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Abstract: This paper presents some recent advances in videometry that resulted from the development of video processing and analysis 
procedures designed to facilitate the quantification of neonatal seizures. This paper presents two automated procedures developed to 
extract temporal information from video recordings of neonatal seizures in the form of temporal motion strength and motor activity 
signals. These signals constitute an effective representation of videotaped clinical events and can be used in the development of an 
intelligent system for seizure recognition and characterization. 
 
1. INTRODUCTION 
 
Videometry [video + metron (Greek for measure)] can be 
defined as a collection of automated procedures and 
techniques developed in an attempt to extract, process, and 
analyze quantitative information from video recordings. 
Videometry is expected to flourish and gain significance in an 
era where video is becoming a necessary tool in many facets of 
human activity. This expectation is supported by the fact that 
the majority of scientific disciplines were developed in an 
attempt to satisfy certain human needs. This is especially true 
for disciplines developed to empower people with the ability to 
measure the world around them. A typical example is 
geometry, which was developed to provide a standard and 
undisputable methodology for measuring and redistributing the 
land after floods. The advancement of videometry is not really 
a choice but a necessity created by the transition from analog 
to digital video. A historical analogy can only be found in the 
revolutionary technological developments that were motivated 
by the advent of digital computers some decades ago. 
 Video is a rather unique imaging modality in the sense 
that it contains both temporal information (also contained in 1-
D signals that vary with time) and spatial information (also 
contained in 2-D still images). This implies that the extraction 
of quantitative information from video cannot be accomplished 
by simply borrowing or even by extending techniques and 
procedures developed for 1-D and 2-D signals. Another 
challenge associated with videometry is that the extraction of 
quantitative information from video essentially involves 
intelligent abstraction. More specifically, the automated 
procedures developed for videometry must focus on regions of 
the frames containing time-varying information while ignoring 
the redundancy that is typically present in image sequences. 
Such an operation requires some a priori knowledge of the 
specific information that must be extracted from video. This 
implies that automated techniques and procedures developed 
for videometry are essentially application-dependent. It is 
apparent from the above discussion that videometry cannot be 
developed in a vacuum but only in the context of practical 
applications. Such an application is the quantification of 
neonatal seizures from their video recordings, which will be 

the main focus of the research outlined in this paper. 
 
