Coordinated Work Schedules and the Gender Wage Gap

German Cubas, Chinhui Juhn and Pedro Silos*

July 2020

Abstract

Using U.S. time diary data we construct occupation-level measures of coordinated work schedules based on the concentration of hours worked during peak hours of the day. A higher degree of coordination is associated with higher wages but also a larger gender wage gap. In the data women with children allocate more time to household care and are penalized by missing work during peak hours. An equilibrium model with these key elements generates a gender wage gap of 8.9 percent or approximately 40 percent of the wage gap observed among married men and women with children. As in the data, most of the gender wage gap is within occupations: the value predicted by the model is 7.2 percent. If the need for coordination is equalized across occupations and set to a relatively low value (i.e. Health care support), the gender gap within occupations would fall by more than half to 2.0 percent.

Key words: Labor Supply, Occupations, Coordination, Work Schedules, Time Use, Gender Wage Gap.

JEL Classifications: J2, J3, E2.

[^0]
1 Introduction

Balancing work and family is a challenge in modern societies. Household production not only limits the total number of hours that can be devoted to market work, it may also conflict with when hours can be supplied. For example, as long as parents cannot perfectly substitute child care responsibilities across different hours of the day, there will be temporal restrictions on when parents can supply labor.

From the perspective of the employer, when work happens may be important if there is joint production and firms need to coordinate workers. The need for coordination may be task and occupation-specific. The nature of production in some occupations may require workers to be at work at the same time to perform a joint task. In other occupations, workers may be assigned tasks which can largely be performed on their own and precisely when that work is completed is less important. The need for coordination raises productivity of hours supplied when others are present. To the extent that women have more household care responsibilities than men, and therefore have greater difficulty committing to be present at any particular hour, this mechanism generates a gender wage gap. In this paper we study the timing of labor supply and its interaction with household care needs during the day. Compared to the extensive literature on labor supply along the quantity dimension, this is an under-explored area. We fill this gap by making empirical, theoretical, and quantitative contributions.

Using the American Time Use Survey (ATUS), we document novel facts regarding the timing of work for men and women. We find that parents perform household care (child care plus adult care) throughout the day- even during peak hours- suggesting that parents are indeed unable to postpone household produc-
tion to non-work times. A comparison between men and women, even among full-time workers, shows that women provide more household care and work less throughout the day relative to their male counterparts. The gap in hours is small but our point is that even small gaps can generate productivity losses depending on the timing.

We also employ the ATUS to measure coordinated work schedules at the occupation level. For each occupation, we record at what time of the day individuals report being at work. We associate more bunching (work schedules concentrated at particular times) with stronger coordination needs, because bunching implies that individuals are at work at the same time. We find that the degree of bunching of work hours varies across occupations and, consistent with the notion of coordination, our measure is positively correlated with other occupational characteristics such as "face to face discussions" and "establishing and maintaining interpersonal relationships" reported in the O*NET database.

We then use individual level data from the Current Population Survey (CPS) to study the relationship between wages and our occupational level measure of coordination. We find that our measure of coordination commands a wage premium: a one standard deviation higher ratio leads to approximately 11 percent higher wages. In addition, it generates a gender wage gap: women who work in coordinated occupations are paid a higher wage but relatively less than men (by about 5 percent). Interestingly, we find that married men with full-time working spouses (who presumably have greater household care responsibilities) also experience a wage penalty in high coordination occupations relative to men with non-working spouses.

Motivated by these facts, we develop a theory of occupational choice and time
allocation during the day to household care and market work. In the model a gender wage gap is generated by the interaction of three key elements. First, women assign a higher value to household care- an assumption which we justify as a reflection of current social norms. Since household care activities performed at different times are less than perfect substitutes, women end up allocating more time to household care when everyone else is working, which is costly. This penalty rises with the occupational coordination needs so women are less likely to select into occupations with higher coordination needs.

We parameterize the model with the data used in the empirical analysis. We restrict the sample to married men and women with children who are full-time workers. The model generates a gender wage gap of 8.9 percent (approximately 40 percent of the observed gender gap). We decompose the gender wage gap into the between and within occupation components. As in the data, most of the gender wage gap is within occupations. The within component predicted by the model is 7.2 percent which accounts for 30 percent of the one observed in the data.

To understand the extent to which occupational differences in coordination are responsible for the observed gender gap we conduct a counterfactual exercise where coordination needs are equal across all occupations and set to the level of "Healthcare Support"- an occupation with a relatively low level of coordination. In this case, the overall gender wage gap in the model falls to 6.4 percent. The gender wage gap within occupations decreases by 72 percent to 2.0 percent. In another counterfactual, we reduce the difference in the value that men and women place on household care. We can think of this experiment as a way to evaluate changes in social norms that drive a reduction in the gender gap in household care responsibilities. As a result, the gender wage gap within occupations decreases by

50 percent to 3.6 percent. Finally, we focus our study on the effects of the ability to substitute household care during the day. Our baseline calibration points to an economy in which household care activities are fairly substitutable but imperfectly so. They may reflect parenting styles or just constraints on the time of the day in which some activities take place (for example meetings with school teachers). We thus analyze a counterfactual economy in which women can now more easily distribute the household care to off-peak times so they do not incur a productivity loss. As a result, the gender wage gap within occupations decreases by 31 percent to 5 percent.

