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  Abstract 
 
 
While Rogoff (1996) describes the “remarkable consensus” of 3 to 5 year half-lives of 
purchasing power parity deviations among studies using long-horizon data, recent papers 
using panel methods with post-1973 data report shorter half-lives of 2 to 2.5 years.  
These studies, however, do not use appropriate techniques to measure persistence.  We 
extend median-unbiased estimation methods to the panel context, calculate both point 
estimates and confidence intervals, and provide strong evidence confirming Rogoff’s 
original claim.  While panel regressions provide more information on the persistence of 
real exchange shocks than univariate regressions, they do not help solve the purchasing 
power parity puzzle. 
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1. Introduction 
 
 Rogoff’s (1996) purchasing power parity puzzle involves the difficulty of reconciling 

very high short-term volatility of real exchange rates with very slow rates of mean 

reversion.  In a much-quoted phrase, he describes the “remarkable consensus” of 3 to 5 

year half-lives of purchasing power parity (PPP) deviations among various studies.  The 

PPP puzzle has inspired a good deal of research, much of it directed at attempts to 

“solve” the PPP puzzle by reducing the half-lives. 

 The empirical work that Rogoff cites in support of his three to five year consensus 

mostly comes from univariate studies with long-horizon data.1 More recent panel studies 

using quarterly, post-Bretton-Woods data with nominal exchange rates deflated by 

consumer price indexes and the United States dollar as the numeraire currency, including 

Wu (1996), Papell (1997, 2002), Fleissig and Strauss (2000), and Papell and Theodoridis 

(2001), find shorter half-lives of 2 to 2.5 years.     

 These shorter half-lives appear to be influencing perceptions of the magnitude of the 

PPP puzzle.  Cheung, Chinn, and Fujii (2001) use 2 to 2.5 years to describe the results of 

the more recent studies.  Engel and Morley (2001) use 2.5 to 5 years to describe the 

“typical” estimate of half-lives, followed by the quote from Rogoff (1996) which 

contains the 3 to 5 year consensus.  Obstfeld (2001) writes “The best current estimates of 

real exchange rate persistence suggest that under floating nominal exchange rate regimes, 

the half-lives of real exchange rates shocks range from 2 to 4.5 years.”  If the point 

estimate of half-lives of PPP deviations is 2.5 rather than 4 (the average of Rogoff’s 3 to 

                                                           
1 He does discuss two early panel studies.  Frankel and Rose (1996) use annual data while Wei and Parsley 
(1995) use sectoral data. 
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5) years, it is much more likely that models with nominal rigidities (or future 

modifications of such models) will be able to “solve” the PPP puzzle. 

 This paper argues that the evidence of shorter half-lives from panel methods applied 

to post-1973 data is misleading.  The reason is straightforward.  These studies typically 

use panel versions of Augmented Dickey-Fuller (ADF) tests to investigate whether the 

null hypothesis of a unit root in real exchange rates can be rejected.  The least squares 

estimate of the parameter of interest, α, the sum of the autoregressive coefficients, is 

significantly downward biased in models that contain an intercept or an intercept and a 

time trend.  The bias becomes more severe as α gets larger, which has particular 

relevance for the case of real exchange rates.  Moreover, the half-life, the expected 

number of years for a PPP deviation to decay by 50%, is a nonlinear function of α, which 

accentuates the bias. 

 These issues are addressed in the univariate context for first order AR models by 

Andrews (1993), who shows how to calculate exactly median-unbiased estimates, as well 

as exact confidence intervals, for half-lives in Dickey-Fuller (DF) regressions.  Andrews 

and Chen (1994) show how to perform approximately median-unbiased estimation in 

ADF regressions. Median-unbiased estimators have the desirable properties that their 

point estimates remain median-unbiased and the coverage probabilities of their 

confidence intervals are invariant under monotonic transformations.  This is important 

because the least squares estimate of the half-life, )ln(/)5.0ln( LSα , is a monotonic 

transformation of the least squares estimate αLS.  If we replace αLS with a median-

unbiased estimate, αMU, the half-life estimate will also be median-unbiased. 
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 Murray and Papell (2002) use median-unbiased estimation methods with both annual 

long-horizon and quarterly post-1973 real exchange rate data.  With long-horizon data, 

the median value of the point estimates of PPP deviations from the univariate regressions 

is 3.98 years, almost in the middle of Rogoff’s 3-5 year range.  With post-1973 data, the 

median half-life is 3.07 years, near the bottom, but still within, Rogoff’s consensus.  The 

median bounds of the confidence intervals, however, especially with the post-1973 data, 

are much too wide to be informative.   