2. NEONATAL SEIZURES 
 
Seizures occur in approximately 2-5/1000 live births, 
depending upon studied populations and methodology 
(Eriksson and Zetterstrom, 1979; Holden et al., 1982; 
Bergman et al., 1983; Ellenberg et al., 1984; Spellacy et al., 
1987; Lanska et al., 1995; Ronen and Penney, 1995; Saliba et 
al., 1999). In addition, there may be different clinical 
manifestations and different consequences of neonatal seizures 
depending upon the conceptional age of the infant (Scher et al., 
1993; Volpe, 1995; Lanska et al., 1995). This is particularly 
true for premature infants and those infants who are critically 
ill in intensive care nurseries. In fact, the incidence of seizures 
in infants weighing less than 1500 grams is 57.5/1000 live 
births compared to 3.5/1000 live births for all birthweights 
(Lanska et al, 1995). Similarly, Scher et al. (1993) reported 
that seizures occurred in approximately 4% of premature 
infants less than 30 weeks conceptional age, although some 
have reported the incidence in this population reaching as high 
as 20% (Seay and Bray, 1977). These studies indicate that 
seizure occurrence represents the most frequent clinical sign of 
central nervous system disorders in the newborn (Fenichel, 
1990; Volpe, 1995; Mizrahi and Kellaway, 1998). These 
disturbances in cerebral function may result in significant long-
term adverse sequelae such as neurological handicaps, mental 
retardation, and postnatal epilepsy (Holden, et al., 1982; 
Mellitis et al., 1982; Bergman et al., 1983; Ellenberg et al., 
1984; Clancy and Legido, 1991; Scher et al., 1993; Volpe, 
1995; Bye et al., 1997; Mizrahi, 1999). The prompt 
identification of clinical seizures when they occur in the 
newborn, the subsequent evaluation of their etiology, and the 
institution of etiology-specific therapy may significantly 
reduce associated morbidity. In some situations, antiepileptic 
medication is provided to diminish the likelihood of recurrent 
seizures, and to lower the risk of physiologic instability during 
seizures. Thus, prompt recognition of seizures by nursery 
personnel is very important with regard to diagnosis and 
management of underlying neurological problems.  
 Despite the importance of seizure recognition, most 
neonatal intensive care units and nurseries have limited 
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resources for seizure identification. Neonatal seizures are 
currently detected in clinical settings only if a physician or a 
trained nurse is present while the seizures are occurring, which 
is not guaranteed. The attention of nursing personnel is 
distributed across a large number of infants, who are ill and 
require continuous bedside care. Neonatal seizures are often 
brief and may not be recognized since nurses and physicians 
cannot provide continuous surveillance of all infants at risk for 
clinical seizures. These factors illustrate the clear need for 
improved seizure surveillance methods that supplement direct 
observation by nurses and physicians, and that are practical 
and economically feasible. 
  Early attempts to characterize neonatal seizures involved 
primarily bedside observation and brief EEG recordings. The 
development of portable EEG/video/polygraphic monitoring 
techniques allows investigators to assess and characterize 
neonatal seizures at the bedside and permits retrospective 
review ( Penry et al., 1975; Ives and Gloor, 1978; Kellaway et 
al., 1978; Binnie et al., 1981; Luther et al., 1982; Mizrahi and 
Kellaway, 1984; Kellaway and Frost, 1985; Mizrahi, 1986; 
Mizrahi and Kellaway, 1987; Pierelli et al., 1989; Bye et al., 
1990; Ives et al., 1991; Oguni et al., 1992; Rector et al., 1993). 
These techniques are relatively expensive, are generally used 
for only a few hours of monitoring, and are not routinely 
available in many centers. The linkage of computer-based 
processing and analysis of video signals with seizure detection 
and characterization is an innovative approach that has never 
been used before. Automated processing and analysis of video 
recordings of neonatal seizures can generate novel methods for 
extracting quantitative information that is relevant only to the 
seizure. This information can be used to: 1) develop automated 
mechanisms capable of detecting the beginning of clinical 
seizures, 2) refine the characterization of repetitive motor 
behaviors, and 3) facilitate the differentiation of certain 
clinical seizures from other abnormal paroxysmal behaviors 
not due to seizures. A video system based upon automated 
analysis potentially offers a number of advantages. Infants who 
are at risk for seizures could be monitored continuously using 
relatively inexpensive and noninvasive video techniques that 
supplement direct observation by nursery personnel. This 
would represent a major advance in seizure surveillance and 
offers the possibility for earlier identification of potential 
neurological problems and subsequent intervention.  
 
3. EXTRACTION OF QUANTITATIVE 
INFORMATION FROM VIDEO  
 
The extraction of quantitative information from videotaped 
seizures must focus only on the moving parts of the infant’s 

body that are relevant to the seizure. This can be accomplished 
by two different but complementary procedures we briefly 
describe below (Karayiannis et al., 2001). 
 
3.1 Extraction of Temporal Motion Strength Signals 
 
The extraction from video recordings of visual information 
that is relevant only to the seizure can be accomplished by 
performing spatiotemporal subband decomposition of the 
image sequences that compose the video recording in order to 
identify the infant’s moving body parts. Subband 
decomposition allows the processing and analysis of signals, 
images, and image sequences (i.e., video) at different 
resolutions from a set of frequency-selective subbands (Mallat, 
1989; Daubechies, 1992; Tekalp, 1995). Wavelets became a 
popular tool for subband decomposition of images and video 
because of their good localization in both time and frequency 
(Mallat, 1989; Daubechies, 1992). 