A large literature in macroeconomics and labor economics relates family arrangements and the labor supply of its family members. Important contributions are Doepke and Tertilt (2016), Bick and Fuchs-Schündeln (2018) and Albanesi and Olivetti (2009). Our paper is also closely connected to the literature which examines the role of frictions on workers' labor supply responses. These frictions could arise from fixed wage-hours packages offered by employers which result in nonlinear payment schedules. Important contributions are Prescott, Rogerson, and Wallenius (2009), Rogerson and Wallenius (2009) as well as Rosen (1976), Blundell, Brewer, and Francesconi (2008), Altonji and Paxson (1988) and Altonji and Paxson (1992). Recent papers have emphasized the role of coordination as the driving force behind non-convex budget sets. The wage-hours combinations available to workers may be sparse due to the needs for coordination. This need may arise at the firm level or even at a more aggregate, economy-wide level. For example, Guner, Kaya, and Sánchez-Marcos (2014) study how the Spanish work schedule with long lunch breaks affects parental time allocation. Moreover, Guner, Kaya, and Sánchez Marcos (2019) find that the inflexibility of work schedules partially
explains the low fertility observed in some rich countries. Other recent papers study the labor supply responses to changes in, for instance, taxes or other economic conditions. They find stark differences between responses with non-linear payment schedules and those predicted by linear payment schedules and an absence of coordination. Examples include Chetty, Friedman, Olsen, and Pistaferri (2011), Rogerson (2011), and Labanca and Pozzoli (2018). We contribute to this literature by exploring how coordination requirements influence labor supply as well as another important margin - occupational choice. Instead of examining labor supply responses to tax changes, we examine how these hours requirements driven by coordination needs conflict with the demands of household production and consequently lead to the gender wage gap. ${ }^{1}$

Our work is also closely related to the literature which relates occupationspecific characteristics to the gender wage gap. Goldin (2014) argues that much of the remaining gender wage gap can be explained by the lack of flexible work arrangements. Along these lines, a number of papers have shown that the gender gap is particularly large in jobs which demand long hours (Erosa, Fuster, Kambourov, and Rogerson (2017), Gicheva (2013) Cha and Weeden (2014), Cortes and Pan (2016b), Cortes and Pan (2016a), Duchini and Effenterre (2017) and Wasserman (2019)). ${ }^{2}$ Compared to these studies, our focus is on flexible timing, rather than the flexibility to set the number of hours. We show that while the demand for long hours and our measure of coordination are positively correlated, the correlation is

[^1]far from perfect and both contribute to the gender wage gap. ${ }^{3}$
A recent paper, Mas and Pallais (2017), elicit workers' willingness to pay for flexible schedules using a field experiment. These authors find that while the average willingness to pay for flexibility is low, there is also a long right tail in the willing to pay distribution suggesting compensating differential for inflexibility still could be large at the margin. ${ }^{4}$ Another recent paper, Chen, Chevalier, Rossi, and Oehlsen (2019), estimates the value of flexibility among drivers of the ridesharing platform Uber. Drivers have almost total flexibility when to supply labor, to the point of being able to react on an hourly basis to unexpected shocks to their reservation wage. The authors estimate the surplus from that flexibility to be large, and hence their results are roughly in line with our findings.

The paper is organized as follows. Section 2 describes our data, the temporal patterns of work and household care in the ATUS, as well as our measure of hours bunching which proxies for coordination requirements. Section 3 reports our reduced form regression results using individual level CPS data. Section 4 presents the model. Section 5 illustrates the model mechanics with simple examples. Section 6 describes the calibration and our counterfactual experiments.

Section 7 concludes.

[^2]
2 Time Allocation by Gender, and Coordinated Work Schedules

2.1 Data

We base our analysis on the 2003-2014 ATUS. One respondent per household is drawn from the Current Population Survey samples and the interviews are conducted 2 to 5 months after the last CPS interview. The ATUS respondent is asked to fill out a time diary over the previous day, recording their activities and starting and ending times. There are 17 aggregate activities and we focus on two activities, "work and work-related activities" and "caring for and helping household members". ${ }^{5}$ For each individual we calculate minutes spent on these activities for each hour of the day using information on starting and ending times. The ATUS also contains demographic and labor force information including labor force status and usual hours worked. We restrict our sample to adults who are 18 to 65 years old. Our main sample of time-diary respondents consists of 106,620 observations. For comparing time use of men and women we focus on full-time workers (those whose usual weekly hours are greater than or equal to 35$).{ }^{6}$ The full-time worker sample consists of 66,023 observations. We do not make restrictions based on selfemployment status and also include multiple job holders. However, to construct the ratio of hours worked in the 8 to 5 time interval (which we label ratio8to5) at

[^3]the occupation level we include only full-time workers who worked a minimum of 35 hours in their main job. For the regression analysis where we explore the impact of occupation-level ratio 8 to 5 on wages, we include all individuals in the CPS, including those who are not time-use survey respondents. For this case the sample sizes are considerably larger, with the sample consisting of 263,313 individuals who are full-time workers aged 18 to 65 with non-missing weekly wages. Since the time use surveys are conducted 3 months after the main CPS interviews we use variables such as age and work status that are collected at the time of the time use survey whenever possible. Some of the information, however, such as education, is available only in the main CPS data. Appendix A. 1 contains more detail regarding construction of our data.

2.2 Timing of Work and Household Care

In this section we describe patterns of time use over the course of a single day for full-time workers by gender, marital status and parental status. These patterns show how time allocated to market work is constrained by the demands of family time and how those constraints differ for men and women. Figure 1 explores when work happens. The figure graphs the average number of minutes worked by onehour time bins for full-time workers. The figure shows that most (74 percent) work occurs during the 8 a.m. to 5 p.m. interval with a break between 12 p.m. to 1 p.m. ${ }^{7}$ Figure 2 graphs the average number of minutes worked by marital and parental status. The top panel shows work for married individuals, men and women, with at least one own child in the household, who work full-time. The bottom panel shows work for singles with no children. Even among full-time workers, women

[^4]work less than men, with the gap being largest among those married with children. Table 1 further explores the gender differences in work for this group. The table shows that women work approximately 0.9 hours less on weekdays and 0.7 hours less on weekends. Column (5) controls for usual weekly hours worked reported in the activity summary file. Column (6) only includes workers who reported usual weekly hours less than 50. Both of these restrictions reduce the gap in hours worked but even among full-time workers who work less than 50 hours, married women with children work almost 0.5 hours less on weekdays relative to their male counterparts.

