ADVANCING VIDEOMETRY THROUGH APPLICATIONS:
QUANTIFICATION OF NEONATAL SEIZURESFROM VIDEO RECORDINGS

Nicolaos B. Karayiannis

Department of Electrical & Computer Engineering
N308 Engineering Building 1
University of Houston
Houston, TX 77204-4005

Kar ayi anni s @H. EDU|

Abstract: Thispaper presents some recent advancesin videometry that resulted from the devel opment of video processing and analysis
procedures designed to facilitate the quantification of neonatal seizures. This paper presents two automated procedures devel oped to
extract temporal information from video recordings of neonatal seizuresin the form of temporal motion strength and motor activity
signals. These signals constitute an effective representation of videotaped clinical events and can be used in the development of an

intelligent system for seizure recognition and characterization.

1. INTRODUCTION

Videometry [video + metron (Greek for measure)] can be
defined as a collection of automated procedures and
techniques developed in an attempt to extract, process, and
analyze quantitative information from video recordings.
Videometry isexpected to flourish and gain significancein an
erawherevideo is becoming anecessary tool in many facets of
human activity. This expectation is supported by the fact that
the majority of scientific disciplines were developed in an
attempt to satisfy certain human needs. Thisis especially true
for disciplines devel oped to empower peoplewith the ability to
measure the world around them. A typica example is
geometry, which was developed to provide a standard and
undisputabl e methodol ogy for measuring and redistributing the
land after floods. The advancement of videometry isnot really
achoice but a necessity created by the transition from analog
to digital video. A historical analogy can only be found in the
revolutionary technological developmentsthat were motivated
by the advent of digital computers some decades ago.

Video is a rather unique imaging modality in the sense
that it contains both temporal information (also contained in 1-
D signals that vary with time) and spatial information (also
contained in 2-D still images). Thisimpliesthat the extraction
of quantitative information from video cannot be accomplished
by simply borrowing or even by extending techniques and
procedures developed for 1-D and 2-D signals. Another
challenge associated with videometry is that the extraction of
quantitative information from video essentially involves
intelligent abstraction. More specifically, the automated
procedures devel oped for videometry must focus on regions of
the frames contai ning time-varying information whileignoring
the redundancy that is typically present in image sequences.
Such an operation requires some a priori knowledge of the
specific information that must be extracted from video. This
implies that automated techniques and procedures devel oped
for videometry are essentially application-dependent. It is
apparent from the above discussion that videometry cannot be
developed in a vacuum but only in the context of practical
applications. Such an application is the quantification of
neonatal seizures from their video recordings, which will be

the main focus of the research outlined in this paper.

2. NEONATAL SEIZURES

Seizures occur in approximately 2-5/1000 live births,
depending upon studied populations and methodology
(Eriksson and Zetterstrom, 1979; Holden et al., 1982;
Bergman et al., 1983; Ellenberg et al., 1984; Spellacy et al.,
1987; Lanskaet al., 1995; Ronen and Penney, 1995; Saliba et
al., 1999). In addition, there may be different clinical
manifestations and different consequencesof neonatal seizures
depending upon the conceptional age of theinfant (Scher et al.,
1993; Volpe, 1995; Lanska et a., 1995). Thisis particularly
true for premature infants and those infants who are critically
ill inintensive care nurseries. In fact, theincidence of seizures
in infants weighing less than 1500 grams is 57.5/1000 live
births compared to 3.5/1000 live births for all birthweights
(Lanska et al, 1995). Similarly, Scher et al. (1993) reported
that seizures occurred in approximately 4% of premature
infants less than 30 weeks conceptional age, although some
have reported theincidencein this population reaching ashigh
as 20% (Seay and Bray, 1977). These studies indicate that
seizure occurrence represents the most frequent clinical sign of
central nervous system disorders in the newborn (Fenichel,
1990; Volpe, 1995; Mizrahi and Kellaway, 1998). These
disturbancesin cerebral function may result in significant long-
term adverse sequel ae such as neurol ogical handicaps, mental
retardation, and postnatal epilepsy (Holden, et al., 1982;
Méllitis et al., 1982; Bergman et al., 1983; Ellenberg et a.,
1984; Clancy and Legido, 1991; Scher et al., 1993; Volpe,
1995; Bye et a., 1997; Mizrahi, 1999). The prompt
identification of clinical seizures when they occur in the
newborn, the subsequent evaluation of their etiology, and the
ingtitution of etiology-specific therapy may significantly
reduce associated morbidity. In some situations, antiepileptic
medication is provided to diminish the likelihood of recurrent
seizures, and to lower therisk of physiologic instability during
seizures. Thus, prompt recognition of seizures by nursery
personnel is very important with regard to diagnosis and
management of underlying neurological problems.