Spatiotemporal decomposition of an image sequence 
begins with temporal decomposition, which is followed by 
spatial decomposition of the resulting temporal subbands. In 
the temporal decomposition phase, the frames of the image 
sequence are passed block-by-block through a filter bank 
containing a low-pass temporal filter and a high-pass temporal 
filter. If temporal decomposition is performed by a filter of 
length 2, each block contains two consecutive frames of the 
sequence and temporal filtering results in two subbands: the 
low-pass temporal (LPT) subband and the high-pass temporal 
(HPT) subband. In the spatial decomposition phase, each of 
the LPT and HPT subbands is passed through a filter bank that 
performs low-pass and high-pass filtering along the horizontal 
dimension, followed by downsampling by a factor of 2. Each 
of the resulting subbands is passed through a filter bank that 
performs low-pass and high-pass filtering along the vertical 
dimension, followed once again by downsampling by a factor 
of 2. This sequence  of operations completes one level of 
spatial decomposition of the LPT and HPT subbands. If 
necessary, the resulting subbands can be further decomposed. 
In Figure 1, the LPT subband has undergone two levels of 
spatial decomposition, which produced subbands 1-7. 
Subbands 8-11 were produced by one level of spatial 
decomposition of the HPT subband. Subband 8 contains the 
low frequency components of the HPT subband in both 
horizontal and vertical dimensions. As a result, subband 8 is 
often used as a motion detector instead of the HPT subband 
since it contains most of the information carried by the HPT 
subband and is reduced in size by a factor of 1/4 (Karayiannis 
and Li, 2001, Karayiannis et al., 2001). 
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pixels were assigned the intensity value of 0 (corresponding to 
black color). Thus, the segmentation process produced a 
sequence of black-and-white frames that display the moving 
body parts as white areas in a black background. Figure 2(d) 
shows the four frames produced by segmenting the frames 
shown in Figure 2(c). Segmentation eliminated all spurious 
clusters of pixels in frames 0, 100, and 200, which contained 
no moving body parts. Segmentation also eliminated the low 
intensity clusters of pixels from frame 14, which led to a better 
definition of the moving body part. The traces of the infant’s 
left leg are shown in frame 14 as white patches in a black 
background. 
 The experimental results indicated that the segmented 
frames may still contain a few spurious bright patches due to 
noise in the original video recording. The contribution of such 
spurious patches to the measurements extracted from video 
recordings was prevented in this study by tracking the 
centroids of the bright patches in the frame sequence produced 
by the segmentation process. Tracking was performed by 
considering only those areas whose centroids were present 
within a small radius between successive frames. Averaging all 
such areas over successive frames produced the temporal 
signal Aav(t), which measures the average area occupied by the 
moving body parts over time. The experiments indicated that 
seizure quantification may benefit by a scaling scheme that can 
magnify fast motion of small body parts while suppressing 
slow motion of bigger body parts that may not be caused by a 
seizure. Scaling was performed in this study by multiplying the 
areas of the moving parts by the distance covered by them 
between adjacent frames. This scheme produced the temporal 
signal Asc(t), which depends rather heavily on motion speed 
and can potentially facilitate the quantification of seizures 
involving small body parts. 
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Frame number: 0 

 

Frame number: 14 Frame number: 100 Frame number: 200 
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(c) 

    
(d) 

Figure 2: Extraction of temporal motion strength signals: (a) selected frames from a videotaped myoclonic seizure; (b) frames 
produced by computing subband 8 using spatiotemporal decomposition; (c) frames produced by applying median filtering on 
subband 8; (d) frames produced by segmenting the filtered version of subband 8. 