Figure 3 graphs the temporal pattern of household care among full time workers who are married with children and singles without children. The differences in the temporal pattern of work and household care, however, are notable. Both women and men with children report household care with noticeable bumps up in the early morning and evening hours. The temporal pattern of care for full-time workers with children is negatively related to the temporal pattern of work, with the fewest minutes devoted to care activities during the 8 to 5 interval. However, even during the 8 to 5 interval, household care does not fall to zero. Table 2 shows that among married men and women with children, women engage in nearly 0.5 hours more household care during weekdays and 0.3 hours more on weekends. Different controls reduce the gap but the table shows that women significantly allocate more time to household care than men.

Table 3 provides further detail regarding differences in hours of child care provided by mothers and fathers. First we examine detailed care categories adopting a method introduced by Stewart (2010). Stewart (2010) defines three broad categories of child care: "routine", "enriching care", and "other." Included in routine care is
physical care and looking after children. "Enriching care" includes activities such as reading to children and playing sports with children. "Other" includes more nebulous activities such as "organizing and planning for household children," "attending children's events," and "picking up and dropping off children." Table A. 1 provides the full list of activities included in each of the three broad categories.

Table 3 compares the hours of each type of care performed by non-working married mothers, full-time married mothers, full-time single mothers, and fulltime married fathers, respectively. The top panel reports hours during weekdays while the bottom panel reports hours during weekends. The table also separates out households where at least one child is under the age of six (school age). Looking at hours of routine care in families with young children, we see (not surprisingly) that non-working mothers provide the most care, 1.4 hours, while full-time married mothers and full-time single mothers provide 1.0 and 0.8 hours respectively. Full-time married fathers provide considerably less, 0.4 hours. What is surprising is that non-working and full-time working mothers provide the same amount of care in the "other" category - all three groups provide 0.4 hours on a typical weekday. There are differences when we examine households with only older children but main point is that the child care provided by non-working and full-time working mothers is not as different as one might have thought, especially when it comes to the non-routine care categories. This type of child care does not constitute a lot of hours but the table shows that certain activities cannot be easily outsourced.

To summarize, we showed that married women with children who are fulltime workers report fewer hours of work in the time diary data relative to their male counterparts- a phenomenon we call "missing hours." The "missing hours"
occur throughout the day and is distinct from women being less likely to work long hours. Correspondingly, married women with children also perform more household care than men. The extra household care is unlikely to be routine child care since we are considering full-time working women. Instead, the extra hours are likely to consist of a catch-all "other" category which includes such activities as organizing and planning, driving children, attending doctor's appointments and children's activities. These activities add up to a small number of hours but are likely to entail costly work interruptions.

2.3 Measure of Coordinated Work Schedules

Building on the previous section, we construct our measure of coordinated work schedules for different occupations. Call the time intervals between 12 a.m. and 8 a.m., between 8 a.m. and 5 p.m. and, between 5 p.m. and 12 a.m. A, B and C, respectively. $A_{i j}, B_{i j}$, and $C_{i j}$ then refer to the sum of minutes worked by individual i in occupation j in those respective intervals. We sum over individuals to get occupation-level equivalents

$$
A_{j}=\sum_{i=1}^{M_{j}^{A}} w_{i} A_{i j}, \quad B_{j}=\sum_{i=1}^{M_{j}^{B}} w_{i} B_{i j}, \quad C_{j}=\sum_{i=1}^{M_{j}^{C}} w_{i} C_{i j}
$$

where w_{i} refers to the survey weight of the individual and, M_{j}^{A}, M_{j}^{B} and M_{j}^{C} are the number of individuals in occupation j in intervals A, B and C, respectively.

Our measure of coordinated work schedules at the occupation level is the ratio of minutes worked in the 8 to 5 interval relative to total minutes worked.

$$
\text { ratio8to5 }_{j}=\frac{B_{j}}{A_{j}+B_{j}+C_{j}} .
$$

We include only full-time workers in calculating this ratio. A higher ratio indicates that a greater amount of work in the occupation occurs during the standard 8 to 5 work day. We also standardize this measure by subtracting the mean and dividing by the standard deviation. We view a higher ratio as indicating the need for greater coordination, with more hours worked concentrated during peak hours. We construct ratios by detailed 2002 Census occupations, resulting in 493 non-missing ratios (see Table A.4). Appendix A. 1 provides further details on the construction of the ratios.

We highlight some occupations in Figure 4. Among occupations with more educated workers, "Lawyers" and "Financial Analysts" have standardized ratios of 0.588 and 0.663 , respectively. "Writers and Authors" have a relatively low ratio of 0.157. "Physicians and Surgeons" have the lowest ratio of -0.010. In occupations with relatively less educated workers "Nursing, Psychiatric, and Home Health Aides" has a very low ratio of -1.284 . "Cashiers" have a ratio of -0.781 . On the other hand, "Secretaries and Administrative Assistants" have a high ratio of 1.052.

How is our measure related to other occupational characteristics? Table 4 reports correlations of our measure, ratio8to5, with other occupational characteristics reported in the O^{*} NET data base. ${ }^{8}$ The table shows that our measure points to the need for coordination with others in the workplace. Our measure is positively correlated with "establishing and maintaining interpersonal relationships" and "face to face discussions." On the other hand, it is negatively correlated with "assisting and caring for others."

[^5]One can view our measure as a rather arbitrary way to think about the concentration of working hours during a day as the peak hours are fixed to be between 8 and 5 . As an alternative one could think of how concentrated the hours are during the day without pre-establishing the times of the day. We have also explored an alternative measure of concentration based on the Herfindahl index.

Let $w o r k_{j}^{k}$ be the total weighted time spent working in each day of the weekhour time bin k in occupation j,

$$
w_{0 r k}^{k}=\sum_{i=1}^{M_{j}} w o r k_{i j k} \cdot w_{i}
$$

where i denotes individual in occupation j and w_{i} denotes the weight of individual i.