Despite the importance of seizure recognition, most
neonatal intensive care units and nurseries have limited
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resources for seizure identification. Neonatal seizures are
currently detected in clinical settings only if a physician or a
trained nurseis present while the seizures are occurring, which
is not guaranteed. The attention of nursing personnel is
distributed across a large number of infants, who areill and
reguire continuous bedside care. Neonatal seizures are often
brief and may not be recognized since nurses and physicians
cannot provide continuous surveillance of all infantsat risk for
clinical seizures. These factors illustrate the clear need for
improved seizure surveillance methods that supplement direct
observation by nurses and physicians, and that are practical
and economically feasible.

Early attemptsto characterize neonatal seizuresinvolved
primarily bedside observation and brief EEG recordings. The
development of portable EEG/video/polygraphic monitoring
techniques allows investigators to assess and characterize
neonatal seizures at the bedside and permits retrospective
review (Penry et al., 1975; lvesand Gloor, 1978; Kellaway et
a., 1978; Binnieet al., 1981; Luther et al., 1982; Mizrahi and
Kellaway, 1984; Kellaway and Frost, 1985; Mizrahi, 1986;
Mizrahi and Kellaway, 1987; Pierelli et al., 1989; Bye et al.,
1990; lveset al., 1991; Oguni et al., 1992; Rector et al., 1993).
These techniques are relatively expensive, are generally used
for only a few hours of monitoring, and are not routinely
available in many centers. The linkage of computer-based
processing and analysis of video signal swith seizure detection
and characterization is an innovative approach that has never
been used before. Automated processing and analysis of video
recordings of neonatal seizures can generate novel methodsfor
extracting quantitative information that is relevant only to the
seizure. Thisinformation can be used to: 1) devel op automated
mechanisms capable of detecting the beginning of clinical
seizures, 2) refine the characterization of repetitive motor
behaviors, and 3) facilitate the differentiation of certain
clinical seizures from other abnormal paroxysmal behaviors
not due to seizures. A video system based upon automated
analysispotentially offersanumber of advantages. Infantswho
are at risk for seizures could be monitored continuously using
relatively inexpensive and noninvasive video techniques that
supplement direct observation by nursery personnel. This
would represent a mgjor advance in seizure surveillance and
offers the possibility for earlier identification of potential
neurological problems and subsequent intervention.

3. EXTRACTION OF QUANTITATIVE
INFORMATION FROM VIDEO

The extraction of quantitative information from videotaped
seizures must focus only on the moving parts of the infant’s

body that are relevant to the seizure. This can be accomplished
by two different but complementary procedures we briefly
describe below (Karayiannis et al., 2001).

3.1 Extraction of Temporal Motion Strength Signals

The extraction from video recordings of visual information
that is relevant only to the seizure can be accomplished by
performing spatiotempora subband decomposition of the
image sequences that compose the video recording in order to
identify the infant's moving body parts. Subband
decomposition allows the processing and analysis of signals,
images, and image sequences (i.e, video) at different
resolutionsfrom aset of frequency-selective subbands (Mallat,
1989; Daubechies, 1992; Tekalp, 1995). Wavelets became a
popular tool for subband decomposition of images and video
because of their good localization in both time and frequency
(Mallat, 1989; Daubechies, 1992).