 Murray and Papell (2004) use these methods to re-examine the evidence of slow 

mean reversion for the long-horizon dollar-sterling real exchange rate found by Lothian 

and Taylor (1996).  Using their specification, we show that they underestimate the half-

lives of PPP deviations, and thus overestimate the speed of mean reversion. When their 

specification is amended to allow for serial correlation, the speed of mean reversion falls 

even further. These results make resolution of the purchasing power parity puzzle more 

problematic. 

 The purpose of this paper is to extend median-unbiased estimation methods to the 

panel context and to investigate the implications of these methods for the persistence of 

deviations from PPP.  We first compute least squares estimates of the half-life in panel 

ADF regressions.  Using GS lag selection, the point estimate of the half-life is 2.35 years, 

with bounds on the 95% bootstrap confidence interval of 1.29 and 2.22 years.  With 

MAIC lag selection, the half-life estimate is 2.90 years, with a confidence interval of 

[1.47, 2.74] years.  While the point estimates seems reasonable, there is obviously 

something wrong when the upper bound of the 95% confidence interval lies below the 

point estimate.  This failure of the bootstrap confidence interval reflects the bias inherent 
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in least squares estimates of AR parameters, as well as an additional layer of bias, since 

the data generating process in the bootstrap is based on a biased estimate. 

 We proceed to compute approximately median-unbiased estimates of half-lives in 

panel ADF regressions.  Our median point estimate is 3.55 years, with bounds on the 

95% confidence interval of 2.48 and 4.09 years.  We therefore conclude that panel 

methods applied to post-1973 data do not solve the purchasing power parity puzzle.  Both 

the point estimates and the confidence intervals are consistent with Rogoff’s 3 – 5 year 

consensus. 

2. Persistence of PPP deviations 

 Purchasing Power Parity is the hypothesis that, following a disturbance, the real 

exchange rate reverts in the long run to a constant mean.  We consider real exchange 

rates with the United States dollar as the numeraire currency, which are calculated as 

follows: 

ppeq −+= * , (1)           

where q is the logarithm of the real exchange rate, e is the logarithm of the nominal 

(dollar) exchange rate, p is the logarithm of the domestic CPI, and p* is the logarithm of 

the U.S. CPI. 

 The Dickey-Fuller model regresses the real exchange rate on a constant and its lagged 

level:  

ttt uqcq ++= −1α . (2) 
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The null hypothesis of a unit root is rejected in favor of long run PPP if α is significantly 

less than unity.2  A time trend is not included in equation (2) because such an inclusion 

would be theoretically inconsistent with long run PPP.3     

 The Augmented Dickey-Fuller regression adds k first differences of the real exchange 

rate to Equation (2) in order to allow for serial correlation:  

  . (3) 

Again, the unit root null is rejected in favor of long run PPP if α is significantly less than 

one. 

∑
=
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 A panel extension of the DF regression which allows for heterogeneous intercepts 

would involve estimating the following equations, 

  ittiiit uqcq ++= −1,α , (4)                                     

where the subscript i indexes the country and ci denotes the country-specific intercept.  

Alternatively, a panel extension of the ADF regression model which allows for a 

heterogeneous intercept, as well as serially and contemporaneously correlated residuals, 

is written 

∑
=

−− +∆++=
ik

j
itjtiijtiit uqqcq

1
,1 ψα . (5) 

We follow Levin, Lin, and Chu (2002) and restrict the value of α to be equal for every 

country in the panel.  The null hypothesis is that all of the series contain a unit root and 

the alternative is that they are all stationary.  This is in contrast with panel unit root tests, 

                                                           
2 The literature on testing for PPP is voluminous.  In comparison with unit root tests using CPI-based real 
exchange rates, evidence of stationarity is typically stronger using indices of traded goods, see Xu (2003), 
or testing for cointegration between the nominal exchange rate and relative prices, see Pedroni (2001). 
3 See Papell and Prodan (2004) for a further discussion of this issue. 
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such as Im, Pesaran, and Shin (2003), which allow α to vary across countries.  In that 

case, the null hypothesis is that all of the series contain a unit root and the alternative is 

that at least one of the series is stationary.   