Let share ${ }_{j}^{k}$ be the fraction of the total time spent in each occupation in each time bin and each day.

$$
\operatorname{share}_{j}^{k}=\frac{\operatorname{work}_{j}^{k}}{\sum_{k} w o r k_{j}^{k}}
$$

Our concentration index measure is the Herfindahl index defined as:

$$
c r_{j}=\sum_{k}\left(s h a r e_{j}^{k}\right)^{2}
$$

Table 4 shows that our coordination measure, ratio8to5, and the Concentration Index measure are highly positively correlated, with the correlation equaling 0.743 . The table also reports the correlation of our measure and the measure of "Male Overwork" used by Cortes and Pan (2016b). "Male Overwork" is defined as the fraction of male workers who report working more than 50 hours per week.

This ratio is calculated for men with at least some college education. The correlation between these two measures is 0.129 , indicating that while our measure is positively related to the demand for long hours, it is by no means perfectly correlated. Thus, our measure captures another important aspect of hours requirements on the job such as the requirement to be present when others are present.

Another aspect worth exploring is the extent to which our measure of coordination is correlated with other skill requirements at the occupational level, such as social skills (Deming (2017)), and abstract, routine, and manual skills (Acemoglu and Autor (2011)). ${ }^{9}$ The bottom rows of Table 4 show that indeed our measure is strongly positively correlated with social skills and abstract cognitive skills while it is negatively correlated with both manual and routine skills. In the next section, we explore the extent to which the returns to our measure of coordination is impacted when we add these skill measures as additional controls.

3 Coordinated Work Schedules and the Gender Wage

Gap

In this section we analyze how our measure of coordinated work schedules is priced in the labor market, and how it impacts the gender wage gap. Specifically, we estimate the following regression at the individual level:

[^6]\[

$$
\begin{equation*}
\ln W_{i}=\beta_{0}+\beta_{1} * \text { female }_{i}+\beta_{2} \text { ratio8to }_{j}+\beta_{3} \text { female }_{i} * \text { ratio } 8 \text { to }_{j}+\beta_{4} X_{i}+\varepsilon_{i} \tag{1}
\end{equation*}
$$

\]

where $\ln W_{i}$ is the \log of individual weekly earnings, female $_{i}$ is the female dummy, ratio8to 5_{j} is the ratio of hours worked in the 8 to 5 interval which varies at the occupation level j, X_{i} are other observable characteristics including a dummies for race and education and a quartic function in age. We also control for (log) hours worked last week so that the coefficients we report reflect gaps in the hourly wage. ${ }^{10}$ Our sample includes only full-time workers. β_{1} measures the impact of the female dummy, β_{2} measures the impact of working in occupations with a more concentrated work day, and β_{3} captures how being female interacts with working in these occupations.

Table 5 reports the results of the regression. The top panel reports the results for all full-time workers. Column (1) presents the baseline results. Women earn on average 22 percent less than men. Individuals in occupations with higher ratio8to 5 earn higher wages, with a one standard deviation higher ratio leading to approximately 11 percent higher wages. The interaction term indicates that women suffer about a 5 percent higher penalty in these occupations. In column (2) we control for occupation-level education which reduces the size of the wage premium associated with these occupations and also the female-specific penalty. In column (3) we control for the fraction of male workers in the occupation who report working more than 50 hours per week- the measure of "overwork" used by Cortes and Pan (2016b). In colum (4) we include O*NET skill measures such as social, ab-

[^7]stract, manual, and routine skills. The coefficient on the concentration measure is still significant although the addition of skill measures reduces the female-specific penalty somewhat.

The bottom two panels report results separately by marital and parental status. Panel B reports results for single men and women. Notably the interaction terms are all insignificant pointing to the fact that there is no penalty for women associated with coordinated work schedules. Panel C reports results for married men and women with children. The female interaction terms are larger and significant which suggests that the results pooling over all workers reported in the top panel were largely due to the married with children group. Notably even when we include "overwork" and O*NET skill measures as additional controls, the coefficient on the interaction term is -4 percent and still significant at the 5 percent level.

These regressions indicate that workers in occupations where most adhere to a standard 8 to 5 schedule are paid a higher wage. However, the gender gap in these occupations is larger. This pattern is particularly pronounced when we restrict our sample to married men and women with children, strongly suggesting that conflicts related to work and family time play an important role.

One objection to our interpretation of the results is that employers may be practicing statistical discrimination against married women with children and the level of discrimination is particularly severe in occupations with coordinated schedules. This alternative interpretation, while closely related, suggests that it is not necessarily the temporal constraints that women face due to household care responsibilities that are at play. To further investigate this alternative explanation, we examine different groups of married men (with children) who are full-time workers, differentiated by the work status of their wives. ${ }^{11}$

[^8]In Table 6 we investigate whether these constraints imposed by care responsibilities translate into wage penalties. Table 6 reports the results of a regression in a similar format as Table 5 but we now make comparisons among men only. The sample includes all married men with children matched to a spouse in the CPS data. The variables "Wife PT" and "Wife FT" are indicators equal to 1 if the wife works part-time or the wife works full-time respectively. The omitted category is "Wife Not Working." The coefficients indicate that married men with full-time working wives earn approximately 5 percent less than married men with nonworking wives indicating either selection or specialization effects. The coefficients of interest however are the interaction terms which indicate that a one standard deviation higher ratio leads to a 3-4 percent higher penalty for men with part-time working wives, and a 5-6 percent penalty for men with full-time working wives. Table 6 shows that the phenomenon is not unique to comparisons between men and women but is more general and applies where there is balancing between work and household care. It's possible that the direction of causality is the opposite- that spouses with less earning power engage in more household care. Regardless, our argument is that there is a systematic wage penalty associated with doing household care related to our coordination measure. While we focus on the gender wage gap in our paper, the important message here is that the work-family conflict we identify is more widely applicable to all parents with care responsibilities.

