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Stochastic Frontiers with Bounded Ine¢ ciency

Abstract

This paper introduces a new model of stochastic production frontier that
incorporates an unobservable bound for ine¢ ciency, which is naturally
instituted by market competition. We consider doubly truncated nor-
mal, truncated half-normal, and truncated exponential distributions to
model the ine¢ ciency component of the error term. We derive the form
of density function for the error term of each speci�cation, expressions
of the conditional mean of ine¢ ciency levels, and provide proofs of local
identi�ability of these models under di¤ering assumptions about the deep
parameters of the distributions. We examine skewness properties of our
new estimators and provide an explanation for the �nding of �incorrect�
skewness in many applied studies using the traditional stochastic frontier.
We extend the model to the panel data setting and specify a time-varying
ine¢ ciency bound as well as time-varying e¢ ciencies. A Monte Carlo
study is conducted to study the �nite sample performance of the max-
imum likelihood estimators in cross-sectional settings. Lastly we apply
the model to a study of US banks from 1984 to 2009 using a recently de-
veloped panel of over 4000 banks and also compare out �ndings to those
based on a set of competing speci�cations of the stochastic frontier model.
We �nd substantial increases in e¢ ciency after the regulatory reforms of
the 1980�s but also substantial backsliding during the 2005-2009 period
presaging the �nancial meltdown experienced in the US and elsewhere in
the last few years of the decade. This is the �rst study of which we are
aware to examine such determinants of the recent �nancial malaise that
has swept the international banking industry and international economies.

JEL classi�cation codes: C13, C21, C23, D24, G21.

Key words and phrases: Stochastic frontier, bounded ine¢ ciency, time-varying techni-
cal e¢ ciency, doubly truncated normal, truncated half normal, truncated exponential,
banking e¢ ciency.
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1 Introduction

The parametric approach to estimate stochastic production frontiers was introduced
by Aigner, Lovell, and Schmidt (1977), Meeusen and van den Broeck (1977), and
Battese and Corra (1977). These approaches speci�ed a parametric production func-
tion and a two-component error term. One component, re�ecting the in�uence of
many unaccountable factors on production as well as measurement error, is consid-
ered �noise�and is usually assumed to be normal. The other component describes
ine¢ ciency and is assumed to have a one-sided distribution, of which the conven-
tional candidates include the half normal (Aigner, et al., 1977), truncated normal
(Stevenson, 1980), exponential (Meeusen and van den Broeck, 1977) and gamma
(Greene 1980a,b, Stevenson, 1980).
In this paper we propose a new class of parametric stochastic frontier models with

a more �exible speci�cation of the ine¢ ciency term. Instead of allowing unbounded
support for the distribution of productive (cost) ine¢ ciency term in the right (left)
tail, we introduce an unobservable upper bound to ine¢ ciencies or a lower bound
to the e¢ ciencies, which we call the ine¢ ciency bound. The introduction of the
ine¢ ciency bound makes the parametric stochastic frontier model more appealing
for empirical studies in at least two aspects. Firstly, it is plausible to allow only
bounded support in many applications of stochastic frontier models. We may think
of two scenarios. One is where we study a competitive industry or market from which
the extremely ine¢ cient �rms are eliminated by competition. The other is where we
study the e¢ ciency pro�le of chain stores of large retail chains or franchises. Bounded
ine¢ ciency makes sense in this scenario since the extremely ine¢ cient stores may be
forced to closure by some �xed rule. In both scenarios, the individual production units
constitute a truncated sample. The consequence is that even if we correctly specify
a family of distributions for the ine¢ ciency term, the stochastic frontier model may
still be misspeci�ed.
Secondly, the analysis of our model points to an explanation for the �nding of

�wrong �skewness in many applied studies using the traditional stochastic frontier and
the potential for our bounded ine¢ ciency model to explain these �incorrect�skewness
�ndings. Researchers have often found positive instead of negative skewness in many
samples examined in applied work, which may point to the stochastic frontier being
incorrectly speci�ed. However, we conjecture that the distribution of the ine¢ ciency
term may itself be negatively skewed, which may happen if there is an additional
truncation on the right tail of the distribution. In particular, we propose a model
where the distribution of the ine¢ ciency term is doubly truncated normal, that is,
a normal distribution truncated at a point on the right tail as well as at zero. As
normal distributions are symmetric, the doubly truncated normal distribution may
exhibit negative skewness if the truncation on the right is closer to the mode than
that on the left.
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In addition to the doubly truncated normal distribution, we also consider the
truncated half normal distribution, which is a special case of the former, and the
truncated exponential distribution. Although these two distributions are always pos-
itively skewed, the fact that there is a truncation on the right tail makes the skewness
very hard to identify empirically. That is to say, when the true distribution of the
one-sided ine¢ ciency error is bounded (truncated), the extent to which skewness is
present may be substantially reduced, often to the extent that negative sample skew-
ness for the composite error is not statistically signi�cant. Thus the �nding of positive
skewness may speak to the weak identi�ability of skewness properties in a bounded
frontier model.
We show that our models are identi�able, either locally or globally. We propose

to use method of moments to obtain initial guess of parameters and to use maxi-
mum likelihood estimation to obtain more precise estimates. The analytic forms of
the moments and the density functions of the composite error are provided. Simu-
lation results show that the model parameters, including the ine¢ ciency bound, can
be consistently estimated by the maximum likelihood estimation. The ine¢ ciency
bound can naturally be used for gauging the tolerance for or ruthlessness against the
ine¢ cient �rms. It is also worth mentioning that, using this bound as the �ine¢ cient
frontier,�we may de�ne �inverted�e¢ ciency scores in the same spirit of �Inverted
DEA�described in Entani, Maeda, and Tanaka (2002).
We also extend the model to the panel data setting and allow for time-varying

ine¢ ciency bound. By allowing the ine¢ ciency bound to be time-varying, we in e¤ect
contribute another time-varying technical e¢ ciency model. Our model di¤ers from
the existing literature in that, while previous time-varying e¢ ciency models, notably
Cornwell, Schmidt, and Sickles (1990), Kumbhakar (1990), Battese and Coelli (1992),
and Lee and Schmidt (1993), are time-varying in the mean or intercept of individual
e¤ects, our model is time-varying in the lower support of the distribution of individual
e¤ects.
The outline of this paper is as follows. In Section 2 we present the new models

and derive analytic formula for density functions and the calculation of ine¢ ciencies.
Section 3 deals with the "wrong" skewness issue inherent in traditional stochastic
frontier model. Section 4 discusses the identi�cation of the new models and the
methods of estimation. Section 5 presents Monte Carlo results on the �nite sample
performance of the bounded ine¢ ciency model vis-a-vis classical stochastic frontier
estimators. The extension of the new models to panel data settings and speci�cation
of time-varying bound is presented in section 6. In Section 7 we give an illustrative
study of the e¢ ciency of US banking industry in 1984-2009. Section 8 concludes.
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2 The Model

We consider the following Cobb-Douglas log-linear production model,

yi = �0 +
KX
k=1

�kxi;k + "i (1)

where
"i = vi � ui: (2)