 In order to allow for contemporaneous correlation of the errors, Equations (4) and (5) 

are estimated using feasible GLS (seemingly unrelated regressions), with α equated 

across countries.  In Abuaf and Jorion (1990), Equation (4) is used for long-horizon 

annual data and the value of k is set to 12 in Equation (5) for post-1973 monthly data.  In 

Papell (1997), the values for k are heterogeneous and are taken from the results of 

univariate ADF regressions using the general-to-specific criteria. 

 Our concern in this paper is to calculate point estimates and confidence intervals of 

the speed of adjustment to PPP in the panel model, rather than to focus on the statistical 

question of whether or not the hypothesis of unit roots in real exchange rates can be 

rejected.  The most commonly used measure of persistence is the half-life, the expected 

number of years for a PPP deviation to decay by 50%, calculated by ln( )ln(/)5.0 α .  In the 

univariate DF regression, α is a complete scalar measure of persistence.  In the more 

general ADF regression, it is preferable to calculate the half-life from the impulse 

response function, since ln( )ln(/)5.0 α assumes a monotonic rate of decay which does not 

necessarily occur in higher order AR models.  In the panel ADF model, with or without 

serial correlation, the only way to calculate the half-life is from α because the lag lengths 

(ki) and the serial correlation coefficients (ψij) in Equation (5) vary across countries.4    

                                                           
4 An exception would be the model estimated by O’Connell (1998), where the k’s and the c’s are 
homogeneous across countries.  As shown by Papell and Theodoridis (2001), however, these homogeneity 
restrictions are not supported empirically. 
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 As described above, we restrict the value of α, and thus the half-lives, to be equal for 

every country in the panel.  To lend credence to our homogeneity restriction, we 

conducted Wald tests for the null hypothesis that αα =i , assuming that the panel is 

stationary.  For both methods of lag selection that we consider, we fail to reject the null 

hypothesis and proceed under the assumption that homogeneity is reasonable for this 

sample.5   

 The problem with these half-life calculations is that the least squares estimates of α 

are significantly downward biased for the variants of the models that contain an intercept 

and have a value of α  fairly close to unity.6  Andrews (1993) constructs exactly median-

unbiased estimates of α.  The intuition behind median-unbiased estimation is as follows.  

Given the least squares estimate, LSα , we find the value of α such that the median of the 

least squares estimate is LSα .  This is the median-unbiased estimator of α, denoted MUα .  

One example from Andrews’ (1993) tables is particularly relevant for PPP.  Suppose that 

the true series had α equal to 1.0, so that the real exchange rate contained a unit root and 

PPP did not hold.  With 100 observations (the approximate length of post-1973 quarterly 

data), the median of the least squares estimate of α is 0.957.  The implied half-life is 3.94 

                                                           
5 Imbs et. al. (2004) argue that cross-sectional aggregation can impart an upward bias to half-life estimates. 
The estimated bias in that paper, however, is entirely due to heterogeneity of convergence rates among the 
sectors that comprise national price indexes, not to heterogeneity of convergence rates among the countries 
that comprise their panels.  Choi, Mark, and Sul (2004) fail to reject the homogeneity hypothesis for α with 
the same panel of real exchange rates as ours, but in an AR(1) context with annual data  from 1948 – 1998, 
and conclude that cross-country heterogeneity in α does not constitute a significant source of bias. 
6 Taylor (2001) argues that, because of time aggregation bias, least squares estimates of α are upward 
biased.   If time aggregation were a significant source of bias, estimates of half-lives of PPP deviations 
using quarterly data should be systematically larger than estimates of half-lives of PPP deviations using 
monthly data, but that does not seem to be the case.  Papell (1997), for example, reports half-lives of about 
2.5 years with data of both frequencies. 
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years, almost exactly in the middle of Rogoff’s consensus, when in fact the true half life 

is infinite. 

 As discussed in Andrews and Chen (1994), in ADF regressions, the median-unbiased 

estimator of α is no longer exact, but approximate.  This is because the median-unbiased 

estimator of α depends on the true values of the ψj terms in Equation (3), which are 

unknown. They propose an iterative procedure to obtain approximately median-unbiased 

estimates of α, as well as ψ1, …, ψk. The intuition behind obtaining the approximately 

median-unbiased estimate, AMUα , in Equation (2) is the same as in the exactly median-

unbiased case.  Conditional on the least squares estimates of ψ1, …, ψk, we find the value 

of α such that the least squares estimator has αLS as its median; call this AMU,1α . 