In the appendix, we conduct various robustness exercises in support of our main results. One concern with our measure is whether it is confounded with the prevalence of evening and night shifts. Nurses, for example, work shifts and are at work during all hours of the day and the occupation would have low coordina-
tion requirements according to our measure. However, this may just be reflecting a 24 -hour production cycle. To address this issue, in Table A. 4 we add the fraction of workers who report to be shift workers based on the 2004 Work Schedule Supplement as an additional control. Our results are robust to these additional controls. Table A. 5 in the appendix also reports regression results using our alternative measure of concentrated hours based on the Herfindahl Index. These results are qualitatively very similar.

To complement our reduced-form analysis, in what follows we build a model with the essential elements suggested by our empirical work and conduct counterfactual exercises.

4 The Model

Environment The economy is populated by a continuum of male and female workers of equal masses which sum to 1. Everyone lives for one period and values consumption of a market good, denoted by c, and a home good denoted by h. People rank bundles of the two goods according to a Cobb-Douglas utility function:

$$
\begin{equation*}
u(c, h)=(c)^{v^{s}}(h)^{1-v^{s}} \tag{2}
\end{equation*}
$$

where v^{s} represents the weight of market goods in utility for gender s with $s=$ f, m.

Three aspects of the preferences are worth noting. First, males and females differ in the relative value they give to the home good. This asymmetry should not be taken literally as a fundamental difference in preferences. It is a convenient way to capture observed differences in hours of household care between males and
females. This difference may reflect social norms, differences in bargaining power, discrimination, etc., but an explicit modeling of these features is outside the scope of the paper. A second and related aspect is that the decision unit is the individual and not the household. The reason for doing so is data limitations. Specifically, observations in the ATUS are at the individual level, and there is no information on spousal time allocation. Third, as in our empirical part, h represents household care activities that are normally not outsourced (even for full-time workers) and thus we abstract from other household care activities including leisure. In order to isolate the effect of coordinating activities during the day, we want to focus on those activities that are directly performed by the worker. ${ }^{12}$

Workers have one unit of time, a fraction of which can be supplied in a labor market that features J occupations and which are labeled using the integer j. Occupations are mutually exclusive; workers can only work in one occupation. Workers receive a wage w_{j} per unit of time they supply in occupation j. Earnings from the supply of labor is how workers finance purchases of the market good c.

Time is divided into two sub-periods of equal length. We label the first period as "prime" (or 1), and the second period as "home" (or 2). We associate the first period in the model with the 8 a.m. to 5 p.m. period in the data. ${ }^{13}$ Workers do not exclusively choose how to split their unit of time between working in the market and home care; they also choose how much to allocate to either activity during each sub-period. We denote by h^{i} and l^{i}, respectively, the home care and

[^9]work choices in sub-period t. Since the total time used must add up to one, the following identity must hold:
\[

$$
\begin{equation*}
h_{j, 1}^{i}+l_{j, 1}^{i}+h_{j, 2}^{i}+l_{j, 2}^{i}=1 \tag{3}
\end{equation*}
$$

\]

Since either sub-period represents half of total time, the following must also be true:

$$
\begin{equation*}
h_{j, t}^{i}+l_{j, t}^{i}=0.5, \tag{4}
\end{equation*}
$$

for each sub-period $t .{ }^{14}$
Our model abstracts from the labor market participation margin as well as the possibility of working part-time. We recognize that these decisions are not independent from fertility (also not modelled) and that there is a dynamic component to them. Abstracting from these margins does not mean we think they are not relevant to study the gender wage gap. Our goal is to quantify in isolation the new mechanism we propose. We find this mechanism explains a sizeable portion of the observed gender wage gap but not its totality.

Thus, our focus is on modeling the choice of hours during the day conditional on being a full time worker when caring for children conflicts with the work schedule. The empirical evidence in Section 2 shows that, conditional on being full time workers, the distribution of working hours during the day is not uniform. Workers bunch hours at particular times of the day and the degree of bunching is higher in certain occupations. This evidence, coupled with data from O^{*} NET (see Table 4), suggests that in some occupations the need to coordinate workers' schedules

[^10]is stronger. For example, some occupations rely more on team production where workers' tasks are complementary, while in others individuals work mostly on their own. This difference in the production technology translates into a friction on an individual's supply of labor. If an individual's tasks are complementary with others' in the same occupation, not supplying labor when others do has a productivity penalty. For example, missing a team project meeting has a productivity penalty. This penalty is likely to differ across occupations. Returning to our model, while we do not explicitly model the production technologies that lead to coordination needs, we assume that not supplying labor during prime time has a penalty. More specifically, a reduced form way of capturing the importance of coordinating workers' schedules is given by a reduction in the effective hours of work when labor is not supplied during prime time:
\[

$$
\begin{equation*}
l_{j}^{i}=l_{j, 1}^{i}+l_{j, 2}^{i}-\left(0.5-l_{j, 1}^{i}\right)^{\alpha_{j}} \quad \text { with } \quad \alpha_{j} g e q 0 \text { for } j=1, \ldots, J . \tag{5}
\end{equation*}
$$

\]

The parameter α_{j} drives the penalty for not supplying labor during prime time in occupation j.

This specification allows for large productivity losses in some occupations when a worker postpones working time to the second period ("home"). The penalty is large in occupations with a low α_{j}, while in those with a high α_{j} the loss is minimal. The maximum amount of time any worker (male of female) can work in the prime period is 0.5 . For a given amount of work, supplying more home care time during period 1 leads to a lower productivity per hour. The extent of the productivity loss is occupation- but not gender-specific. Although α is exogenous, and thus our model is silent about the source of these differences, one interpretation is that workers coordinate because productivity rises when everyone is present. By
convention, this coordination takes place during the period we call prime time.
The production of home goods employs hours both within prime and home time according to a Constant Elasticity of Substitution (CES) technology:

$$
\begin{equation*}
h^{i}=\left[\left(h_{1}^{i}\right)^{\rho}+\left(h_{2}^{i}\right)^{\rho}\right]^{\frac{1}{\rho}}, \tag{6}
\end{equation*}
$$

where ρ is the parameter that governs the elasticity of substitution between the supply of home care time across the two time periods. If $\rho<1$, home care in different periods are imperfect substitutes.