For every production unit i, yi is the log output, xik the k-th log input, vi the noise
component, and ui the ine¢ ciency component. We maintain the usual assumption
that vi is iid N(0; �2v), ui is iid, and vi and ui are independent from each other and
from regressors.
As described in the introduction, our model di¤ers from the traditional stochastic

frontier model in that ui is of bounded support. Additional to the lower bound, which
is zero and which is the frontier, we specify an upper bound to the distribution of
ui. In particular, we assume that ui is distributed as doubly truncated normal, the
density of which is given by

f(u) =
1
�u
�(u��

�u
)

�(B��
�u
)� �(��

�u
)
1[0;B](u); �u > 0; B > 0; (3)

where �(�) and �(�) are the cdf and pdf of the standard normal distribution, respec-
tively, and 1[0;B] is an indicator function. It is a distribution obtained by truncating
N(�; �2u) at zero and B > 0. The parameter B is the upper bound of the distribution
of ui and we may call it the ine¢ ciency bound. The ine¢ ciency bound may be a
useful index of competitiveness of a market or an industry.
Using the usual nomenclature of stochastic frontier models, we may call the model

described above the normal-doubly truncated normal model, or simply, the doubly
truncated normal model. The doubly truncated normal model is very �exible. It
nests truncated normal (B = 1), half normal (� = 0 and B = 1), and truncated
half normal models (� = 0). One desirable feature of our model is that the doubly
truncated normal distribution may be positively or negatively skewed, depending on
the truncated parameter B. This feature provides us with an alternative explanation
for the �wrong skewness�problem prevalent in empirical stochastic frontier studies.
This will be made more clear later in this section. Another desirable feature of our
model is that, like the truncated normal model, it can describe the scenario that
only a few �rms in the sector are e¢ cient, a phenomenon that is described in the
business press as �few stars, most dogs�. 2 While in the truncated half normal model

2 We thank C. A. K. Lovell for providing us this link between our econometric methdology and
the business press.
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and the truncated exponential model (in which the distribution of ui is truncated
exponential), most �rms are implicitly assumed to be relatively e¢ cient.
In Table 1 we provide detailed properties of our model. In particular, we present

the density functions for the error term "i, which is necessary for maximum likelihood
estimation, and the analytic form for E[uij"i], which is the best predictor of the
ine¢ ciency term ui under our assumptions, and the conditional distribution of ui
given "i, which is useful for making inferences on ui. The results for the truncated
half normal model, a special case of the doubly truncated normal model (� = 0), are
also presented. Finally, we also provide results for the truncated exponential model,
in which the ine¢ ciency term ui is distributed according to the following density
function,

f(u) =
1

�u(1� e�B=�u)
e�

u
�u 1[0;B](u): (4)

The truncated exponential distribution shares with the doubly normal distribution
the nice property that it may be positively or negatively skewed.
For the doubly truncated normal model and the truncated half normal model, the

analytic forms of our results use the so-called ��parametrization, which speci�es

� =
p
�2u + �2v; � = �u=�v: (5)

In practice we usually use another parameterization, called the 
�parametrization,

� =
p
�2u + �2v; 
 = �2u=�

2: (6)

By de�nition 
 2 [0; 1], a compact support, which is desirable for the numerical
procedure of maximum likelihood estimation.
We may check that when B ! 1, the density function for "i in the doubly

truncated normal model reduces to that of the truncated normal model introduced
by Stevenson (1980). Furthermore, if � = 0, it reduces to the likelihood function for
the half normal model introduced by Aigner, Lovell, and Schmidt (1977). Similarly,
the truncated exponential model reduces to the exponential model introduced by
Meeusen and van den Broeck (1977). page

3 The Skewness Issue

A common and important methodological problem encountered when dealing with
empirical implementation of the stochastic frontier model is that the residuals may
be skewed in the wrong direction. In particular, the OLS residuals may show positive
skewness even though the composed error term v�u should display negative skewness,
in keeping with u0s positive skewness. This problem has important consequences for
the interpretation of the skewness of the error term as a measure of technological
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ine¢ ciency. It may imply that there had been an unfortunate sampling from an
ine¢ ciency distribution that has a correct population skewness. It may also be that
positive skewness of the composed error indicates that there are no ine¢ ciencies and
that all �rms are �super e¢ cient�, a term �rst used by Green and Mayes (1991). The
later would suggest setting the variance of ine¢ ciency term at zero, which would have
problematic impacts on estimation and on inference. Carree (2002) considers one-
sided distributions of ine¢ ciencies (ui) that can have negative or positive skewness.
However, Carree (2002) uses the binomial distribution, which is a discrete distribution
and which implicitly assumes that only a very small fraction of the �rms attain a level
of productivity close to the frontier, especially when ui is negatively skewed.
Our model addresses the �wrong skewness�problem similarly with Carree (2002)3,

but with a more appealing distributional speci�cation on the e¢ ciency term. For the
doubly truncated normal model, let �1 =

��
�u
, �2 =

B��
�u
, and �k �

�k1�(�1)��k2�(�2)
�(�2)��(�1)

,

k = 0; 1; :::; 4. Note that �0 is the inverse Mill�s ratio and it is equal to
p
2=� in

the half normal model, and that �1 and �2 are the lower and upper truncation points
of the standard normal density, respectively. The skewness of the doubly truncated
normal distribution is given by

Su =
2�30 � �0(3�1 + 1) + �2

(1� �20 + �1)
3=2

: (7)

It can be checked that when B > 2�, Su is positive. And when B < 2�, Su is negative.
Since B > 0 by de�nition, it is obvious that only when � > 0 is it possible for ui to
be negatively skewed. And the larger � is, the larger range of values B may take such
that ui is negatively skewed. Consider the limiting case where a normal distribution
with �!1 is truncated at zero and B > 0. An in�nitely large � means that there is
e¤ectively no truncation on the left at all and that any �nite truncation on the right
gives rise to a negative skewness. Finally, for both the truncated half normal model
(� = 0) and the truncated exponential model, the skewness of ui is always positive.
Consequently, the doubly truncated normal model has a residual that has an am-

biguous sign of the skewness, which depends on an unobservable relationship between
the truncation parameter B and �. We argue that the ambiguity theoretically ex-
plains the prevalence of the �wrong�skewness problem in applied stochastic frontier
research. When the underlying data generating process for ui is based on doubly trun-
cated normal distribution, increasing sample size does not solve the �wrong skewness�
problem. The skewness of the OLS residual " may be positively skewed even when
sample size goes to in�nity. Hence the �wrong�skewness problem may also be a large
sample problem.