Spatiotemporal decomposition of an image sequence
begins with temporal decomposition, which is followed by
spatial decomposition of the resulting temporal subbands. In
the tempora decomposition phase, the frames of the image
sequence are passed block-by-block through a filter bank
containing alow-passtempora filter and a high-passtemporal
filter. If temporal decomposition is performed by a filter of
length 2, each block contains two consecutive frames of the
sequence and temporal filtering results in two subbands. the
low-passtemporal (LPT) subband and the high-passtemporal
(HPT) subband. In the spatial decomposition phase, each of
the LPT and HPT subbandsis passed through afilter bank that
performslow-pass and high-passfiltering along the horizontal
dimension, followed by downsampling by afactor of 2. Each
of the resulting subbands is passed through a filter bank that
performs low-pass and high-pass filtering along the vertical
dimension, followed once again by downsampling by afactor
of 2. This sequence of operations completes one level of
spatial decomposition of the LPT and HPT subbands. If
necessary, the resulting subbands can be further decomposed.
In Figure 1, the LPT subband has undergone two levels of
spatial  decomposition, which produced subbands 1-7.
Subbands 8-11 were produced by one level of spatial
decomposition of the HPT subband. Subband 8 contains the
low frequency components of the HPT subband in both
horizontal and vertical dimensions. As aresult, subband 8 is
often used as a motion detector instead of the HPT subband
since it contains most of the information carried by the HPT
subband and isreduced in size by afactor of 1/4 (Karayiannis
and Li, 2001, Karayiannis et al., 2001).
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Figure 1: Spatiotemporal subband decomposition of image sequences based on wavelets: (a) two-level decomposition of the LPT

subband, and (b) one-level decomposition of the HPT subband.

In this study, temporal decomposition was performed by
the Haar filter of length 2 while spatial decomposition was
performed by the Daubechies wavelet filter of length 20
(Daubechies, 1992). Motion was detected and measured on
subband 8. Figure 2(b) shows subband 8 computed on thefour
frames of the videotaped myoclonic seizure shown in Figure
2(a). Subband 8 corresponding to frame 14 shows clearly the
infant’ sleft | eg, which movesto the right and toward the top of
the frame between frames 10 and 16 (Figure 2 shows only
frame 14). The infant’s left leg is not visible in subband 8
computed on frames 100 and 200 since there wasno motionin
these frames.

The experiments indicated that subband 8 contains the
moving body parts but it is also corrupted by spiky noise,
probably due to camera jitter and other recording
imperfections. The noise appears as spurious patches (i.e.,
spikes) that occupy very small areasin comparison with those
of the moving body parts. Most of these patcheswereremoved
from subband 8 by a 2-D median filter of size 3 x 3 pixels,
which was found to be a particularly effective nonlinear
operator for this kind of noise. Figure 2(c) shows the frames
shown in Figure 2(b) after median filtering. Median filtering
eliminated most of the spurious patches appearing in Figure
2(b). Asaresult, theinfant’sleft leg is clearly traced in frame
14. However, frame 100 contains some spurious clusters of
pixels even after median filtering. Following median filtering,
the time sequence formed by subband 8 was segmented in
order to isolate the moving body parts from background noise
and other irrelevant clusters of pixels. Segmentation was
performed by an adaptive version of the c-means (or k-means)
agorithm, which clustered all pixels of each frame from the
sequence formed by subband 8 in ¢ = 3 clusters. Following the
clustering process, one of thethree clusters produced for each
frame contained the pixels belonging to moving body parts,
while the other two clusters contained background pixels as
well as pixels that are not relevant to the seizure. The
segmentation process was completed by assigning to al pixels
belonging to the cluster of the highest intensities the same
intensity value of 255 (corresponding to whitecolor). All other

pixelswere assigned the intensity value of O (corresponding to
black color). Thus, the segmentation process produced a
sequence of black-and-white frames that display the moving
body parts as white areas in a black background. Figure 2(d)
shows the four frames produced by segmenting the frames
shown in Figure 2(c). Segmentation eliminated all spurious
clusters of pixelsin frames 0, 100, and 200, which contained
no moving body parts. Segmentation also eliminated the low
intensity clusters of pixelsfromframe 14, whichled to abetter
definition of the moving body part. The traces of the infant’s
left leg are shown in frame 14 as white patches in a black
background.