On the production side, there is a set of J intermediate goods producers indexed by j. We associate the production of an intermediate good with an occupation. Each produces an amount X_{j} of the intermediate good. Production employs a linear technology in effective units of labor N_{j}; that is, $X_{j}=A_{j} N_{j}$, where A_{j} is a total factor productivity parameter. ${ }^{15}$ Markets are competitive and the producer faces prices for her good p_{j} and wages w_{j}.

The producer of intermediate good j solves the following maximization problem:

$$
\begin{equation*}
\max _{N_{j}} p_{j} X_{j}-N_{j} w_{j} \tag{7}
\end{equation*}
$$

subject to the available technology $X_{j}=A_{j} N_{j}$. The solution to the problem is $p_{j}=w_{j} / A_{j}$. Intermediate goods producers sell to a final goods producer. The technology for producing a certain amount Y of the final good from a vector of quantities of intermediate services $\left\{X_{1}, \ldots, X_{J}\right\}$ is described by,

$$
\begin{equation*}
Y=\sum_{j=1}^{J}\left\{\kappa_{j} X_{j}^{\beta}\right\}^{\frac{1}{\beta}} \tag{8}
\end{equation*}
$$

[^11]where β governs the elasticity of substitution between the intermediate goods and κ_{j} the share of each one in final production.

The final good producer solves the following maximization problem:

$$
\begin{equation*}
\max _{\left\{X_{1}, \ldots, X_{J}\right\}} \sum_{j=1}^{J}\left\{\kappa_{j} X_{j}^{\beta}\right\}^{\frac{1}{\beta}}-\sum_{j=1}^{J} p_{j} X_{j} . \tag{9}
\end{equation*}
$$

Note that in equilibrium $X_{j}=A_{j} N_{j}$ and $p_{j}=w_{j} / A_{j}$, so that this maximization problem implicitly defines labor demand functions $\left\{N_{j}=N_{j}^{d}\left(w_{j}, N_{-j}\right)\right\}_{j=1}^{J}$

Individual's Decision Problem Prior to choosing an occupation, each individual draws a vector of taste parameters for occupations, Ω_{i}, from gender-specific distributions $F\left(\theta_{j, s}\right)$. Thus, each individual i is represented by the vector

$$
\Omega_{i}=\left\{\theta_{i, 1}, \ldots, \theta_{i, J}\right\}
$$

. Each element of the vector, $\theta_{i, j}$, represents the taste for occupation j and are independent across occupations. These shocks are important in matching the empirical sorting of workers into occupations. These shocks represent the various forces we leave out but which nonetheless determine the size and gender composition of occupations (comparative advantages, experience, etc.).

The amount of effective labor supplied by a worker of gender s in occupation j is l_{j}^{s}. Effective labor is compensated at a rate w_{j} per unit.

The value of occupation j for an individual of gender s is:

$$
\begin{align*}
& V_{j}^{s}\left(\theta_{j}^{s}\right)=\theta_{j}^{s}\left\{\max _{c^{s}, l_{j, 1}^{s} l_{j, 2}^{s}, h_{j, 1}^{s}, h_{j, 2}^{s}}\left\{u\left(c^{s}, h^{s}\right)\right\}\right\} \tag{10}\\
& \text { s.t. } \tag{11}\\
& c^{s}=l_{j}^{s} w_{j} \tag{12}\\
& h_{j, 2}^{s}+l_{j, 2}^{s}=0.5 \tag{13}\\
& h_{j, 1}^{s}+l_{j, 1}^{s}+h_{j, 2}^{s}+l_{j, 2}^{s}=1 \tag{14}\\
& l_{j}^{s}=l_{j, 1}^{s}+l_{j, 2}^{s}-\left(0.5-l_{j, 1}^{s}\right)^{\alpha_{j}} \quad \text { with } \quad \alpha_{j} \geq 0 \tag{15}\\
& h_{j}^{s}=\left[\left(h_{j, 1}^{s}\right)^{\rho}+\left(h_{j, 2}^{s}\right)^{\rho}\right]^{\frac{1}{\rho}} \tag{16}
\end{align*}
$$

Each individual chooses from the set of J occupations the one that yields the highest utility.

$$
\begin{equation*}
\hat{j}^{s}=\operatorname{argmax}\left\{W_{1}^{s}, \ldots, W_{J}^{s}\right\} \tag{17}
\end{equation*}
$$

where $W_{\hat{j}}^{s}$ for an individual i of gender s is defined as

$$
\begin{equation*}
W_{\hat{j}}^{s}=\left\{V_{\hat{j}}^{s} \mid \Omega_{i}\right\} . \tag{18}
\end{equation*}
$$

The occupational choice determines an endogenous distribution of male and female workers across occupations. Let μ_{j}^{s} denote the mass of gender s workers in occupation j, then $\sum_{j=1}^{J}\left(\mu_{j}^{f}+\mu_{j}^{m}\right)=1$. Define $\mu_{j}=\mu_{j}^{f}+\mu_{j}^{m}$ as the size of occupation j.

Aggregation and Equilibrium Given wages, individuals solve the optimization problem yielding value functions $\left\{V_{j}^{s}\right\}_{j=1}^{J}$.