3 We thank C. A. Knox Lovell for his observation, which he made at the Tenth European Work-
shop on E¢ ciency and Productivity, Lille, France, June, 2007, that there was potential for our
bounded frontier to address the skewness problem inherent in the use of the Aigner, Lovell and
Schmidt stochastic frontier model
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In �nite samples, we may use simulations to show that our model is capable of
generating residuals with �wrong� skewness with higher frequency than traditional
stochastic frontier models do (Simar and Wilson, 2009). We generate samples of the
residuals " = v � u with u being doubly truncated normal. And we calculate the
proportion of samples with positively skewed residuals in 1000 repeated experiments.
We set the parameter � to 1 and examine the proportions of positive skewness when
B is 1, 2, 5, and 10. We also experiment di¤erent values of � and sample sizes from
50 to 105. The results are reported in Table 2.
The �rst column (B = 1) shows that the proportion of the samples with the

positive (�wrong�) skewness increases as the sample size gets larger. It appears to
converge to one as the sample size increases, especially when the signal-noise-ratio
� is large. The second column corresponds to the case where B = 2�. In this case
there is about a 50-50 chance that we generate a sample with positive skewness. In
other words, the positive skewness appears to be statistically insigni�cant in most of
the cases. The third column (B = 5) and the fourth column (B = 10) correspond
to the case where the distribution of ine¢ ciencies is positively skewed. In particular,
the results in the fourth column are similar with those reported in Simar and Wilson
(2009) for traditional stochastic frontier models.
Our simulation results con�rm that the skewness issue is also a large sample issue,

since for B < 2� the proportion of the samples with positive skewness converges to
one. This would mean that if the true data generating process is based on ine¢ ciencies
that are drawn from a doubly truncated normal distribution, and if a researcher fails
to recognize this and �nds a skewness statistic with the wrong sign, then she may
erroneously reject her model. Moreover, if there is the potential for increasing sample
size and the researcher keeps increasing it and �nds continuously positive signs of
skewness, then she may erroneously conclude that all �rms in her sample are super
e¢ cient. The bounded ine¢ ciency model, the doubly truncated normal model in
particular, avoids this problem.
As a conclusion of this section, the doubly truncated normal model generalizes the

stochastic frontier model in a way that allows for positive as well as negative skewness
for the residual. This implies that �nding a �wrong�skewness does not necessarily
mean that the stochastic frontier model is inapplicable. It may only be that we are
studying a market or an industry that is instituted an ine¢ ciency bounded. Hence
the traditional unbounded support for the ine¢ ciency term is misspeci�ed and the
model of bounded ine¢ ciency should be used instead.
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Table 2: Proportion of Positive Skewness for Simulated Residuals in the Doubly
Truncated Normal Model. The residuals are generated as in (2) with u being doubly truncated
normal with � = 1. All �gures in the table are proportions of experiments in 1000 repeated runs

that show positive or �wrong�skewness of the residual.

n B = 1 B = 2 B = 5 B = 10

50 0.519 0.505 0.480 0.509

100 0.481 0.501 0.516 0.520

200 0.495 0.473 0.514 0.493

� = 0:1 500 0.487 0.503 0.539 0.507

103 0.520 0.516 0.510 0.494

104 0.504 0.483 0.512 0.498

105 0.532 0.492 0.437 0.405

50 0.517 0.485 0.503 0.510

100 0.545 0.491 0.459 0.479

200 0.551 0.490 0.486 0.466

� = 0:5 500 0.520 0.488 0.431 0.459

103 0.564 0.514 0.453 0.435

104 0.684 0.491 0.397 0.318

105 0.759 0.496 0.107 0.092

50 0.565 0.536 0.367 0.383

100 0.524 0.513 0.317 0.335

200 0.529 0.512 0.224 0.245

� = 1 500 0.567 0.514 0.155 0.122

103 0.576 0.524 0.063 0.051

104 0.709 0.501 0 0

105 0.943 0.503 0 0
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Table 3: Central Moments of ".

Moment Doubly-truncated-normal

 1 ��� �u�0
 2 �2u (1� �20 + �1) + �2v
 3 ��3u (2�30 � 3�1�0 � �0 + �2)

 4 �4u (3 + 3�1 + �3 � 2�20 � 4�0�2 + 6�20�1 � 3�40) + 6�2u�2v (1� �20 + �1) + 3�
4
v

 5 �10�2v�3u (2�30 � 3�1�0 � �0 + �2)

��5u (�4 + 4�2 � 5�0�3 + 10�20�2 � 10�30�1 + 10�30 � 15�0�1 + 4�50 � 7�0)
See the text for the de�nitions of �k, k = 0; :::; 4.

Truncated-exp.

 1 ��u
�
1� �

e��1
�

 2 �2v + �2u
e2��(�2+2)e�+1

e2��2e�+1

 3 ��3u
2e3��(�3+6)e2�+(6��3)e��2

e3��3e2�+3e��1
 4 �4u

�9e4�+36e3��54e2�+36e��9+6�2e�(e2��2e�+1)+�4e�(e2�+e�+1)
�e4�+4e3��6e2�+4e��1 +

6�2v�
2
u

e2��(�2+2)e�+1
e2��2e�+1 + 3�4v, � = B=�u.

4 Estimation

4.1 Identi�cation

As will be made more clear later, the identi�cation of our model may be done in
two parts. The �rst part is concerned with the parameters describing the technology,
and the second part identi�es the distributional parameters using the information
contained in the distribution of the residual. The identi�cation conditions for the
�rst part are well known and are satis�ed in most of the cases. The second part
deserves a close examination. In Table 3, we list the population (central) moments
of ("i) for the doubly truncated normal model and the truncated exponential model.
The moments of the truncated half normal model can be obtained by setting � = 0
in the doubly truncated normal model. These results are essential for the discussion
of identi�cation and the method of moments estimation.
Both the truncated half normal model and the truncated exponential model are

globally identi�ed. To see this, we check that for both models,  �4=33 ( 4 � 3 22) is a
function of � = B=�u only, which we denote as g(�). The forms of g are complicated
and hence omitted. For the truncated half normal model, g is monotonically decreas-
ing; and for the truncated exponential model, g is monotonically increasing. In both
cases, g is invertible and � can be identi�ed. The identi�cation of other parameters
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then follows. Note, however, for large values of � (e.g., � > 5 for the truncated normal
model and � > 20), the curve g(�) is nearly �at and gives poor identi�cation.
Unfortunately, the doubly truncated normal model is not globally identi�able.

However, local identi�cation can be veri�ed. We may examine  �4=33 ( 4 � 3 22) and
 
�5=3
3 ( 5 � 10 2 3), both of which are functions of �1 and �2 only and we denote
them as g1(�1; �2) and g2(�1; �2), respectively. Let ĝ1 and ĝ2 be the sample versions
of g1 and g2, respectively, we have the following system of identi�cation equations,

G1(�1; �2) � g1(�1; �2)� ĝ1 = 0

G2(�1; �2) � g2(�1; �2)� ĝ2 = 0:

By the implicit function theorem, the identi�cation of �1 and �2 depends on the matrix

H =

 
@g1
@�1

@g1
@�2

@g2
@�1

@g1
@�2

!
:

If H is invertible (the determinant is nonzero), then �1 and �2 can be written as
functions of ĝ1 and ĝ2; the identi�cation of the model then follows. The analytic form
of H is very complicated, but we may examine the invertibility of H by numerically
evaluating g1 and g2 and inferring the sign of each element in H. It can be veri�ed
that the determinant of H is nonzero in neighborhoods within I1, I2, I4, and I6, the
de�nitions of which are given as follows,

(i) I1 � f(�;B)j� � 0; B > 0g

(ii) I2 � f(�;B)j� > 0; B 2 (0; �)g

(iii) I3 � f(�;B)jB = � > 0g

(iv) I4 � f(�;B)j� > 0; B 2 (�; 2�)g

(v) I5 � f(�;B)jB = 2� > 0g

(vi) I6 � f(�;B)j� > 0; B > 2�g.

