots, while the moving body part
in each video sequence is shown within a box.

Figs. 5–10 indicate that there is an excellent correspondence
between all four temporal signals extracted from each video
recording and the motion of the body part of interest during the
clinical event. For example, in the myoclonic seizure shown
in Fig. 5, the infant’s left leg moves to the right of the frame
between frames 10 and 16 (Fig. 5 shows only frame 14).
This movement is captured by the temporal signal obtained as
the projection of the moving part to the horizontal axis. The
temporal signal obtained as the projection of the moving part
to the vertical axis indicates that the left leg also moves toward
the top of the frame, which can be verified by comparing
frames 0 and 14 of the sequence. The motor activity observed
between frames 10 and 16 was also captured by the temporal
signals measuring the area and scaled area of the moving part,
as is clearly indicated by their spikes between frames 10 and
16. The infant’s left leg remains at an almost fixed position
between frames 50 and 140. In this time interval, the temporal
motor activity signals are almost flat. The area and scaled area
of the moving body part are almost zero between frames 50
and 140, which is consistent with the absence of any significant
motion in this time interval. Right before frame 150, the left
leg moves slightly to the left and toward the bottom of the
frame, as is clearly indicated by the temporal motor activity
signals. This movement is shown as a relatively weak spike
in the temporal motion strength signals.

Inspection of Figs. 5–10 indicates that all four temporal
signals obtained by the two methods developed in this study
are consistent and reliable quantitative measures of the motor
activity of the moving body part of interest. Moreover, the
combination of all four temporal signals constitutes an ef-
fective representation of the clinical event captured by the
video recording. Figs. 5–10 also indicate that the temporal
signals produced by the two proposed approaches capture
and quantify the differences between the motor activity of
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(a)

(b)

(c)

Fig. 5. Temporal signals produced for a video recording of a focal myoclonic seizure affecting the infant’s left leg. (a) Temporal motion strength signals. (b)
Temporal motor activity signals. (c) Selected frames of the sequence.

body parts caused by myoclonic and focal clonic seizures. In
the case of myoclonic seizures, the temporal motor activity
signals are consistent with the “jerky movements” that are the
typical signatures of such events. The temporal motion strength
signals contain a significant spike and a few weaker spikes. In
the case of focal clonic seizures, the temporal motor activity
signals capture and quantify the rhythmicity that characterizes
the movements of such clinical events. The temporal motion
strength signals contain multiple spikes that correspond very
well with their rhythmic movements. The experiments on

the focal clonic seizures also revealed the importance of the
temporal signal representing the scaled area of the moving
parts, that is, the signal obtained by multiplying the area of the
moving parts by their displacement from frame to frame. This
becomes obvious by inspecting Figs. 7 and 8, which indicate
that some of the spikes obtained by measuring the area of the
moving parts were reduced in magnitude when the scaled area
was computed. This is consistent with the relatively low speed
of the corresponding movements, which can also be observed
from the temporal motor activity signals.
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(a)

(b)

(c)

Fig. 6. Temporal signals produced for a video recording of a focal myoclonic seizure affecting the infant’s right foot. (a) Temporal motion strength signals. (b)
Temporal motor activity signals. (c) Selected frames of the sequence.

According to Figs. 5–10, the temporal signals produced by
the two methods developed in this study provide a reliable basis
for distinguishing normal infant behaviors from myoclonic and
focal clonic seizures. The temporal motion strength signals
produced for random movements of the infant’s body parts
contain fewer spikes compared with those corresponding to
focal clonic seizures. The temporal motor activity signals
produced for random movements of the infant’s body parts
contain bell-shaped spikes, which can easily be distinguished
from the chain-saw-like signals produced for focal clonic

seizures. There are also significant differences between the
temporal signals produced for random movements of the infant’s
body parts and those corresponding to myoclonic seizures.
The temporal motion strength signals produced for random
movements of body parts contain spikes that are wider than
those corresponding to myoclonic seizures. This experimental
outcome is consistentwithclinical observations, which indicated
that random movements of body parts are typically slower than
those caused by myoclonic seizures. This is also revealed by
the rate at which temporal motor activity signals increase to
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(a)

(b)

(c)

Fig. 7. Temporal signals produced for a video recording of a focal clonic seizure affecting the infant’s right hand. (a) Temporal motion strength signals. (b)
Temporal motor activity signals. (c) Selected frames of the sequence.

reach their peak value, which is lower in the case of random
movements of the infant’s body parts.