The experimental results indicated that the segmented
frames may still contain afew spurious bright patches due to
noiseintheoriginal video recording. The contribution of such
spurious patches to the measurements extracted from video
recordings was prevented in this study by tracking the
centroids of the bright patchesin the frame sequence produced
by the segmentation process. Tracking was performed by
considering only those areas whose centroids were present
withinasmall radius between successiveframes. Averaging all
such areas over successive frames produced the temporal
signal A, (t), which measuresthe average areaoccupied by the
moving body parts over time. The experiments indicated that
selzure quantification may benefit by ascaling schemethat can
magnify fast motion of small body parts while suppressing
slow motion of bigger body parts that may not be caused by a
seizure. Scaling was performed in this study by multiplying the
areas of the moving parts by the distance covered by them
between adjacent frames. This scheme produced the temporal
signa A«(t), which depends rather heavily on motion speed
and can potentially facilitate the quantification of seizures
involving small body parts.



Frame number: 0 Frame number: 14 Frame number: 100 Frame number: 200

™

(©

(d)
Figure 2: Extraction of temporal motion strength signals: (a) selected frames from a videotaped myoclonic seizure; (b) frames
produced by computing subband 8 using spatiotemporal decomposition; (c) frames produced by applying median filtering on
subband 8; (d) frames produced by segmenting the filtered version of subband 8.



3.2 Extraction of Temporal Motor Activity Signals

Neonatal seizures occur in a 3-D space but infants viewed in
bed by a video system are confined in a 2-D plane. In this
application, data reduction can be accomplished by projecting
the location of selected anatomical sites to the horizontal and
vertical axes. As the seizure progresses in time, these
projections will produce temporal signals recording motor
activity of the body parts of interest.

Figure 3 illustrates the mechanism that can be used for
generating temporal signals tracking the movements of
different parts of the infant’s body during focal clonic and
myoclonic seizures. Figure 3 depictsasingle frame containing
the sketch of an infant’s body with four selected anatomical
sites. In this particular configuration, X, and Y, represent
the projections of the site located at the left leg to the
horizontal and vertical axes, respectively. The projections of
the sites located at the right leg, left hand, and right hand are
denoted by XRL and Yre, XiH and Y LH, and XRH and Y RH»
respectively. Astheinfant movesits extremities, the locations
of the sitesin the frame will change, as will the projections of
the sites to the horizontal and vertical axes. Recording the
values of the projections from frame to frame of the
videotaped seizurewill generate four pairsof temporal signals,
namely thesignals X (t) and Y (t) for the | eft leg, the signals
Xru(t) and Yg.(t) for the right leg, the signals X y(t) and
Y Lu(t) for the left hand, and the signals Xgy(t) and Y gy(t) for
theright hand. For agiven set of anatomical sites, each seizure
will produce signature signals depending on its type and
location.

The main objective of this study was the devel opment of
an automated al gorithm capable of tracking the site of interest
in successive frames of the video recording. This was
accomplished by employing the KLT algorithm, a feature-
tracking procedure developed by Tomasi and Kanade (1991)
based on earlier work by Lucasand Kanade (1981). The KLT
algorithm automatically selects “good features’ fromthe first
frame of an image sequence. A good featureis onethat can be
tracked well throughout the entire image sequence (Tomasi
and Kanade, 1991; Shi and Tomasi, 1994).

The latest version of the KLT algorithm was utilized in
this study to track moving body parts in videotaped neonatal
seizures and non-seizure infant behaviors. Figure 4(b) shows
the location of 400 features selected and tracked by the KLT
algorithm in the four frames of the videotaped myoclonic
seizure shown in Figure 4(a). It is clear from Figure 4(b) that
thefeatures selected by the KL T agorithmin thefirst frame of
the sequence (i.e., frame 0) were almost uniformly distributed
over the entire frame area. However, the KLT agorithm
became increasingly selective as the seizure progressed. In
frames 14, 100, and 200, the KLT agorithm tracked features
located at the frame area occupied by the infant’s body
(including the moving body part) and the textured and non-
homogeneous areas of the background. In contrast, the KLT
algorithm did not track throughout the entire sequence the
features|ocated at the homogeneous area between theinfant’s
legs at the lower-right quadrant of the frames.
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Figure 3: Extraction of temporal signals by projectung rour selectea anatomica sites 1o tne hunicurital and vertical axes.
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Figure4: Extraction of temporal motor activity signals: (a) sel ected frames from avideotaped myoclonic seizure; (b) framescontaining
the features tracked by the KLT algorithm; (c) frames containing the features within a close neighborhood of the site; (d) frames
containing the feature whose projections to the horizontal and vertical axes produced the motor activity signals.