It can be veri�ed that the model is not locally identi�able on the line that corre-
sponds to I3. This is also con�rmed by simulation results (not shown in this paper).
However, if we restrict B = � a priori, we obtain a sub-model that is globally iden-
ti�able. By the shape of the doubly truncated normal distribution when B = �, we
may call this special sub-model the �inverted�truncated half normal model. Unlike
the truncated half normal model, the inverted truncated half normal model describes
markets that have relatively few e¢ cient �rms close to the e¢ ciency frontier.
The line I5 � f(�;B)jB = 2� > 0g corresponds to the case where B = 2� and

 3 = 0, hence the above strategy fails. Nonetheless, simulation results in the next
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section show that when the true values of B and � satisfy B = 2�, both B and �
are consistently estimated without putting in the restriction B = 2�. This indicates
that the restricted (B = 2�) model may be nested in the unrestricted model and the
model is locally identi�able on I4

S
I5
S
I6.

Strictly speaking, the doubly truncated normal model should be understood as a
collection of di¤erent sub-models corresponding to the di¤erent domains of parame-
ters. Treated separately, each of the sub-models is globally identi�ed. In maximum
likelihood estimation, the separate treatment is easily achieved by constrained opti-
mization on each parameter subset. Finally, note that on the line f(�;B)j� = 0; B >
0g � I1, the doubly truncated normal model reduces to the truncated half normal
model.

4.2 Method of Moment Estimation

The method of moments (Olson, Schmidt, and Waldman, 1980) may be employed
to estimate our model or to obtain initial values for maximum likelihood estimation.
In the �rst step of this approach, OLS is used to obtain consistent estimates of the
parameters describing the technology, apart from the intercept. In the second step,
using the distributional assumptions on the residual, equations of moment conditions
are solved to obtain estimates of the parameters describing the distribution of the
residual.
More speci�cally, we may rewrite the production frontier model in (1) and (2) as

yi = (�0 � Eui) +
KX
k=1

�kxi;k + "�i ;

where "�i = vi � (Eui). The error term "�i is of zero mean and constant variance.
Hence the OLS yields consistent estimates for "�i and �k, k = 1; :::; K. Equating the
sample moments of ("̂�i ) to the population moments, we solve for the parameters that
are associated with the distribution of ("�i ). Note that since E"

�
i = 0, the central

moments of "i are equal to the moments of "�i .

4.3 Maximum Likelihood Estimation

For more e¢ cient estimation, we may use maximum likelihood estimation. Note that
with the presence of a noise term vi, the range of residual unbounded and does not
depend on the parameter. In the remaining of this section we list the log-likelihood
functions of all three models. Note that in practice we may also need the gradients of
the log likelihood function. The gradients are complicated in form but straightforward
to derive and we omit them here.
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The log-likelihood function for the doubly truncated normal model with � para-
meterization is given by

logL = �n log
�
�(

B � �

�u(�; �)
)� �( ��

�u(�; �)
)

�
�n log � � n

2
log(2�)�

nX
i=1

("i + �)2

2�2

+
nX
i=1

logf�((B + "i)�+ (B � �)��1

�
)

��("i�� ���1

�
)g; (8)

where "i = y � �0 �
P
xi;k�k and

�u(�; �) =
�q

1 + 1=�2
: (9)

It is easy to get logL in 
�parametrization. We can substitute � in (8) with

�(
) =

r



1� 

: (10)

The log-likelihood function for the truncated half normal model is

logL = �n log(�( B

�u(�; �)
)� 1

2
)

�n log � � n

2
log(2�)�

nX
i=1

"2i
2�2

+
nX
i=1

logf�((B + "i)�+B��1

�
)� �("i�

�
)g; (11)

where "i = y � �0 �
P
xi;k�k and �u(�; �) is de�ned in (9). Again, substitute � in

(11) with �(
) in (10), we get logL of 
parametrization.
Finally, the log-likelihood function for the truncated exponential model is

logL = �n log �u � n log(1� e��u=B)

+
n�2v
2�2u

+
1

�u

nX
i=1

"i (12)

+
nX
i=1

log[�(
B + "i
�v

+
�v
�u
)� �( "i

�v
+
�v
�u
)]; (13)
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where "i = y � �0 �
P
xi;k�k.

After estimating the model, we can estimate the composed error term "i:

"̂i = yi � �̂0 �
X

xi;k�̂k; i = 1; � � � ; n: (14)

From this we can estimate the ine¢ ciency term ui using the formula for E(uij"i) in
Table 1.

5 Simulations

To examine the �nite sample performance of the MLE estimators we run a series of
Monte Carlo experiments for the standard cross-sectional stochastic frontier model.
The data generating process is (1) and (2) with �0 = 0 and K = 2 (two regressors
and no constant term)4. Throughout we set �1 = 0:6, �2 = 0:5. We set �u = 0:3
in all three submodels. To examine how the noise level (�v) a¤ects the quality of
estimation, we vary �v from 0.1, 0.2, to 0.5. In the other dimension, we change the
ine¢ ciency bound from 0.8, 1.0, to 1.2, to examine its impact on estimation. For
both normal-truncated half normal and normal-doubly truncated normal models we
use the 
-parameterization, and thus the parameters to be estimated are � and 
 as
well as the production parameters. For the normal-truncated exponential model we
report the estimates of parameters �u and �� themselves.
Tables 4 and 5 report results from the normal-truncated half normal model with

a sample size of 200 and 1000, respectively. The results from these two tables di¤er
only in quantitative manner. The �rst important conclusion that can be drawn is
that the MLE estimators for technology parameters, �1 and �2, are accurate. As
noise level increases, the MSE of these estimators only slightly increases. The second
important observation is that the estimator for the ine¢ ciency bound has small MSE
when the noise level is mild. When noise level is high, as when �v = 0:5, B̂ becomes
inaccurate. In table 4 distribution parameters, �̂ and 
̂ display a signi�cantly upward
bias and large MSE as the signal-to-noise ratio decreases5. Table 5 shows that the
problem is alleviated somewhat when the sample size increases.
We now look at the doubly truncated normal model. Table 6 and 7 reports

Monte Carlo results with a sample size of 200 and 1000, respectively. At both sample
sizes, the technology parameter estimates �̂1 and �̂2 are quite accurate. In order to
identify the distribution parameters we employ the restrictions that arise form the
identi�cation discussion of section 4. Now, the estimates of distribution parameters, �

4 The results does not change very much if we include the constant term. We ommit it to save
space. The results with constant term are available upon the request.