 
 
 
 
 
 



  
 
 
 

 
 
3.2 Extraction of Temporal Motor Activity Signals 
 
Neonatal seizures occur in a 3-D space but infants viewed in 
bed by a video system are confined in a 2-D plane. In this 
application, data reduction can be accomplished by projecting 
the location of selected anatomical sites to the horizontal and 
vertical axes. As the seizure progresses in time, these 
projections will produce temporal signals recording motor 
activity of the body parts of interest. 
 Figure 3 illustrates the mechanism that can be used for 
generating temporal signals tracking the movements of 
different parts of the infant’s body during focal clonic and 
myoclonic seizures. Figure 3 depicts a single frame containing 
the sketch of an infant’s body with four selected anatomical 
sites. In this particular configuration, XLL and YLL represent 
the projections of the site located at the left leg to the 
horizontal and vertical axes, respectively. The projections of 
the sites located at the right leg, left hand, and right hand are 
denoted by XRL and YRL, XLH and YLH, and XRH and YRH, 
respectively. As the infant moves its extremities, the locations 
of the sites in the frame will change, as will the projections of 
the sites to the horizontal and vertical axes. Recording the 
values of the projections from frame to frame of the 
videotaped seizure will generate four pairs of temporal signals, 
namely the signals XLL(t) and YLL(t) for the left leg, the signals 
XRL(t) and YRL(t) for the right leg, the signals XLH(t) and 
YLH(t) for the left hand, and the signals XRH(t) and YRH(t) for 
the right hand. For a given set of anatomical sites, each seizure 
will produce signature signals depending on its type and 
location. 

  The main objective of this study was the development of 
an automated algorithm capable of tracking the site of interest 
in successive frames of the video recording. This was 
accomplished by employing the KLT algorithm, a feature-
tracking procedure developed by Tomasi and Kanade (1991) 
based on earlier work by Lucas and Kanade (1981). The KLT 
algorithm automatically selects “good features” from the first 
frame of an image sequence. A good feature is one that can be 
tracked well throughout the entire image sequence (Tomasi 
and Kanade, 1991; Shi and Tomasi, 1994). 
 The latest version of the KLT algorithm was utilized in 
this study to track moving body parts in videotaped neonatal 
seizures and non-seizure infant behaviors. Figure 4(b) shows 
the location of 400 features selected and tracked by the KLT 
algorithm in the four frames of the videotaped myoclonic 
seizure shown in Figure 4(a). It is clear from Figure 4(b) that 
the features selected by the KLT algorithm in the first frame of 
the sequence (i.e., frame 0) were almost uniformly distributed 
over the entire frame area. However, the KLT algorithm 
became increasingly selective as the seizure progressed. In 
frames 14, 100, and 200, the KLT algorithm tracked features 
located at the frame area occupied by the infant’s body 
(including the moving body part) and the textured and non-
homogeneous areas of the background. In contrast, the KLT 
algorithm did not track throughout the entire sequence the 
features located at the homogeneous area between the infant’s 
legs at the lower-right quadrant of the frames.  

 
 
Figure 3: Extraction of temporal signals by projecting four selected anatomical si
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Frame number: 100 Frame number: 200 
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Figure 4: Extraction of temporal motor activity signals: (a) selected frames from a videotaped myoclonic seizure; (b) frames containing 
the features tracked by the KLT algorithm; (c) frames containing the features within a close neighborhood of the site; (d) frames 
containing the feature whose projections to the horizontal and vertical axes produced the motor activity signals. 
 
 
 
 
 
 



  
 
 
 