Although the KL T agorithm was generally successful, in
some cases the algorithm lost some features that were located
at moving body parts tracked throughout the image sequence.
The susceptibility of the KLT algorithm to “lost features’
motivated the tracking of a sufficiently large number of
features within a predetermined radius from the selected
anatomical site in the frame sequence. Figure 4(c) shows the
featurestracked by the KL T algorithm within a predetermined
radiusfromthesitein theinfant’ sleft foot. In thefirst frame of
the sequence (i.e., frame 0), the KLT algorithm selected four
features within the neighborhood of the site indicated by a
circle. It is apparent from Figure 4(c) that one of the original
features has been lost in frame 14. Only two of the featuresin
the neighborhood of the site were tracked by the KLT
algorithm in subsequent frames of the sequence. One of these
features provided the reference for tracking the sitethrough the
entire sequence. The strategy described above allowed the
tracking of the site through the frame sequence even in cases
where some of the featuresin its close neighborhood were lost
by the KLT algorithm at some point in time. When the radius
was sufficiently small, there were no noticeable differences
between the ideal temporal signals (i.e, the signas
corresponding to projections of the site) and the resulting
temporal signals (i.e, the signals corresponding to the
projections of the features tracked by the algorithm). The
experiments indicated that the selection of a small radius
improved the accuracy of the tracking process but also
increased the likelihood of losing all features closeto the site.
The trade-off typically associated with the selection of the
radius motivated an extension of the KLT algorithm that
improved its ability to recover thesiteevenif al featuresinits
close neighborhood arelost. Thelocation of the sitein the next
frame was predicted in this study through alinear model based
on the history of its motion in the previous frames. After the
sitewasrecovered by the method used for prediction, theKLT
agorithm was used to track a new set of featuresin its close
neighborhood.

4. EXPERIMENTAL RESULTS

The two procedures described above were evaluated on the
video recordings of neonatal seizuresand other clinical events
representing normal and abnormal infant behaviors not dueto
seizures (Karayiannis et al., 2001). Figures 5 and 6 show the
four temporal signals extracted from video recordings of a
myoclonic seizure and afocal clonic seizure, respectively. The
locations of the moving body parts during theclinical event are
shown in representative frames of each video recording. The
frames of the video recordings shown in Figures 5 and 6 can
be used as areference to verify the consistency of thetemporal
signals with the corresponding clinical events. The values of
the signal s corresponding to the frames shown at the bottom of
each figure are indicated by dots, while the moving body part
in each video recording is shown within a box.

In the myoclonic seizure shown in Figure 5, the infant’s
left leg movesto theright of the frame between frames 10 and
16 (Figure 5 shows only frame 14). This movement was
captured by the temporal signal obtained as the projection of
the moving part to the horizontal axis. The temporal signal
obtained as the projection of the moving part to the vertical
axisindicatesthat the left leg also movestoward the top of the
frame, which can be verified by comparing frames 0 and 14 of
the sequence. The motor activity observed between frames 10
and 16 was also captured by the temporal motion strength
signals measuring the area and scaled area of the moving part,
asisclearly indicated by their spikes between frames 10 and
16. The infant’s left leg remains at an almost fixed position
between frames 50 and 150. Inthistimeinterval, the temporal
motor activity signals are amost flat. Figure 6 indicates that
thetemporal signals produced by the two proposed procedures
capture and quantify the differences between myoclonic and
focal clonic seizures. In the case of myoclonic seizures, the
temporal motor activity signals are consistent with the “jerky”
movements that are the typical signatures of such events. The
temporal motion strength signals contain a significant spike
and a few weaker spikes. In the case of focal clonic seizures,
the temporal motor activity signals captured and quantified the
rhythmicity that characterizes the movements of such clinical
events. Thetemporal motion strength signals contain multiple
spikes that correspond very well with their rhythmic
movements.