5 It can be shown that in this case the inverse Hessian becomes close to singular, which makes
the estiamates of the model paramers less accurate. To our best knoweldge this pathology is shared
by all likelihood based stochastic frontier models.
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Table 4: Monte Carlo results for Truncated Half Normal model. The number of
repetitions M = 1000. Sample size N = 200.

B = 0:8 B = 1:0 B = 1:2

True AVE MSE AVE MSE AVE MSE

�̂ 0.3 0.3308 0.0022 0.3288 0.0013 0.3282 0.0011

̂ 0.9 0.9079 0.0026 0.9101 0.0025 0.9107 0.0021

�v = 0:1 B̂ 0.7987 0.0148 0.9223 0.0309 0.9600 0.0923
�̂1 0.6 0.6004 0.0009 0.6008 0.0009 0.6003 0.0009
�̂2 0.5 0.5016 0.0008 0.5022 0.0007 0.5021 0.0007
�̂ 0.4 0.4967 0.1325 0.4464 0.0656 0.4466 0.0723

̂ 0.7 0.7440 0.0451 0.7432 0.0354 0.7344 0.0412

�v = 0:2 B̂ 0.8429 0.0860 0.9585 0.0990 0.9790 0.1604
�̂1 0.6 0.6045 0.0023 0.6024 0.0021 0.6030 0.002
�̂2 0.5 0.5029 0.0021 0.5061 0.0020 0.5039 0.0021
�̂ 0.6 0.8399 0.3356 0.8538 0.3604 0.8662 0.3905

̂ 0.3 0.4570 0.1525 0.4621 0.1636 0.4538 0.1616

�v = 0:5 B̂ 1.0780 0.6185 1.1966 0.6121 1.2083 0.5521
�̂1 0.6 0.6114 0.0100 0.6169 0.0108 0.6117 0.0112
�̂2 0.5 0.5202 0.0116 0.5176 0.0125 0.5210 0.0127
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Table 5: Monte Carlo results for Truncated Half Normal model. The number of
repetitions M = 1000. Sample size N = 1000.

B = 0:8 B = 1:0 B = 1:2

True AVE MSE AVE MSE AVE MSE

�̂ 0.3 0.3191 0.0002 0.3188 0.0002 0.3191 0.0001

̂ 0.9 0.9020 0.0005 0.9019 0.0004 0.9027 0.0004

�v = 0:1 B̂ 0.8045 0.0049 0.9889 0.0170 1.0918 0.0502
�̂1 0.6 0.6005 0.0002 0.5993 0.0002 0.6001 0.0002
�̂2 0.5 0.5001 0.0002 0.5013 0.0002 0.5004 0.0002
�̂ 0.4 0.3806 0.0042 0.3735 0.0010 0.3724 0.0009

̂ 0.7 0.7111 0.0094 0.7156 0.0056 0.7125 0.0050

�v = 0:2 B̂ 0.8692 0.0589 1.0351 0.0808 1.1169 0.1044
�̂1 0.6 0.6010 0.0005 0.6027 0.0005 0.6020 0.000
�̂2 0.5 0.5023 0.0004 0.5021 0.0004 0.5021 0.0004
�̂ 0.6 0.6597 0.0407 0.6568 0.0355 0.6573 0.0373

̂ 0.3 0.3580 0.0609 0.3568 0.0597 0.3565 0.0589

�v = 0:5 B̂ 0.9995 0.4273 1.1713 0.5255 1.2536 0.5442
�̂1 0.6 0.6020 0.0031 0.6028 0.0031 0.6042 0.0028
�̂2 0.5 0.5056 0.0028 0.5059 0.0029 0.5052 0.0026
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Table 6: Monte Carlo results for Doubly Truncated Normal model. The number of
repetitions M = 1000. Sample size N = 200.

B = 0:8 B = 1:0 B = 1:2

True AVE MSE AVE MSE AVE MSE

�̂ 0.3 0.4141 0.0628 0.4227 0.0753 0.3899 0.0424

̂ 0.9 0.9463 0.0072 0.9511 0.0085 0.9442 0.0091

�v = 0:1 �̂ 0.5 0.5894 0.0329 0.5367 0.0427 0.4758 0.0377
B̂ 0.8452 0.0239 1.0207 0.0278 1.1797 0.0411
�̂1 0.6 0.6046 0.0020 0.6035 0.0024 0.5990 0.0028
�̂2 0.5 0.5084 0.0020 0.5032 0.0023 0.5006 0.0027
�̂ 0.4 0.4627 0.0658 0.5182 0.1026 0.4853 0.0759

̂ 0.7 0.7937 0.0524 0.8300 0.0564 0.8173 0.0603

�v = 0:2 �̂ 0.5 0.6057 0.0627 0.5875 0.0923 0.5306 0.0958
B̂ 0.9296 0.1035 1.0963 0.1205 1.2538 0.1421
�̂1 0.6 0.6122 0.0040 0.6123 0.0046 0.6093 0.005
�̂2 0.5 0.5189 0.0045 0.5079 0.0050 0.5076 0.0058
�̂ 0.6 0.7444 0.1064 0.7397 0.0973 0.7756 0.1238

̂ 0.3 0.5174 0.1381 0.5338 0.1486 0.5542 0.1734

�v = 0:5 �̂ 0.5 0.4491 0.1187 0.5125 0.1635 0.5647 0.2265
B̂ 1.1524 0.6325 1.3944 0.8184 1.5888 0.9906
�̂1 0.6 0.6155 0.0133 0.6179 0.0150 0.6205 0.0173
�̂2 0.5 0.5193 0.0156 0.5172 0.0157 0.5287 0.0189

and 
, are upward biased, especially when � and N are relatively small. Their MSE is
low for low levels of noise. In addition, parameter � is accurately estimated, especially
then the sample size is large. The ine¢ ciency bound is signi�cantly distorted when
signal-to-noise ratio decreases. It is worth noting at this point that parameter � is
very hard to be identi�ed in the standard normal-truncated normal model and then
its empirical value is large enough, there is a problem of identi�cation of the rest
distributional parameters as well. This is avoided in the normal-truncated normal
model. Finally, the case of B = 0:8 corresponds to the case of the "wrong skewness".
Clearly there is no problem of estimation and identi�cation of the model parameters
for this particular case.

Tables 8 and 9 show the results for truncated exponential model with a sample size
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Table 7: Monte Carlo results for Doubly Truncated Normal model. The number of
repetitions M = 1000. Sample size N = 1000.