In conclusion, this experimental investigation indicated that
the extraction of quantitative information from video-taped
seizures in the form of temporal signals is feasible. According
to the experimental results, the temporal signals extracted from
video recordings of neonatal seizures provide a solid basis for
selecting features that complement each other by conveying
some unique behavioral characteristics of neonatal seizures. For

example, the presence of motion of body parts as the clinical
event progresses in time can be detected by computing the
energy of motion strength signals in successive time intervals of
the same duration. Myoclonic seizures and focal clonic seizures
can be distinguished from nonseizure events, such as tremor
and posturing of the extremities, by detecting the most signifi-
cant spikes in the temporal motion strength signals. Short-time
spectral analysis of motor activity signals can produce a set
of features measuring the frequency of motion. Finally, the
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(a)

(b)

(c)

Fig. 8. Temporal signals produced for a video recording of a focal clonic seizure affecting the infant’s right leg. (a) Temporal motion strength signals. (b) Temporal
motor activity signals. (c) Selected frames of the sequence.

rhythmicity of movements can be quantified through features
obtained from temporal motor activity signals by determining
the locations and amplitudes of their peaks.

VII. CONCLUSION AND FUTURE RESEARCH

The temporal motion strength and motor activity signals
extracted using the methods developed in this study can be
used together with EEG monitoring to provide the basis for: 1)
refining the characterization of repetitive motor behaviors; 2)
improving the differentiation of certain clinical seizures from

other abnormal paroxysmal behaviors not due to seizures; and
3) facilitating the detection of neonatal seizures. Even more
importantly, the temporal signals extracted from video record-
ings can be utilized in the development of an automated system
capable of recognizing focal clonic and myoclonic seizures and
distinguishing them from clinical events characterized by high
motor activity of the infants’ extremities. Such a system could
be developed by using a set of features computed in terms of the
temporal motion strength and motor activity signals extracted
from video to train classifiers based on artificial neural networks
[2], [36].
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(a)

(b)

(c)

Fig. 9. Temporal signals produced for a video recording containing a random movement of the infant’s left hand. (a) Temporal motion strength signals.(b)
Temporal motor activity signals. (c) Selected frames of the sequence.

The methods described in this paper were tested on random
infant movements and neonatal seizures of the focal clonic and
myoclonic type. The proposed methods may not be suitable
for all types of seizures, including those involving subtle
movements of body parts other than the extremities. Ocular
and orobuccolingual seizures are typical examples of these
important types of clinical seizures [37], [45]. Nevertheless,
focal clonic and myoclonic events constitute a large proportion
of seizures observed in neonates in unselected populations
[27], [29], [49]. Quantification of more “subtle” seizure types
[45] or motor automatisms [29] may eventually be feasible

with further development and refinement of these methods.
The absence or “arrest” of ongoing motor activity can also be a
manifestation of a seizure. Such cases can also be detected and
quantified by extending and improving the methods described
in this paper. Of course, these methods are not applicable to
seizures whose only manifestation is electrical seizure activity
in EEG [20]. The remainder of this section outlines some
potential improvements in the design and implementation of
the proposed methods.

The method used in this study to extract temporal motion
strength signals relied on the segmentation of the filtered ver-
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(a)

(b)

(c)

Fig. 10. Temporal signals produced for a video recording containing a random movement of the infant’s left leg. (a) Temporal motion strength signals.(b)
Temporal motor activity signals. (c) Selected frames of the sequence.

sion of subband 8. Segmentation was performed in this study by
a clustering algorithm that was used to perform scalar quantiza-
tion, which is naturally inferior to vector quantization. This indi-
cates that the robustness of the signal extraction procedure may
be improved by a segmentation technique that relies on vector
quantization. In such a case, the clustering algorithm will be
used to form clusters of vectors formed by groups of pixels. The
results of segmentation may also be improved by replacing the
-means algorithm by competitive learning vector quantization

algorithms, which have been successfully used to perform seg-
mentation of magnetic resonance images of the brain [14]. Seg-

mentation was performed in the experimental study by forming
three clusters in order to accommodate the moving body parts,
the background, and spurious clusters of pixels. This choice was
motivated by the presence of spurious bright patches of inten-
sities in between those of the background and the moving body
parts. However, the formation of three clusters may create two
clusters for the moving body parts if the level of noise in the
frames is low. This can be prevented by selecting the number of
clusters based on the signal-to-noise ratio computed for each
frame sequence. The contribution of spurious patches to the
measurements extracted from video recordings was prevented
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in this study by tracking the centroids of the bright patches
in the frame sequence produced by the segmentation process.
Tracking was performed by considering only the areas whose
centroids are present within a small radius between successive
frames. This approach is effective if the motion between succes-
sive frames is within the predetermined radius of motion. This
problem can be dealt with by developing an adaptive scheme
that would modify the radius according to the motion present
in the sequence. This can be accomplished by using as a refer-
ence the temporal motor activity signals extracted from the same
frame sequence.