Conditional on AMU,1α , we obtain a new set of estimates of ψ1, …, ψk and proceed to 

calculate a new median-unbiased estimate of α conditional on these coefficients; call this 

AMU,2α .  The final estimate AMUα  is obtained when convergence occurs. 

3. Extension of Median-Unbiased Estimation Methods to Panels 

 In this section, we propose an ad hoc extension of the Andrews (1993) and Andrews 

and Chen (1994) univariate median-unbiased estimation techniques to the case of more 

than one time series.  In the exactly median-unbiased case, we seek to correct for the 

median-bias of α in the following panel DF regression: 

  ittiiit uqcq ++= −1,α , 

where time is indexed from t = 1, 2, …, T and the number of series is indexed from n = 1, 

2, … N.  The above panel DF regression is estimated via feasible GLS subject to the 
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restriction that α is equal across equations.  This framework allows for both serially and 

contemporaneously correlated errors. 

 As a demonstration that median-bias is a relevant consideration in panel DF 

regressions, we have computed MUα  for 1001 =+T  and 20=N .  The artificial data are 

generated as AR(1) processes with zero intercept7, common α, and serially and 

contemporaneously uncorrelated Gaussian errors.8  Due to the high computational cost of 

calculating MUα  in panel DF regressions, we consider α = 1.0, 0.99, 0.97, 0.95, 0.93, 

0.91, 0.90, 0.85, and 0.80, although in principal any value of α ∈ (-1,1] can be 

considered.  

 In our simulations, the median function is always monotonic, and the median-

unbiased estimator is therefore well defined.  However, the median function can be 

hump-shaped, or nonmonotonic, near unity for very small values of T.  In a univariate 

context, Andrews (1993) reports that the 0.95 quantile function is hump-shaped in the 

vicinity of unity for small values of T when a constant is not included in the regression.  

Phillips and Sul (2003) discuss this issue in a panel context.  Their simulation evidence 

suggests that for  and T  nonmontonicity of the median function is not an 

issue.  In our subsequent empirical example, our dataset far exceeds these values of N and 

T, and we will therefore not have to worry about nonmonotonicity of the median 

function.  Our exactly median-unbiased estimators, as well as 90% and 95% confidence 

5≥N 20≥

                                                           
7 The value of the intercept does not affect the median-bias of α. 
8 In our subsequent empirical application, we allow the errors to be serially and contemporaneously 
correlated. 
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intervals, are reported in panel A of Table 1.  For comparison, we have also reported 

Andrews’ (1993) exactly median-unbiased estimator for T + 1 = 100 and N =1.9   

 There are three interesting comparisons to be made between our panel median-

unbiased estimator and Andrews’ univariate median-unbiased estimator.  First, as in the 

univariate case, the panel estimates are biased downward with the bias more severe the 

closer α is to unity.  For example, when 93.0=α , the panel estimator has a median-bias 

of -0.03 while, when 80.0=α , the median-bias is -0.004.  Second, the median-bias is not 

quite as severe in the panel DF regression as in the univariate DF regression.  For 

example, when 97.0=α , Andrews’ estimator has a median-bias of -0.037, whereas our 

panel estimator has a median-bias of -0.034.  Third, the confidence intervals for our panel 

estimator are tighter than the confidence intervals for Andrews’ univariate estimator.  

These features accord with intuition.  Correctly imposing the restriction that α is equal 

across equations is information not available in a univariate context and should lead to an 

estimate closer to the true value.  Similarly, when we estimate a system of equations and 

impose correct cross equation restrictions, we achieve an increase in efficiency. 

 Turning now to approximately median-unbiased estimation of α in panel ADF 

regressions, we propose an ad hoc extension of the univariate Andrews and Chen (1994) 

approximately median-unbiased estimator.   Conditional on i1ψ , i2ψ , …, iki
ψ  for i = 1, 2, 

…, N, we calculate the approximately median-unbiased estimator of α in the panel ADF 

regression, AMU,1α .  Conditional on AMU,1α  we obtain new estimates of i1ψ , i2ψ , …, iki
ψ  

which we use to calculate AMU,2α .  AMUα  is obtained when convergence occurs. 