B = 0:8 B = 1:0 B = 1:2

True AVE MSE AVE MSE AVE MSE

�̂ 0.3 0.3487 0.0108 0.3336 0.0058 0.3229 0.0010

̂ 0.9 0.9155 0.0013 0.9142 0.0015 0.9125 0.0019

�v = 0:1 �̂ 0.5 0.5419 0.0088 0.5053 0.0035 0.4997 0.0044
B̂ 0.8100 0.0056 1.0067 0.0094 1.2116 0.0157
�̂1 0.6 0.6025 0.0004 0.5995 0.0005 0.6014 0.0006
�̂2 0.5 0.5008 0.0004 0.5024 0.0005 0.5006 0.0006
�̂ 0.4 0.4305 0.0285 0.4128 0.0236 0.3874 0.0079

̂ 0.7 0.7348 0.0208 0.7346 0.0181 0.7260 0.0139

�v = 0:2 �̂ 0.5 0.5735 0.0257 0.5298 0.0163 0.4977 0.0137
B̂ 0.8268 0.0240 1.0441 0.0455 1.2619 0.1089
�̂1 0.6 0.6020 0.0008 0.6034 0.0010 0.6011 0.001
�̂2 0.5 0.5029 0.0008 0.5020 0.0010 0.5015 0.0012
�̂ 0.6 0.6780 0.0400 0.7115 0.0555 0.7100 0.0527

̂ 0.3 0.4227 0.0721 0.4601 0.0872 0.4527 0.0884

�v = 0:5 �̂ 0.5 0.4771 0.0630 0.5361 0.0827 0.5253 0.0973
B̂ 1.1325 0.7649 1.2912 0.6360 1.2649 0.6243
�̂1 0.6 0.6076 0.0032 0.6075 0.0032 0.6038 0.0033
�̂2 0.5 0.5076 0.0032 0.5086 0.0033 0.5069 0.0036
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Table 8: Monte Carlo results for Truncated Exponential model. The number of
repetitions M = 1000. Sample size N = 200.

B = 0:8 B = 1:0 B = 1:2

True AVE MSE AVE MSE AVE MSE

�̂u 0.3 0.3062 0.0017 0.3084 0.0011 0.3006 0.0006
�̂v 0.1 0.0986 0.0001 0.0992 0.0001 0.0985 0.0001

�v = 0:1 B̂ 0.7991 0.0018 0.9876 0.0027 1.1934 0.0053
�̂1 0.6 0.6005 0.0004 0.6038 0.0005 0.5968 0.0005
�̂2 0.5 0.4999 0.0003 0.4966 0.0003 0.5022 0.0004
�̂u 0.3 0.3334 0.0117 0.3147 0.0048 0.3133 0.0020
�̂v 0.2 0.1940 0.0004 0.1962 0.0003 0.1955 0.0003

�v = 0:2 B̂ 0.8191 0.0066 1.0150 0.0091 1.2008 0.0113
�̂1 0.6 0.6020 0.0014 0.6001 0.0008 0.6032 0.001
�̂2 0.5 0.5026 0.0009 0.5016 0.0007 0.5004 0.0008
�̂u 0.3 1.0081 7.0210 0.9838 4.8403 0.7934 1.5996
�̂v 0.5 0.5009 0.0210 0.4869 0.0037 0.4824 0.0033

�v = 0:5 B̂ 1.0335 0.3644 1.1115 0.3053 1.2878 0.3050
�̂1 0.6 0.5942 0.0108 0.6034 0.0058 0.6088 0.0060
�̂2 0.5 0.5166 0.0082 0.5025 0.0045 0.5266 0.0053

of 200 and 1000, respectively. As with the previous models, the technology parameter
estimates, �̂1 and �̂2, are accurate. Parameters of one-sided error term are accurate
when the noise level is mild. It can be seen from these tables how sensitive to the
noise parameters �̂u and B are. The estimated values of these parameters are highly
contaminated by the noise when this dominates the ine¢ ciency term. As expected,
the �nite sample problem with �̂u and B is lessened when we have a larger sample
size of 1000.
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Table 9: Monte Carlo results for Truncated Exponential model. The number of
repetitions M = 1000. Sample size N = 1000.

B = 0:8 B = 1:0 B = 1:2

True AVE MSE AVE MSE AVE MSE

�̂u 0.3 0.3019 0.0008 0.3014 0.0004 0.3021 0.0003
�̂v 0.1 0.0992 0.0001 0.0990 0.0001 0.0988 0.0001

�v = 0:1 B̂ 0.7992 0.0009 0.9972 0.0015 1.1975 0.0024
�̂1 0.6 0.5995 0.0002 0.6001 0.0002 0.6001 0.0003
�̂2 0.5 0.5005 0.0002 0.5003 0.0002 0.5004 0.0002
�̂u 0.3 0.3186 0.0069 0.3112 0.0022 0.3074 0.0011
�̂v 0.2 0.1983 0.0002 0.1984 0.0002 0.1981 0.0001

�v = 0:2 B̂ 0.8091 0.0047 1.0038 0.0060 1.1988 0.0088
�̂1 0.6 0.6002 0.0005 0.6014 0.0005 0.6001 0.001
�̂2 0.5 0.5010 0.0004 0.5004 0.0004 0.5014 0.0004
�̂u 0.3 0.6274 1.2594 0.5654 0.7008 0.4593 0.3063
�̂v 0.5 0.5044 0.0099 0.4963 0.0034 0.5005 0.0144

�v = 0:5 B̂ 0.9446 0.4032 1.1498 0.3430 1.2166 0.3058
�̂1 0.6 0.5934 0.0055 0.6028 0.0043 0.6000 0.0041
�̂2 0.5 0.4996 0.0048 0.5032 0.0035 0.5047 0.0038
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6 Panel Data

In the same spirit as Schmidt and Sickles (1984) and Cornwell, et al. (1990), we may
specify a panel data model of bounded ine¢ ciencies:

yit = �0 +
KX
k=1

�kxit;k + "it (15)

where
"it = vit � uit: (16)

We assume that the ine¢ ciency components (uit) are positive, independent from
the regressors, and are independently drawn from a time-varying distribution with
upper bound Bt. We may set Bt to be time-invariant. However, it is certainly more
plausible to assume otherwise, as the market or industry may well become more or
less forgiving as time goes by, especially in settings in which market reforms are
being introduced or �rms are adjusting to a phased transition from regulation to
deregulation.
Note that since uit is time-varying, the above panel data model is in e¤ect a time-

varying technical e¢ ciency model. Our model di¤ers from the existing literature in
that, while previous time-varying e¢ ciency models, notably Cornwell, Schmidt, and
Sickles (1990), Kumbhakar (1990), Battese and Coelli (1992), and Lee and Schmidt
(1993), are time-varying in the mean or intercept of individual e¤ects, our model is
time-varying in the upper support of the distribution of ine¢ ciency term ui.
The assumption that uit is independent over time simpli�es estimation and analy-

sis considerably. In particular, the covariance matrix of "i � ("i1; :::; "iT )0 is diagonal.
This enables us to treat the panel model as a collection of cross-section models in the
chronological order. We may certainly impose more structure on the sample path of
the upper bound of uit, Bt, without incurring heavy costs in terms of analytic di¢ -
culty. For example, we may impose smoothness conditions on Bt. This is empirically
plausible, indeed, since changes in the market competitive conditions may come grad-
ually. And it is also technically desirable, since imposing smoothness conditions gives
us more degree of freedom in estimation, hence better estimators of model parameters.
A natural way of doing this is to let Bt be a sum of weighted polynomials,

Bt =
KX
i=0

bi(t=T )
i; t = 1; :::; T; (17)

where (bi) are constants. We may also use trigonometric series, splines, among others,
in the modeling of Bt.
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7 E¢ ciency Analysis of Banking Industry