 Although the KLT algorithm was generally successful, in 
some cases the algorithm lost some features that were located 
at moving body parts tracked throughout the image sequence. 
The susceptibility of the KLT algorithm to “lost features” 
motivated the tracking of a sufficiently large number of 
features within a predetermined radius from the selected 
anatomical site in the frame sequence. Figure 4(c) shows the 
features tracked by the KLT algorithm within a predetermined 
radius from the site in the infant’s left foot. In the first frame of 
the sequence (i.e., frame 0), the KLT algorithm selected four 
features within the neighborhood of the site indicated by a 
circle. It is apparent from Figure 4(c) that one of the original 
features has been lost in frame 14. Only two of the features in 
the neighborhood of the site were tracked by the KLT 
algorithm in subsequent frames of the sequence. One of these 
features provided the reference for tracking the site through the 
entire sequence. The strategy described above allowed the 
tracking of the site through the frame sequence even in cases 
where some of the features in its close neighborhood were lost 
by the KLT algorithm at some point in time. When the radius 
was sufficiently small, there were no noticeable differences 
between the ideal temporal signals (i.e., the signals 
corresponding to projections of the site) and the resulting 
temporal signals (i.e., the signals corresponding to the 
projections of the features tracked by the algorithm). The 
experiments indicated that the selection of a small radius 
improved the accuracy of the tracking process but also 
increased the likelihood of losing all features close to the site. 
The trade-off typically associated with the selection of the 
radius motivated an extension of the KLT algorithm that 
improved its ability to recover the site even if all features in its 
close neighborhood are lost. The location of the site in the next 
frame was predicted in this study through a linear model based 
on the history of its motion in the previous frames.  After the 
site was recovered by the method used for prediction, the KLT 
algorithm was used to track a new set of features in its close 
neighborhood. 
 
4. EXPERIMENTAL RESULTS 
 
The two procedures described above were evaluated on the 
video recordings of neonatal seizures and other clinical events 
representing normal and abnormal infant behaviors not due to 
seizures (Karayiannis et al., 2001). Figures 5 and 6 show the 
four temporal signals extracted from video recordings of a 
myoclonic seizure and a focal clonic seizure, respectively. The 
locations of the moving body parts during the clinical event are 
shown in representative frames of each video recording. The 
frames of the video recordings shown in Figures 5 and 6 can 
be used as a reference to verify the consistency of the temporal 
signals with the corresponding clinical events. The values of 
the signals corresponding to the frames shown at the bottom of 
each figure are indicated by dots, while the moving body part 
in each video recording is shown within a box. 

 In the myoclonic seizure shown in Figure 5, the infant’s 
left leg moves to the right of the frame between frames 10 and 
16 (Figure 5 shows only frame 14). This movement was 
captured by the temporal signal obtained as the projection of 
the moving part to the horizontal axis. The temporal signal 
obtained as the projection of the moving part to the vertical 
axis indicates that the left leg also moves toward the top of the 
frame, which can be verified by comparing frames 0 and 14 of 
the sequence. The motor activity observed between frames 10 
and 16 was also captured by the temporal motion strength 
signals measuring the area and scaled area of the moving part, 
as is clearly indicated by their spikes between frames 10 and 
16. The infant’s left leg remains at an almost fixed position 
between frames 50 and 150. In this time interval, the temporal 
motor activity signals are almost flat. Figure 6 indicates that 
the temporal signals produced by the two proposed procedures 
capture and quantify the differences between myoclonic and 
focal clonic seizures. In the case of myoclonic seizures, the 
temporal motor activity signals are consistent with the “jerky” 
movements that are the typical signatures of such events. The 
temporal motion strength signals contain a significant spike 
and a few weaker spikes. In the case of focal clonic seizures, 
the temporal motor activity signals captured and quantified the 
rhythmicity that characterizes the movements of such clinical 
events. The temporal motion strength signals contain multiple 
spikes that correspond very well with their rhythmic 
movements.  
 
5. CONCLUSIONS AND FUTURE RESEARCH 
 
The experiments conducted in this study proved the feasibility 
of the procedures proposed for extracting quantitative 
information from video recordings of neonatal seizures and 
other normal and abnormal infant behaviors. Further 
improvement and refinement of the procedures developed in 
this study can produce temporal motion strength and motor 
activity signals that constitute a consistent and effective 
representation of videotaped clinical events. 
 The robustness of the procedure developed to extract 
motion strength signals may be enhanced by employing a 
segmentation technique that relies on vector quantization. It is 
expected that the use of vector quantization will improve the 
segmentation results by exploiting the spatial correlation 
within each frame. The correlation among pixels in the same 
frame was ignored in the preliminary study, which relied on 
scalar quantization. The results of segmentation may also be 
improved by replacing the c-means algorithm by competitive 
learning vector quantization algorithms (Karayiannis and Pai, 
1996; Karayiannis, 1997), which have been successfully tested 
on a variety of medical imaging applications (Karayiannis and 
Pai, 1999). 
 