5.CONCLUSIONSAND FUTURE RESEARCH

The experiments conducted in this study proved thefeasibility
of the procedures proposed for extracting quantitative
information from video recordings of neonatal seizures and
other normal and abnormal infant behaviors. Further
improvement and refinement of the procedures developed in
this study can produce temporal motion strength and motor
activity signals that constitute a consistent and effective
representation of videotaped clinical events.

The robustness of the procedure developed to extract
motion strength signals may be enhanced by employing a
segmentation technique that relies on vector quantization. Itis
expected that the use of vector quantization will improve the
segmentation results by exploiting the spatial correlation
within each frame. The correlation among pixelsin the same
frame was ignored in the preliminary study, which relied on
scalar quantization. The results of segmentation may also be
improved by replacing the c-means algorithm by competitive
learning vector quantization algorithms (Karayiannis and Pai,
1996; Karayiannis, 1997), which have been successfully tested
onavariety of medical imaging applications (Karayiannisand
Pai, 1999).
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Figure 5: Temporal signals produced for avideo recording of afocal myoclonic seizure affecting the infant’s left leg: (a) temporal

motion strength signals; (b) temporal motor activity signals; (c) selected frames of the sequence.
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Figure 6: Temporal signals produced for a video recording of afocal clonic seizure affecting the infant’s right hand: (a) temporal
motion strength signals; (b) temporal motor activity signals; (c) selected frames of the sequence.




The extraction of temporal motor activity signals for
clinical events involving movements of multiple body parts
may be accomplished by extending and improving the existing
procedure to make it capable of tracking multiple sites
throughout each frame sequence. Tracking of multiple
anatomical sites during the seizure also requires the
development of an automated procedure for detecting the
moving body part(s). These objectives may be accomplished
by developing motion detection procedures and subsequently
incorporating motion in the criteriaused by the KLT algorithm
for rejecting features throughout the frame sequence. More
specifically, the KLT agorithm can be modified to track
features located at moving body parts with higher priority.
Such a strategy isexpected to prevent the rejection of features
located at moving body parts. Thiswill essentially improvethe
procedure used for extracting temporal motor activity signals
by minimizing the number of lost features located on the
moving body part(s) tracked by the KL T algorithm.

The extraction of motion strength signals may also be
accomplished by relying on active geodesic region models,
which were developed for motion estimation and tracking of
moving objectsin video (Paragios and Deriche, 1999; 2000).
Motion strength signals may be extracted by computing the
area of the active geodesic region corresponding to moving
body parts. The extraction of motor activity signals may also
be accomplished by relying on active contour models, which
are commonly referred to as“snakes’ and were developed to
simultaneously perform segmentation of noisy images and
track objectsthat may deform and movein aplane (Kassetal.,
1987; Williams and Shah, 1992; Blake and Isard, 1998).
Motor activity signals may be extracted by projecting to the
horizontal and vertical axes selected points of the contours of
moving body parts.

Thelong-term goal of the proposed researchisto integrate
the computational procedures outlined in this paper into the
development of a stand-al one automated system that could be
used as a supplement in the neonatal intensive care unit to: 1)
provide 24-hour a day noninvasive monitoring of infants at
risk for seizures, and 2) facilitate the anaysis and
characterization of videotaped neonatal seizureshy physicians
during retrospective review. Thisgoal will be accomplished by
developing an intelligent system capable of recognizing focal
clonic and myoclonic seizures and distinguishing them from
videotaped clinical events characterized by increased motor
activity of the infant’s extremities. The development of a
seizure recognition system will be attempted by: 1) training
static neural networks (i.e., neural network models without
memory) using features selected from the temporal signals
extracted from video recordings, and 2) training dynamic
neura networks (i.e., neural network models with memory)
using directly the temporal signals extracted from video
recordings. Neural networks provide a solid basis for the
development of a seizure recognition system due to their
versatility and flexibility (Bishop, 1995; Haykin, 1999;
Karayiannis and Venetsanopoulos, 1993; Principe et a.,
1999).
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