The method used in this study to extract temporal motor ac-
tivity signals relied on the KLT algorithm. This algorithm was
designed to select features that can be tracked through the en-
tire frame sequence, but gives no priority to features located
on moving objects in the sequence. This explains the loss of
a substantial number of features located on the infant’s moving
parts during the seizure. In order to minimize the number of
lost features affecting the extraction of motor activity signals,
the KLT algorithm may be modified to track features located
on moving objects with higher priority. This can be accom-
plished by including motion in the criteria used for rejecting
features during the sequence. This improvement is expected to
reduce the rejection of features located on moving body parts,
but it is unlikely that this problem will be completely elimi-
nated. This implies that the automated procedure used to ex-
tract temporal motor activity signals may still stop tracking a
selected anatomical site in a frame sequence if all features in
its close neighborhood are lost. This reveals the need for a re-
liable procedure that can be used to predict the location of the
site in the next frame if the algorithm stops tracking the fea-
tures within its close neighborhood in the current frame. Predic-
tion was performed in this study by simple interpolation, which
may not be always reliable. The reliability of prediction can be
improved by applying optimal linear prediction techniques or
nonlinear prediction models based on neural networks. The au-
tomated procedure developed in this study for extracting tem-
poral motor activity signals is capable of tracking a single site
throughout each frame sequence. However, the CRCNS data-
base of video-taped neonatal seizures contains events involving
movements of multiple body parts. The extraction of temporal
motor activity signals for such events can be accomplished by
extending and improving the existing procedure to make it ca-
pable of tracking multiple sites throughout each frame sequence.
Tracking of multiple anatomical sites during the seizure also re-
quires the development of an automated procedure for detecting
the moving body part(s).

REFERENCES

[1] C. D. Binnie, A. J. Rowan, J. Overweg, H. Meinard, T. Wisman, A.
Kamp, and F. L. da Silva, “Telemetric EEG and video monitoring in
epilepsy,”Neurology, vol. 31, pp. 298–303, 1981.

[2] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford,
U.K.: Oxford Univ. Press,, 1995.

[3] A. Bye, P. Lamont, and L. Healy, “Commencement of a pediatric EEG-
video telemetry service,”Clin. Exp. Neurol., vol. 27, pp. 83–88, 1990.

[4] A. Bye and D. Flanagan, “Electroencephalograms, clinical observations
and the monitoring of neonatal seizures,”J. Paediatrics Child Health,
vol. 31, no. 6, pp. 503–507, 1995.

[5] A. M. Bye and D. Flanagan, “Spatial and temporal characteristics of
neonatal seizures,”Epilepsia, vol. 36, no. 10, pp. 1009–1016, 1995.

[6] A. Cappozzo, T. Leo, and A. Pedotti, “A general computing method for
the analysis of human locomotion,”J. Biomech., vol. 8, pp. 307–320,
1975.

[7] I. Daubechies,Ten Lectures on Wavelets. Philadelphia, PA: SIAM,
1992.

[8] J. D. Frost Jr., R. A. Hrachovy, P. Kellaway, and T. Zion, “Quantitative
analysis and characterization of infantile spasms,”Epilepsia, vol. 19, pp.
273–282, 1978.

[9] A. Gersho and R. M. Gray,Vector Quantization and Signal Compres-
sion. Boston: Kluwer Academic, 1992.

[10] J. R. Ives and P. Gloor, “A long term time-lapse video system to doc-
ument the patient’s spontaneous clinical seizure synchronized with the
EEG,” Electroencephalogr. Clin. Neurophysiol., vol. 45, pp. 412–416,
1978.

[11] J. R. Ives, N. R. Mainwaring, L. J. Gruber, G. R. Cosgrove, H.
W. Blume, and D. L. Schomer, “128-channel cable-telemetry EEG
recording system for long-term invasive monitoring,”Electroen-
cephalogr. Clin. Neurophysiol., vol. 79, pp. 69–72, 1991.

[12] A. K. Jain, Fundamentals of Digital Image Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

[13] N. B. Karayiannis and Y. Li, “A replenishment technique for low bit-rate
video compression based on wavelets and vector quantization,”IEEE
Trans. Circuits Syst. Video Technol., vol. 11, pp. 658–663, May 2001.