 
 

 
 
 



  
 
 
 

Temporal Motion Strength Signals 
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Temporal Motor Activity Signals 
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Frame number:  0 Frame number:  14 Frame number:  100 Frame number:  200 

(c) 
Figure 5:  Temporal signals produced for a video recording of a focal myoclonic seizure affecting the infant’s left leg: (a) temporal 
motion strength signals; (b) temporal motor activity signals; (c) selected frames of the sequence. 
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Temporal Motion Strength Signals 
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Temporal Motor Activity Signals 

 

 
(b) 

    
Frame number:  0 Frame number:  40 Frame number:  50 Frame number:  230 

(c) 
Figure 6:  Temporal signals produced for a video recording of a focal clonic seizure affecting the infant’s right hand: (a) temporal 
motion strength signals; (b) temporal motor activity signals; (c) selected frames of the sequence. 
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 The extraction of temporal motor activity signals for 
clinical events involving movements of multiple body parts 
may be accomplished by extending and improving the existing 
procedure to make it capable of tracking multiple sites 
throughout each frame sequence. Tracking of multiple 
anatomical sites during the seizure also requires the 
development of an automated procedure for detecting the 
moving body part(s). These objectives may be accomplished 
by developing motion detection procedures and subsequently 
incorporating motion in the criteria used by the KLT algorithm 
for rejecting features throughout the frame sequence. More 
specifically, the KLT algorithm can be modified to track 
features located at moving body parts with higher priority. 
Such a strategy is expected to prevent the rejection of features 
located at moving body parts. This will essentially improve the 
procedure used for extracting temporal motor activity signals 
by minimizing the number of lost features located on the 
moving body part(s) tracked by the KLT algorithm. 
 The extraction of motion strength signals may also be 
accomplished by relying on active geodesic region models, 
which were developed for motion estimation and tracking of 
moving objects in video (Paragios and Deriche, 1999; 2000). 
Motion strength signals may be extracted by computing the 
area of the active geodesic region corresponding to moving 
body parts. The extraction of motor activity signals may also 
be accomplished by relying on active contour models, which 
are commonly referred to as “snakes” and  were developed to 
simultaneously perform segmentation of noisy images and 
track objects that may deform and move in a plane (Kass et al., 
1987; Williams and Shah, 1992; Blake and Isard, 1998). 
Motor activity signals may be extracted by projecting to the 
horizontal and vertical axes selected points of the contours of 
moving body parts. 
 The long-term goal of the proposed research is to integrate 
the computational procedures outlined in this paper into the 
development of a stand-alone automated system that could be 
used as a supplement in the neonatal intensive care unit to: 1) 
provide 24-hour a day noninvasive monitoring of infants at 
risk for seizures, and 2) facilitate the analysis and 
characterization of videotaped neonatal seizures by physicians 
during retrospective review. This goal will be accomplished by 
developing an intelligent system capable of recognizing focal 
clonic and myoclonic seizures and distinguishing them from 
videotaped clinical events characterized by increased motor 
activity of the infant’s extremities. The development of a 
seizure recognition system will be attempted by: 1) training 
static neural networks (i.e., neural network models without 
memory) using features selected from the temporal signals 
extracted from video recordings, and 2) training dynamic 
neural networks (i.e., neural network models with memory) 
using directly the temporal signals extracted from video 
recordings. Neural networks provide a solid basis for the 
development of a seizure recognition system due to their 
versatility and flexibility (Bishop, 1995; Haykin, 1999; 
Karayiannis and Venetsanopoulos, 1993; Principe et al., 
1999).  
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