7.1 Empirical Model and Data

We now apply the bounded ine¢ ciency (BIE) model to an analysis of the US banking
industry, which underwent a series of deregulatory reforms in the early 1980�s and
1990�s6, and experienced an adverse economic environment in the last few turbulent
years of the last decade. Our analysis covers an extensive period between 1984 and
2009. What is generally observed during this period is that the number of commercial
banks has substantially decreased through either mergers or failures. It is character-
istic the fact that the number of failed banks in 2009 was about 2.75 times more than
that of the period 2001-2008. As of the present times, the number of mergers and
new charters has decreased, while the proportion of problematic banks has dramati-
cally increased. However, the biggest failures occurred in early 1990�s where almost
4000 banks failed within three years (source FDIC). All these facts have triggered the
interest of researchers to analyze the U.S. commercial banking industry more closely
and especially the performance of its institutions and their market behavior. The pri-
mary aim of our model is to capture the e¢ ciency trends of the U. S. banking sector
during all of these years until the present time, as well as to identify the toughness
of the market against very ine¢ cient �rms.
Here we extend our model to the panel setting and, following Adams, Berger, and

Sickles (1999) and Kneip, Sickles, and Song(2005), we specify a multiple output and
input Cobb-Douglas stochastic output distance frontier model as follows7,

Yit = Y �
it
0
 +X 0

it� + vit � uit; (18)

where Yit is the log of real estate loans ; Xit is the negative of log of inputs, which
include demand deposit (DD), time and savings deposit (DEP), labor (lab), capital
(cap), and purchased funds (purf)8; and Y �

it includes the log of commercial and in-
dustrial loans/real estate loans (ciln) and installment loans/real estate loans (inln).
All nominal values are converted to re�ect 2000 year values. We assume (vit) are iid
across i and t, and for each t, uit has a upper bound Bt. Then we can treat this
model as a generic panel data bounded ine¢ ciency model as discussed in Section 6.
Once the individual e¤ects uit are estimated, technical e¢ ciency for a particular �rm
at time t is calculated as TE = exp(uit �max1�j�N ujt).

6 These deregulations gradually allowed banks in di¤erent states to merge with other banks
across the state borders. Reigle-Neal Act that was passed by the Congress in 1994 also allowed the
branching by banks across the state lines.

7 For more discussion on stochastic distance frontiers see Lovell, Richardson, Travers, and Wood
(1994).

8 Purchased funds include federal funds purchased and securities sold under agreements to repur-
chase, time deposits in $100K denominations, mortgage debt, bank�s liability on acceptances, and
other liabilities that are not demand deposits and retail time and saving deposits.
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We use U.S. commercial banking data from 1984 through 20099 . The data is
quarterly balanced panel of 4250 commercial banks and was recently compiled from
the Report of Condition and Income (Call Report) and the FDIC Summary of De-
posits. The data set includes 437750 observations for 103 quarterly periods. This
is a fairly long panel and thus the assumption of time-invariant ine¢ ciencies should
be abandoned herein. For this reason we compare the estimates from BIE model
to the estimates from other time-varying models such as CSSW (Cornwell, Schmidt,
and Sickles, 1990) and BC (Battese and Coelli, 1992) models. Fixed e¤ect estimator
(FIX) of Schmidt and Sickles (1984) is also considered for illustration purposes.

7.2 Results

Table 10 compares the parameter estimates of the bounded ine¢ ciency (BIE)10 model
with that of FIX, CSSW, and BC. Technology parameters are statistically signi�cant
at 1% con�dence level and have the expected sign for all four models. The technology
parameters from BIE model are somewhat di¤erent from those obtained from other
models. However, except for the coe¢ cients of ciln and cap, the rest coe¢ cients are
in accordance with those of FIX and BC model. The striking di¤erence, however, is
between distributional parameters of BIE and BC model. Parameter � in BC model
has very small and insigni�cant value relative to that of BIE model. This di¤erence
is mainly due to the fact that there is not enough information in normal-truncated
normal model to identify this parameter. In normal-doubly truncated normal model
we examine the sign of OLS residuals (which is negative here) and by employing the
method of moments we �nd that � > 0 and B > 2�. This corresponds to the set I5
and hence we can identify this parameter. Any value from this set can be served as
a starting value for MLE to consistently estimate �, fact that is also shown in our
Monte Carlo results.
We also estimate time-varying ine¢ ciency bound, B, using two approaches. First

we estimate the bound for panel data model without imposing any restriction on its
sample path. In the second approach we specify the bound as a sum of weighted
time polynomials and since the data set is large enough there are a lot of degrees of
freedom to allow us to �t a �fth degree polynomial. The coe¢ cients of the polynomial
are estimated via maximum likelihood method along with the rest parameters. Both
approaches are illustrated in �gure 2. It can be seen that the ine¢ ciency bound has
decreasing trend up to year 2005 then its increasing throughout. One interpretation of
this trend can be that the deregulations in 1980�s and 1990�s increased the competition
and forced many ine¢ cient banks to exit. This obviously reduced the upper limit of
ine¢ ciency that bank can sustain in order to not be ruled out from the market. The

9 Data includes up to third quarter of 2009.
10 We estimate the normal-doubly truncated normal model in order to be able to compare it with

the BC model which speci�es the ine¢ ciencies to follow the truncated normal distribution.
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new upward trend can be attributed to adverse economic environment and to the
fact that the proportion of banks which are characterized as "too big too fail " has
increased.
Of course, for time-varying e¢ ciency models such as CSSW,BC, and BIE, the

average e¢ ciency changes over time11. This is illustrated in Figure 1. The BIE average
e¢ ciency is signi�cantly higher than what the �xed e¤ect model obtains. However,
the di¤erence is small for BC and CSSW models. This di¤erence is not unexpected,
however, since the existence of ine¢ ciency bound implies that the mean conditional
distribution of ine¢ ciencies is also bounded from above, resulting to higher average
e¢ ciency. Failing to take the bound into account can possibly yield underestimated
mean and individual e¢ ciency scores (see table 1). BIE2 curve represents the �tted
time polynomial of ine¢ ciencies obtained from the bounded ine¢ ciency model. It can
be seen that the e¢ ciency trend for BIE model is most of the times in line with that
of CSSW model. BC model shows an upward e¢ ciency trend for all these periods
(� = 0:067). We also look at the e¢ ciency ranking of �rms. Table 11 tabulates
the Spearman rank correlations among di¤erent models. It is clear that the BIE
e¢ ciency ranking is in agreement with previous estimations, especially with CSSW.
This comes to the argument of Ritter and Simar (1997), that if researcher believes
that the ine¢ ciency bound is relatively large and if there is no "wrong " skewness
issue then simple densities, such as half-normal, can be utilized to estimate parametric
stochastic frontier model.

In sum, �gures 1 and 2 display an interesting �ndings: on one hand, an upward
trend is observed for the average e¢ ciency of the industry, presumably bene�ting
from the deregulations in the 1980�s and 1990�s; on the other hand, the industry
appears to be more �tolerant�of less e¢ cient banks in the last decade. Possibly,
these banks have a characteristic that we have not properly controlled for and we are
currently examining this issue. Given the recent experiences in the credit markets
due in part to the poor oversight lending authorities gave in their mortgage and other
lending activities, our results also may be indicative of a backsliding in the toleration
of ine¢ ciency that could have contributed to problems the �nancial services industry
faces today.