 

                                                           
9 Andrews (1993) only reports 90% confidence intervals. 
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4. Empirical Results 

 We now turn to the data.  Our data consist of 20 quarterly U.S. dollar denominated 

real exchange rates from 1973.1 through 1998.2.10  While there is a large literature on lag 

selection in univariate unit root tests, there is little guidance on how to choose the lag 

length in panel unit root regressions so that the resulting test has good size and power.  

We employ the two most commonly used methods of choosing k:  the general-to-specific 

(GS) procedure of Hall (1994) and Ng and Perron (1995), and the modified Akaike 

information criterion (MAIC) of Ng and Perron (2001).  We set the maximum lag at 12, 

which is the convention with quarterly data. 

 Our results are presented in Table 2.  For the panel ADF regression with GS lag 

selection, the least squares estimate of α is 0.929, implying a half-life of 2.35 years.  

When the MAIC is used, we find a least squares estimate of 0.942, which corresponds to 

a half-life of 2.90 years. We have also supplemented these point estimates with 

parametric bootstrap confidence intervals.  In the bootstrap, the covariance matrix of the 

errors is set to equal the covariance matrix of the least squares residuals.  The 95% 

bootstrap confidence interval for the least squares half-life is [1.29, 2.22] years with GS 

lag selection, and [1.47, 2.74] years when the MAIC is employed.  Taken at face value, 

these confidence intervals solve the PPP puzzle.  The upper bounds are below the lower 

end of Rogoff’s consensus, and the lower bounds are consistent with half-lives implied 

by models with nominal rigidities.  Notice however, that the failure of the bootstrap is so 

severe in this case that the 95% confidence intervals lie entirely below the point 

                                                           
10 These are the same data used by Murray and Papell (2002).  The 20 countries are Australia, Austria, 
Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, The Netherlands, 
New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom.  We end the data 
in 1998.2 when the nominal exchange rates among the Euro countries became irrevocably fixed. 
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estimates.  This reflects the bias inherent in least squares estimates of α when the true 

value is close to unity.  In addition, these bootstrap confidence intervals have an 

additional layer of bias, since they reflect biased estimates based on a biased 

parameterization.11  These results suggest that the practice of bootstrapping least squares 

half-life estimates in panel regressions with small samples should be avoided. 

 We now turn to correcting for median-bias in panel ADF regressions.  To allow for 

contemporaneous correlation, the covariance matrix of the errors in our simulations is set 

equal to the covariance matrix of the least squares residuals.  Since our ADF regressions 

capture serial correlation, this framework allows for both serially and contemporaneously 

correlated errors.  These results are also reported in Table 2.  When GS lag selection is 

used, we find an approximately median-unbiased estimate of α of 0.933, implying a half-

life of 2.50 years.  The 95% confidence interval is [2.25, 2.85] years.  With MAIC lag 

selection, the approximately median-unbiased estimate of α is 0.963, implying a half-life 

of 4.60 years.  The 95% confidence interval in this case is [2.71, 5.33] years.  The 

differences between these confidence intervals is of course entirely due to the chosen lag 

lengths.  For this dataset, GS typically leads to a higher value of k than MAIC.  Eight of 

the twenty exchange rates have values of k in the range 6 – 8.  The lowest value of k 

chosen by GS is 3.  In contrast, the MAIC results in a much more parsimonious panel.  

Eleven of the twenty time series have k = 0, and the largest value of k chosen is 5.  It is 

not surprising that the more parsimonious panel leads to a larger estimate of the half-life.  

Since there is no reason to prefer one of these confidence intervals over the other, we 

                                                           
11 Kilian (1998) discusses this issue. 
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consider the median of the two confidence intervals, which is [2.48, 4.09] years.12   This 

interval is very close to Rogoff’s 3 – 5 year consensus.  In particular, the lower bound is 

large enough to rule out economic models with nominal rigidities as candidates for 

explaining the observed behavior of real exchange rates.   

 We again note that the estimated half-lives, and 95% confidence intervals, are 

calculated directly from α, and are not based on an impulse response function.  The 

reason for this is that  and ik ijψ  are not equal across countries in the panel.  As such, 

there is no impulse response function for the entire panel.  Calculating the half-life 

directly from α is potentially problematic, since this assumes that shocks decay at a 

monotonic rate.  For AR processes with k > 1, shocks do not necessarily decay 

monotonically, so calculating half-lives based on α is potentially misleading.  