For an occupation j, its population satisfies $\mu_{j}^{s}=\operatorname{Prob}\left(W_{j}^{s}>W_{-j}^{s}\right)$ where we
define the vector W_{-j}^{s} to be equal to $\left\{W_{1}^{s}, \ldots, W_{j-1}^{s}, W_{j+1}^{s}, \ldots, W_{J}^{s}\right\}$.
For occupation j, the total labor input is defined as,

$$
\begin{equation*}
N_{j}=\frac{\mu_{j}^{m}}{\mu_{j}}\left(l_{j, 1}^{m}+l_{j, 2}^{m}-\left(0.5-l_{j, 1}^{m}\right)^{\alpha_{j}}\right)+\frac{\mu_{j}^{f}}{\mu_{j}}\left(l_{j, 1}^{f}+l_{j, 2}^{f}-\left(0.5-l_{j, 1}^{f}\right)^{\alpha_{j}}\right) . \tag{19}
\end{equation*}
$$

In addition, in equilibrium:

$$
\begin{equation*}
w_{j}=\kappa_{j} A_{j}^{\beta} N_{j}^{\beta-1} \sum_{j=1}^{J}\left[\kappa_{j} X_{j}^{\beta}\right]^{\frac{1}{\beta}-1} . \tag{20}
\end{equation*}
$$

Given individual's occupational and hours choices our model predicts ratio8to5's for working hours for each occupation which we denote as ratio8to 5_{j}. Following the definition of these indicators presented above, its model counterpart is given by:

$$
\begin{equation*}
\operatorname{ratio8to~}_{j}=\frac{\mu_{j}^{m}}{\mu_{j}} \frac{l_{j, 1}^{m}}{\left(l_{j, 1}^{m}+l_{j, 2}^{m}\right)}+\frac{\mu_{j}^{f}}{\mu_{j}} \frac{l_{j, 1}^{f}}{\left(l_{j, 1}^{f}+l_{j, 2}^{f}\right)} . \tag{21}
\end{equation*}
$$

where μ_{j} is the fraction of workers in occupation j, and μ_{j}^{m} and μ_{j}^{f} are the fraction of males and females in occupation j, respectively.

Before we take this model to the data and examine the role of coordination frictions in accounting for the gender gap, we illustrate the model's mechanisms using a simpler version than the one described above.

5 Model Mechanics in a Simple Case

We restrict attention to an economy with only two occupations. We provide a numerical example choosing illustrative values of the parameters to uncover the
main mechanisms. We analyze three environments which differ in the degree of heterogeneity among workers, detailed below. There is a set of parameters that are common across these economies. We assume a Cobb-Douglas technology for the final good and earnings in each occupation represent an equal share in final aggregate income, i.e $\kappa_{1}=\kappa_{2}=0.5$. The parameters that govern the productivity penalty due to the coordination of workers are $\alpha_{1}=0.8$ and $\alpha_{2}=2.8$. In other words, in occupation 1 coordination is much more important. Table 7 summarizes the results of each of the experiments that are described below.

Economy 1: Homogeneous Agents without Gender Differences This economy features a mass of size 1 of workers who have the same weight for market consumption: $v_{m}=v_{f}=0.8$. The parameter driving the elasticity of substitution between home care time at the two time periods of the day (between h_{1} and h_{2}), ρ, is set to 0.6. The results are shown in Panel A of Table 7.

Consumption goods and household care are substitutes. More market consumption implies more market time and less time allocated to household care. The equilibrium features sorting into occupations, with a larger mass of workers choosing occupation 2. Because of the higher α, productivity losses due to coordination are smaller in occupation 2. As a result, occupation 2 is more attractive. Despite the higher cost, the final goods technology rules out an equilibrium in which no one chooses occupation 1. Wages adjust to leave workers indifferent between the two occupations. The higher wage results in a higher supply of labor in occupation 1. Hence, $l_{1}+l_{2}$ is larger. However, they have to pay a higher penalty and as a result effective hours are equal across occupations. To summarize, workers in occupation 1 supply more market work and less household care. The opposite is true in occupation 2. Why is the bunching ratio higher in occupation

1? Because workers, in an attempt to minimize the hours penalty, bunch hours to a larger extent in the prime period. Prime time cannot be exclusively devoted to work, however, because home care cannot be substituted perfectly across the two sub-periods. Finally, since workers in occupation 1 devote relatively more hours to work in prime time they end up devoting relatively more hours of household care during home time $\left(h_{2}\right)$

Economy 2: Gender Differences in Household Care Responsibilities We now consider the case of an economy where males and females are differentiated by the weight in market consumption v. Half of the workers have $v=0.9$ (male) and half have $v=0.7$ (female), i.e. females have stronger preferences for household care. The results are shown in Panel B of Table 7.

Due to their different preferences, females and males do not sort randomly into the two occupations. Females have a relatively higher preference for household care and thus they populate only occupation 2 , the high α occupation. Occupation 2 allows females to supply household care without paying too high an hours penalty. In addition, since household care hours are complementary during the day, more total household care time means a higher supply of household care hours both within prime and home time, i.e. household care hours need to be smoothed during the day. Occupation 2 allows them to do that at a relatively lower cost. Males have a comparative advantage in occupation 1. Because they want to supply more labor, they downplay the importance of the penalty when choosing their occupation. As a result, a higher proportion of males work in occupation 1.

To summarize, workers in occupation 2 spend a bit more time in home care (because the wage is lower). Consequently, raw hours, effective hours worked, and earnings, are all lower. Therefore, in equilibrium there is a gender gap in earnings
per hour of 3 percent. ${ }^{16}$ All females are in occupation 2 representing 89 percent of all workers in that occupation. Because their time allocation is different, males and females earn different amounts per hour with an wage gap of 0.5 percent. Thus, in this example most of the gender wage gap is due to earnings per hour differentials between occupations (as opposed to within occupations).