[14] N. B. Karayiannis and P.-I. Pai, “Segmentation of magnetic resonance
images using fuzzy algorithms for learning vector quantization,”IEEE
Trans. Med. Imag., vol. 18, pp. 172–180, Feb. 1999.

[15] N. B. Karayiannis, P.-I. Pai, and N. Zervos, “Image compression based
on fuzzy algorithms for learning vector quantization and wavelet image
decomposition,”IEEE Trans. Image Processing, vol. 7, pp. 1223–1230,
Aug. 1998.

[16] N. B. Karayiannis and T. C. Wang, “Compression of digital mammo-
grams using wavelets and fuzzy algorithms for learning vector quanti-
zation,” in Soft Computing for Image Processing, S. K. Pal, A. Ghosh,
and M. K. Kundu, Eds, Heidelberg, Germany: Physical-Verlag, 2000,
pp. 205–245.

[17] P. Kellaway and J. D. Frost Jr., “Monitoring at the Baylor College of
Medicine, Houston,” inLong-term Monitoring in Epilepsy, J. Gotman,
J. R. Ives, and P. Gloor, Eds. Amsterdam, The Netherlands: Elsevier
Science, 1985, pp. 403–414.

[18] P. Kellaway, R. A. Hrachovy, J. D. Frost Jr., and T. Zion, “Precise char-
acterization and quantification of infantile spasms,”Ann. Neurol., vol.
6, no. 3, pp. 214–218, 1978.

[19] H. D. Kim and R. R. Clancy, “Sensitivity of a seizure activity detec-
tion computer in childhood video/electroencephalographic monitoring,”
Epilepsia, vol. 38, no. 11, pp. 1192–1197, 1997.

[20] N. Laroia, R. Guillet, J. Burchfiel, and M. C. McBride, “EEG back-
ground as predictor of electrographic seizures in high-risk neonates,”
Epilepsia, vol. 39, no. 5, pp. 545–551, 1998.

[21] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereoscopic vision,” inProc. Int. Conf. Artificial
Intelligence, 1981, pp. 674–679.

[22] J. S. Luther, J. O. McNamara, S. Carwile, P. Miller, and V. Hope, “Pseu-
doepileptic seizures: Methods and video analysis to aid diagnosis,”Ann.
Neurol., vol. 12, no. 5, pp. 458–462, 1982.

[23] S. G. Mallat, “Multifrequency channel decomposition of images and
wavelet models,”IEEE Trans. Acoust., Speech Signal Processing, vol.
37, pp. 2091–2110, Dec. 1989.

[24] M. C. McBride, N. Laroia, and R. Guillet, “Electrographic seizures in
neonates correlate with poor neurodevelopmental outcome,”Neurology,
vol. 55, no. 4, pp. 506–513, 2000.

[25] E. M. Mizrahi, “Neonatal electroencephalography: Clinical features of
the newborn, techniques of recording and characteristics of the normal
EEG,” Amer. J. EEG Technol., vol. 26, pp. 81–103, 1986.

[26] , “Neonatal seizures,” inPediatric and Adolescent Medicine, S.
Shinnar, N. Amir, and D. Branski, Eds. Basel, Switzerland: Karger,
vol. 6, pp. 18–31.

[27] E. M. Mizrahi, R. R. Clancy, J. K. Dunn, D. G. Hirtz, L. Chapieski,
S. A. McGaurn, P. Cuccaro, R. A. Hrachovy, M. S. Wise, and P. Kell-
away, “Neurological impairment, developmental delay and postneonatal
seizures two after EEG-video documented seizures in near-term and
full-term neonates: Report of the clinical research center for neonatal
seizures,”Epilepsia, to be published.

[28] E. M. Mizrahi and P. Kellaway, “Characterization of seizures in neonates
and young infants by time-synchronized electroencephalographic/poly-
graphic/video monitoring,”Ann. Neurol., vol. 16, p. 383, 1984.



980 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 9, SEPTEMBER 2001

[29] , “Characterization and classification of neonatal seizures,”Neu-
rology, vol. 37, pp. 1837–1844, 1987.

[30] M. E. Morris, T. A. Matyas, R. Iansek, and J. J. Summers, “Temporal
stability of gait in Parkinson’s disease,”Physical Ther., vol. 76, no. 7,
pp. 763–789, 1996.

[31] H. Oguni, Y. Fukuyama, Y. Imaizumi, and T. Uehara, “Video-EEG anal-
ysis of drop seizures in myoclonic astatic epilepsy of early childhood
(Doose syndrome),”Epilepsia, vol. 33, no. 5, pp. 805–813, 1992.