Nevertheless, previous research has demonstrated that for this data set, there are only 

minor differences between calculating the half-life from )ln(/)5.0ln( α  or the impulse 

response function.  Murray and Papell (2002) report univariate median-unbiased point 

estimates and confidence intervals for half-lives based on α and the impulse response 

function for the data set used here.  The results are strikingly similar.  The point estimates 

for both methods are very close, and the confidence intervals are virtually identical.  

Therefore, we think that computing the half-lives based on α  for this data set is not 

misleading. 

 To quantify the benefit of working in a panel context, we compare our results to their 

univariate counterparts.  For the same dataset, Murray and Papell (2002) compute 

                                                           
12 Since we have an 2 confidence intervals, we calculate the median lower bound as the mean of the 2 
lower bounds, etc. 
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univariate half-lives using GS lag selection.  When the half-life is computed directly from 

α, their median half-life confidence interval is [0.74, ∞) years.  We have also redone 

Murray and Papell’s (2002) univariate approximately median-unbiased estimates (their 

Table 8) using the MAIC.  We report these results in Table 3.  The median 95% 

confidence interval when k is chosen by MAIC is [1.36, ∞) years.   Both of these 

confidence intervals are so wide that they are completely uninformative.  The lower 

bounds of about 1 year are consistent with a rate of convergence to PPP that is predicted 

by models with nominal rigidities, and the upper bounds are consistent with the failure of 

PPP to hold in the very long run.   

 Why are our panel confidence intervals so much tighter than their univariate 

counterparts?  We can think of two potential explanations.  First, panel tests have higher 

power than univariate tests because they exploit cross-sectional, as well as time series, 

variability.  Second, panel tests exploit the information contained in the contemporaneous 

correlation of the real exchange rates.  We investigate these explanations by conducting 

our panel median-unbiased simulations with contemporaneously uncorrelated errors.  The 

median-unbiased half-life intervals with uncorrelated errors are [2.66, 8.58] years and 

[3.60, 10.74] years for GS and MAIC respectively.  While these confidence intervals are 

narrower than their univariate counterparts reported in Table 3, they are wider than the 

confidence intervals with contemporaneous correlation reported in Table 2.  The gains in 

precision appear to come from both increased power and allowing the errors to be 

contemporaneously correlated.   
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5.   Summary and Concluding Remarks 

 By exploiting cross-sectional as well as time series variability, panel methods offer 

the promise of sharpening the evidence of purchasing power parity over the post-Bretton 

Woods flexible exchange rate period.  The purpose of this paper is to evaluate the 

evidence that these methods help solve the “Purchasing Power Parity Puzzle” by 

shortening estimates of half-lives of PPP deviations. 

 The focus of this paper is on the downward bias that least squares methods impart to 

half-life estimates.  We extend the median-unbiased estimation methods of Andrews 

(1993) and Andrews and Chen (1994) to the panel context.  We show that, in general, 

panel methods are subject to the same bias problems as univariate methods and, in 

particular, that these biases influence half-life estimates of PPP deviations.  For panel 

ADF regressions that allow for serially and contemporaneously correlated errors, the bias 

in the least squares estimates is so severe that the 95% bootstrap confidence intervals for 

the half-life lie entirely below the point estimates. 

 Using approximately median-unbiased methods, the median 95% panel ADF 

confidence interval for the half-life is [2.48, 4.09] years, close to Rogoff’s 3 – 5 year 

consensus.  It is worth remembering that Rogoff’s survey primarily consisted of studies 

applying univariate methods to long-horizon data.  Using panel methods and post-1973 

data, we provide strong confirmation of his evidence of long half-lives of PPP deviations.  

