Chapter 15 ---------- 7) T_H = 950K, T_C = 300K, |Q_C| = 400J epsilon_Carnot = 1 - T_C/T_H = 0.684 .... (i) From the definition of efficiency epsilon = |W| / |Q_H| = |W| / ( |Q_C| + |W| ) = |W| / ( 4000 + |W| ) .. (ii) From (i) = (ii), |W| = 867J 14) (a) PV = nRT -> V = nRT/P = 2.41 x 10^(-2) [m^3] (b) At the beginning (point 1) and the end (point 2) P_1 * V = nRT_1 and P_2 * V = nRT_2 (V does not change) -> P_1 / P_2 = T_1 / T_2 -> P_2 = 1.46 x 10^5 Pa (c) For an adiabatic process, PV^gamma = const P_2 * V_2^gamma = P_3 * V_3^gamma -> V_3 = 3.12 x 10^(-2) [m^3] (d) PV = nRT -> T_3 = P_3 * V_3 / (nR) = 379K (e) W_1 = 0 for path 1 (isochoric process) W_2 = - n * c_V * delT (adiabatic, delU + W = 0, W = - delU) = - 1.0 * (5R/2) * (379-423) = 915J W_3 = P * delV = -7.3 x 10^2 J Therefore, W_total = W_1 + W_2 + W_3 = 1.9 x 10^2 J (f) Path 1: constant volume, Q_1 = n * c_V * delT = 2.70 x 10^3 J Path 2: Q_2 = 0J (adiabatic) Path 3: constant pressure, Q_3 = n * c_P * delT = -2.5 x 10^3 J Therefore, Q_total = Q_1 + Q_2 + Q_3 = 2 x 10^2 J ------------------------------------------------------ delT = T_f - T_i ------------------------------------------------------ (g) epsilon = |W| / |Q_H| = 0.07 18) epsilon_Carnot = 1 - T_C/T_H = (T_H - T_C)/T_H K_Carnot = T_C/(T_H - T_C) Therefore, epsilon_Carnot * K_Carnot = T_C / T_H 30) (a) W = mgh = 5 * 9.81 * 1.5 = 73.6 J (b) Engine does not hold any themal energy. delU = 0J (c) Q = delU + W = 0 + 73.6 = 73.6J (d) |Q_H| = |Q_C| + |W| = 90 + 73.6 = 164J (e) epsilon = |W| / |Q_H| = 0.449 44) |Q_H| - |Q_C| is less than |W| .... violates 1st and 2nd laws 52) T_H = 373K, T_C = 293K, delQ = 4500J (a) delS_H = -4500/T_H = -12.1 J/K (b) delS_C = 4500/T_C = 15.4 J/K (c) delS = delS_H + delS_C = 3.3 J/K ( > 0 ) (d) epsilon_Carnot = 1 - T_C/T_H = 0.214 54) V1 = 1 liter = 1 * 10^(-3) [m^3], density of water rho = 1.0 x 10^3 Kg/m^3 -> m1 = rho * V1 = 1Kg, m2 = 2Kg To find out the equilibrium final t (in celsius), delQ1 + delQ2 = 0 -> m1 * c_water * (t-20) + m2 * c_water * (t-90) = 0 -> t = 66 degrees in celsius => T = 339K Therefore, delS = Integrate(i,f) dQ/T = Integrate(i,f) mcdT/T = mc*ln(T_f/T_i) -> delS_total = delS_1 + delS_2 = 610 - 573 = 37 [J/K] (>0) 55) (a) W = |Q_H| - |Q_C| = 1500J (b) epsilon = |W| / |Q_H| = 0.30 (c) epsilon_Carnot = 1 - T_C/T_H = 0.621 (d) delS = -|Q_H|/T_H + |Q_C|/T_C + 0 = 5.4J/K 58) Like a free expansion for each gas, delS = Integrate(i,f) dQ/T = Integrate(i,f) PdV/T = nR * Integrate(i,f) dV/V = nR*ln(V_f/V_i) delS_total = nR*ln(V/V1) + nR*ln(V/V2) = nR*ln(V^2/V1/V2), where V=V1+V2 Since V^2/V1/V2 > 1, delS_total > 0 59) The final T is given by mc*(T-T1) + mc*(T-T2) = 0 -> T = (T1+T2)/2 delS = mc*ln(T/T1) + mc*ln(T/T2) = mc*ln(T^2/T1/T2) = mc*ln( (T1+T2)^2/(4*T1*T2) ) However, delS >= 0 J/K since (T1+T2)^2 > 4*T1*T2 <-----------> (T1-T2)^2 >= 0 ------------------------------------------------ A^B = A to the Bth power (2^3 = 8) ln(x) = natural logarithm of x v_rms = rms velocity ... _rms stands for subscript rms