[32] J. K. Penry, R. J. Porter, and F. E. Dreifuss, “Simultaneous recording of
absence seizures with video tape and electroencephalography,”Brain,
vol. 98, pp. 427–440, 1975.

[33] F. Pierelli, G.-E. Chatrian, W. W. Erdly, and P. D. Swanson, “Long-term
EEG-video-audio monitoring: Detection of partial epileptic seizures and
psychogenic episodes by 24-hour EEG record review,”Epilepsia, vol.
30, no. 5, pp. 513–523, 1989.

[34] C. Podilchuk and A. Jacquin, “Subband video coding with a dynamic bit
allocation and geometric vector quantization,” inSPIE Proc., vol. 1666,
1992, pp. 241–252.

[35] D. Rector, P. Burk, and R. M. Harper, “A data acquisition system for
long-term monitoring of physiological and video signals,”Electroen-
cephalogr. Clin. Neurophysiol., vol. 87, pp. 380–384, 1993.

[36] B. D. Ripley,Pattern Recognition and Neural Networks. Cambridge,
U.K.: Cambridge Univ. Press, 1996.

[37] M. S. Scher, K. Aso, M. Beggarly, M. Y. Hamid, D. A. Steppe, and M.
J. Painter, “Electrographic seizures in preterm and full-term neonates:
Clinical correlates, associated brain lesions and risk for neurologic se-
quelae,”Pediatrics, vol. 91, no. 1, pp. 128–134, 1993.

[38] J. Shi and C. Tomasi, “Good features to track,” inProc. IEEE Conf.
Computer Vision and Pattern Recognition, 1994, pp. 593–600.

[39] S. Srinivasan, R. Bhattacharya, N. B. Karayiannis, M. S. Wise, J. D.
Frost Jr., and E. M. Mizrahi, “Extraction of motion strength and motor
activity signals from video recordings of neonatal seizures,” inProc.
18th Annu. Houston Conf. Biomedical Engineering Research, Houston,
TX, Feb. 10–11, 2000, p. 171.

[40] V. P. Stokes, “A method for obtaining the 3-D kinematics of the pelvis
and thorax during locomotion,”Human Movement Sci., vol. 3, pp.
77–94, 1984.

[41] V. P. Stokes, C. Anderson, and H. Forssberg, “Rotational and transla-
tional movement features of the pelvis and thorax during adult human
locomotion,”J. Biomech., vol. 22, pp. 43–50, 1989.

[42] V. P. Stokes, H. Lanshammar, and A. Thorstensson, “Dominant pattern
extraction from 3-D kinematic data,”IEEE Trans. Biomed. Eng., vol. 46,
pp. 100–106, Jan. 1999.

[43] A. M. Tekalp,Digital Video Processing. Englewood Cliffs, NJ: Pren-
tice Hall, 1995.

[44] C. Tomasi and T. Kanade, “Detection and Tracking of Point Features,”
Carnegie Mellon Univ. , Pittsburgh, Tech. Rep. CMU-CS–91–132 , April
1991.

[45] J. J. Volpe,Neurology of the Newborn, 4th ed. Philadelphia, PA: Saun-
ders, 2000.

[46] T. C. Wang and N. B. Karayiannis, “Detection of microcalcifications in
digital mammograms using wavelets,”IEEE Trans. Med. Imag., vol. 17,
pp. 498–509, Aug. 1998.

[47] S. P. Weiner, M. J. Painter, D. Geva, R. D. Guthrie, and M. S. Scher,
“Neonatal seizures: Electroclinical dissociation,”Pediatric Neurol., vol.
7, no. 5, pp. 363–368, 1991.

[48] D. A. Winter, A. O. Quanbury, D. A. Hobson, H. G. Sidwall, G. Reiner,
B. G. Trenholm, T. Steinke, and H. Shlosser, “Kinematics of normal
locomotion—A statistical study based on T.V. data,”J. Biomech., vol. 7,
pp. 479–486, 1974.

[49] M. S. Wise, E. M. Mizrahi, R. A. Hrachovy, R. R. Clancy, J. K.
Dunn, J. Lane, S. A. McGaurn, and D. G. Hirtz, “Seizures in very low
birthweight (VLBW) infants: Seizure characterization using bedside
EEG/video/polygraphic monitoring,”Epilepsia, vol. 40 (Suppl. 7), pp.
161–161, 1999.

[50] M. Y. Zarrugh and C. W. Radcliff, “Computer generation of human gait
kinematics,”J. Biomech., vol. 12, pp. 99–111, 1979.