However, panels do not help solve the PPP puzzle.  Even the median lower bound of our 

95% confidence intervals, 2.48 years, is, in Rogoff’s words, “seemingly far too long to be 

explained by nominal rigidities.” 
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Table 1a.  Panel Median-Unbiased Estimator: N=20, T+1=100. 
 

ittiiit uqcq ++= −1,α  
 
 

α/Quantile 0.025 0.05 0.50 0.95 0.975 
      

1.0 0.948 0.951 0.966 0.977 0.979 
0.99 0.935 0.938 0.953 0.966 0.967 
0.97 0.916 0.919 0.936 0.949 0.951 
0.93 0.876 0.881 0.900 0.918 0.921 
0.90 0.846 0.851 0.873 0.892 0.897 
0.85 0.795 0.800 0.825 0.849 0.853 
0.80 0.745 0.750 0.776 0.801 0.805 

 
Table 1b.  Andrews (1993) Univariate Median-Unbiased Estimator: T+1=100. 

 
ttt uqcq ++= −1α  

 
α/Quantile 0.025 0.05 0.50 0.95 0.975 

      
1.0 n.a. 0.863 0.957 0.999 n.a. 
0.99 n.a. 0.854 0.950 0.994 n.a. 
0.97 n.a. 0.834 0.933 0.981 n.a. 
0.93 n.a. 0.788 0.897 0.956 n.a. 
0.90 n.a. 0.754 0.869 0.936 n.a. 
0.85 n.a. 0.697 0.821 0.900 n.a. 
0.80 n.a. 0.641 0.773 0.862 n.a. 
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Table 2.  Half-Lives in Panel Unit Root Regressions 
Quarterly Data: 1973:1-1998:2 

 
 
Lag 
Selection LSα  95% CI 

LSHL
 

95% CI 
MUα  95% CI 

MUHL
 

95% CI 

GS 
 

0.929 [0.874, 0.925] 2.35 [1.29, 2.22] 0.933 [0.926, 0.941] 2.50 [2.25,2.85] 

MAIC 
 

0.942 [0.889, 0.939] 2.90 [1.47, 2.74] 0.963 [0.938, 0.968] 4.60 [2.71, 5.33] 
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Table 3.  Approximately Median Unbiased Half-Lives in Augmented Dickey-Fuller 
Regressions. Quarterly Data: 1973:1-1998:2 

 

∑
=

−− +++=
k

i
tititt uqqcq

1
1 ∆ψα  

 
Country kMAIC LSα  HLLS MUα  95% CI MUHL  95% CI 
Australia 0 0.951 3.45 0.99 [0.91, 1.0] 17.24 [1.84, ∞) 
Austria 0 0.929 2.35 0.97 [0.88, 1.0] 5.67 [1.36, ∞) 
Belgium 3 0.932 2.46 0.96 [0.88, 1.0] 4.24 [1.36, ∞) 
Canada 3 0.974 6.58 1.0 [0.95, 1.0] ∞ [3.38, ∞) 
Denmark 3 0.923 2.16 0.95 [0.87, 1.0] 3.38 [1.24, ∞) 
Finland 5 0.915 1.95 0.94 [0.86, 1.0] 2.80 [1.15, ∞) 
France 0 0.932 2.46 0.97 [0.88, 1.0] 5.67 [1.36, ∞) 
Germany 0 0.929 2.35 0.97 [0.88, 1.0] 5.67 [1.36, ∞) 
Greece 5 0.928 2.32 0.96 [0.87, 1.0] 4.24 [1.24, ∞) 
Ireland 0 0.897 1.59 0.93 [0.83, 1.0] 2.39 [0.93, ∞) 
Italy 0 0.930 2.39 0.97 [0.88, 1.0] 5.67 [1.36, ∞) 
Japan 0 0.955 3.76 1.0 [0.92, 1.0] ∞ [2.08, ∞) 
Netherlands 0 0.925 2.22 0.96 [0.87, 1.0] 4.24 [1.24, ∞) 
New Zealand 0 0.926 2.25 0.96 [0.87, 1.0] 4.24 [1.24, ∞) 
Norway 0 0.912 1.88 0.95 [0.85, 1.0] 3.38 [1.07, ∞) 
Portugal 0 0.956 3.85 1.0 [0.92, 1.0] ∞ [2.08, ∞) 
Spain 1 0.946 3.12 0.98 [0.91, 1.0] 8.58 [1.84, ∞) 
Sweden 4 0.932 2.46 0.96 [0.88, 1.0] 4.24 [1.36, ∞) 
Switzerland 1 0.898 1.61 0.95 [0.83, 1.0] 3.38 [0.93, ∞) 
United Kingdom 0 0.919 2.05 0.96 [0.86, 1.0] 4.24 [1.15, ∞) 
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