11We trimmed out the top and bottom 5% of ine¢ ciencies to remove the e¤ects of outliers.
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Table 10: Comparisons of Various Estimators. Estimates and standard errors (in paren-

theses) for each model parameters from competing models ( FIX, CSSW, BC, BIE).

FIX CSSW BC BIE

ciln 0:1915(0:0018) 0:1668(0:0016) 0:1809(0:0017) 0:2589(0:0018)

inln 0:2639(0:0018) 0:2822(0:0019) 0:2547(0:0017) 0:2905(0:0015)

DD �0:0791(0:0032) �0:0835(0:0029) �0:0615(0:0031) �0:0873(0:0026)
DEP �0:5064(0:0058) �0:4402(0:0062) �0:5745(0:0057) �0:5757(0:0031)
lab �0:2605(0:0059) �0:2486(0:0054) �0:2053(0:0056) �0:1904(0:0025)
cap �0:0461(0:0020) �0:0490(0:0019) �0:0450(0:0019) �0:0888(0:0019)
purf �0:1108(0:0040) �0:1616(0:0036) �0:1345(0:0040) �0:1279(0:0032)
time 0:0052(0:0001) � 0:0023(0:0001) �

 0 0 0:7947(0:0067) 0:7690(0:0058)

� 0:243(0:0037) 0:214(0:0023) 0:2355(0:0015) 0:2733(0:0021)

� � � 0:0127(0:0032) 0:4937(0:069)

B � � � 1:5343

ATE 0:5614 0:6693 0:6574 0:6815

Table 11: Spearman Rank Correlations of E¢ ciencies

FIX CSSW BC BIE

FIX 1 � � �
CSSW 0.8556 1 � �
BC 0.9662 0.8231 1 �
BIE 0.6919 0.7942 0.7168 1
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8 Conclusions

In this paper we have introduced a series of parametric stochastic frontier models that
have upper (lower) bounds on the ine¢ ciency (e¢ ciency). The model parameters can
be estimated by maximum likelihood, including the ine¢ ciency bound. The models
are easily applicable for both cross-section and panel data setting. In the panel data
setting, we set the ine¢ ciency bound to be varying over time, hence contributing
another time-varying e¢ ciency model to the literature. We have examined the �nite
sample performance of the maximum likelihood estimator in the cross-sectional set-
ting. We also have showed how the "wrong "skewness problem inherent in traditional
stochastic frontier model can be avoided when the bound is taken into account. An
empirical analysis of US banking industry using the new model revealed interesting
trends in e¢ ciency scores. We concluded with an empirical puzzle that we leave for
the future analysis.

References

Adams, R.M., Berger, A.N., Sickles, R.C., 1999, Semiparametric approaches to sto-
chastic panel frontiers with applications in the banking industry. Journal of
Business and Economic Statistics 17, 349-358.

Aigner, D., Lovell, C.A.K., Schmidt, P., 1977, Formulation and estimation of sto-
chastic frontier production function models. Journal of Econometrics, 6, 21-37.

Battese, G.E., Coelli, T.J. 1992, Frontier production functions, technical e¢ ciency
and panel data, with application to paddy farmers in India. Journal of Produc-
tivity Analysis 3, 153-169.

Battese, G. E., Corra, G. 1977, Estimation of a production frontier model: with
application to the pastoral zone of eastern Australia, Australian Journal of
Agricultural Economics 21, 167-179.

Carree, M. A., 2002, Technological ine¢ ciency and the skewness of the error com-
ponent in stochastic frontier analysis, Economics Letters 77, 101-107.

Cornwell, C., Schmidt, P., Sickles, R.C., 1990, Production frontiers with cross-
sectional and time series variation in e¢ ciency levels. Journal of Econometrics
46, 185-200.

Entani, T., Maeda Y., Tanaka H., 2002, Dual models of interval DEA and its exten-
sion to interval data, European Journal of Operational Research 136 32-45.

26



Green, A., Mayes, D., 1991, Technical ine¢ ciency in manufacturing industries, Eco-
nomic Journal, 101, 523-538.

Greene, W.H., 1980a, Maximum likelihood estimation of econometric frontier func-
tions. Journal of Econometrics 13, 27-56.

Greene, W.H., 1980b, On the estimation of a �exible frontier production model.
Journal of Econometrics 13, 101-115.

Greene, W.H., 1990, A Gamma distributed stochastic frontier model. Journal of
Econometrics 46, 141-164.

Jondrow, J., Lovell, C.A.K., Materov I.S., Schmidt, P., 1982, On the estimation
of technical ine¢ ciency in the stochastic frontier production function model.
Journal of Econometrics 19, 233-238

Kneip, A., Sickles, R.C., Song W., 2005, A new panel data treatment for hetero-
geneity in time trends. Mimeo, Rice University.

Kumbhakar, S.C., 1990, Production frontiers, panel data, and time-varying technical
e¢ ciency. Journal of Econometrics 46, 201-212.

Lee, Y.H., Schmidt, P., 1993, A production frontier model with �exible temporal
variation in technical e¢ ciency. In: Fried, H.O, Lovell, C.A.K., Schmidt, P.
(Ed.), The measurement of productive e¢ ciency: Techniques and Applications,
Oxford University Press.

Lovell, C.A.K., Richardson, S., Travers, P., Wood, L., 1994, Resources and Func-
tionings: A new view of inequality in Australia. Models and Measurements of
Welfare and Inequality, W. Eichhorn, Berlin: Springer-Verlag.

Meeusen, W., van den Broeck, J., 1977, E¢ ciency estimation from Cobb-Douglas
production function with composed error. International Economic Review 18,
435-444.

Olson, J.A., P. Schmidt, D.M. Waldman, 1980, A Monte Carlo study of estimators of
the stochastic frontier production function. Journal of Econometrics 13, 67-82.

Ritter, C., and Simar, L., 1997, Pitfalls of Normal-Gamma Stochastic Frontier Mod-
els. Journal of Productivity Analysis, 8, 167�182.

Schmidt, P., Sickles, R.C., 1984, Production frontiers and panel data. Journal of
Business and Economic Statistics 2, 367-374.

Simar and Wilson, 2009, Estimation and Inference in Cross-Sectional,Stochastic
Frontier Models, forthcoming in Econometric Reviews.

27



Stevenson, R.E., 1980, Likelihood functions for generalized stochastic frontier esti-
mation. Journal of Econometrics 13, 57-66.

28



1985 1990 1995 2000 2005 2010
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Time

E
ff

ic
ie

n
c
y

Figure 1: Averaged efficiencies from each estimator

FIX
CSSW
BC
BIE
BIE2

29



1985 1990 1995 2000 2005 2010
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time

In
e
ff

ic
ie

n
c
y
 b

o
u
n
d

 Figure 2: Estimated time­varying inefficiency bound
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