Economy 3: Gender Differences in Household Care Responsibilities and Tastes

 for Occupations We now consider the case of economy 2, but we incorporate gender differences in tastes for each occupation which results in 50 percent of workers being female in each occupation. The results are shown in Panel C of Table 7.Conditional in working on occupation 1, females want to work more than if they are in occupation 2 since they want to minimize the coordination cost. However, they will work less than males since they want to supply relatively more time to household care. As a result they will end up paying a higher cost in terms of effective hours and thus their earnings per hour are going to be lower than males. This is also the case for males and females in occupation 2, but the effects are lower given that α is higher. For this reason, the gender earnings gap per hour is higher in occupation 1. In equilibrium, this example features a gender gap in earnings per hour of 5 percent in occupation 1 and no gender earnings gap in occupation 2. The aggregate gender earnings gap for this economy is also 3 percent. While the aggregate earnings gap is the same as in economy 2 , the gender gap in this economy is entirely driven by earnings differences within occupations due to the fact that women have fewer effective hours. ${ }^{17}$

[^12]As in the other economies, conditional on being in occupation 1, workers want to supply more time in prime time to minimize the coordination cost, and as in the other cases, the bunching ratio is higher in occupation 1. Therefore, the example reflects the negative correlation between the bunching ratio and the gender earnings gap we find in the empirical part of the paper.

6 Quantitative Analysis

To assess the quantitative predictions of the model, we calibrate the model using aggregates from the US labor market. We restrict the analysis to 22 major SOC occupations (not including the military). ${ }^{18}$ We also restrict the sample to married men and women with children in the household. Among other variables of interest, solving the model yields bunching ratios, ratio8to5, for work and home care, as well as earnings for men and women in each occupation.

6.1 Calibration

We assume that the distribution of tastes is Frechet with a common dispersion parameter. ${ }^{19}$ Thus, we assume that for an occupation j and a gender s taste shocks are drawn from, ${ }^{20}$

$$
\begin{equation*}
F\left(\theta_{j, s}\right)=\operatorname{Prob}\left(\theta_{j, s} \leq \theta_{0}\right)=\exp \left(-T_{j, s} \theta_{0}^{-\xi}\right) \tag{22}
\end{equation*}
$$

[^13]The calibration chooses values for a total of 114 parameters:

$$
\left(\left\{\alpha_{j}\right\}_{j=1}^{22},\left\{\kappa_{j}\right\}_{j=1}^{22},\left\{T_{j, m}\right\}_{j=1}^{22},\left\{T_{j, f}\right\}_{j=1,}^{22},\left\{A_{j}\right\}_{j=1,}^{22}, \rho, v^{f}, v^{m}, \beta\right) .
$$

We follow Hsieh, Hurst, Jones, and Klenow (2019) and set the value of β to $2 / 3$ which implies an elasticity of substitution across occupations equal to 3 . Because the dimension of the parameter vector is large, we set the vector $\left\{\kappa_{1}, \ldots, \kappa_{22}\right\}$ equal to the vector of observed labor shares: the vector of the share of earnings of occupation j in total earnings. ${ }^{21}$ Of course, with a CES production function the model-implied labor shares differ from those in the data (because with a CES the value of κ_{j} is not equal to the labor share of occupation j). We provide a comparison of the model-implied and empirical labor shares below and show that the differences are not too large. The remaining parameter values are chosen to minimize the distance between the moments in the data and the ones generated by the model. The moments we pick to match are the following: the bunching ratios, ratio8to5, the fraction of females relative to males within an occupation, the fraction of employment in each occupation, the average earnings per hour for each occupation, the fraction of working time for males and females, and the ratio of the average bunching ratio of work to the average bunching ratio of home care. The value of the last moment is largely influenced by ρ. A high value of ρ implies a low home care ratio (little home care takes place during prime time). ${ }^{22}$

Table 8 shows the values for the occupation-specific moments we match. Table 9 illustrates the model fit by showing the correlation between the targeted moments in the data and in the model as well as the mean absolute deviation in percentage

[^14]terms between the moments in the data and in the model. The model fit is quite good. The parameter values we obtain are shown in Table 10. The most interesting set of parameters are the α^{\prime} s. Their distribution is rather skewed and their correlation with the bunching ratios is -0.5 . In other words, the bunching ratio across occupations is mainly determined by the α but not completely (otherwise the two would be perfectly negatively correlated). The share of females in an occupation also plays an important role. The work bunching ratio of females is higher than that of males, so if an occupation is 90 percent female (as is, for example, Healthcare Support) it must have a larger α than an occupation with the same bunching ratio but say only 30 percent females. The skewness is an artifact of coordination costs being virtually zero for a large $\alpha .{ }^{23}$ It is also worth noting that we estimate a relatively low value of $\rho(0.48)$ which implies that time allocations to household care in different periods are less than perfect substitutes for each other.

As a way to validate the model, in Table 11 we re-run the regressions reported in Section 3 but we now estimate the them for 22 occupations using individual data and model-generated data. The first column displays the coefficients on the female dummy, the bunching ratio, and the interaction between the two using data. ${ }^{24}$ The second column shows the analogous coefficients from our modelsimulated data. Note that the regression coefficients were not a targeted moment in the calibration. The bunching ratio coefficient is 0.29 in the model and it is larger than that in the data because there are fewer elements affecting earnings per hour in the model. ${ }^{25}$ The coefficient on the interaction between the bunching ratio

[^15]and the female dummy is -0.04 . What drives the positive relationship between the gender gap and the bunching ratio in the model? The coordination cost is higher the lower the α, which translates into a higher bunching ratio. Since females supply more home care, and home care is not perfectly substitutable across hours of the day, they supply fewer market hours during the prime period. As a result, their effective hours drop and their compensation reflects the lost hours.

As a way to further validate the model, we examine its performance on other non-targeted moments. For example the model implies that high- α occupations (lower coordination costs), the ratio of males to females labor supply is lower. The reason is that females supply more labor in low α occupations because it is costly not doing so. The data seems to be in line with this model's prediction. The correlation of the ratio of males to females labor supply across occupations between data and model is 0.26 . In the model, females' bunching ratios are higher than males' bunching ratios. The reason is that it's costly to supply labor outside of the prime time, so females proportionally supply more labor during that period. This decreases their work bunching ratios. The relative ratio of males' work bunching ratios to females' work bunching ratio is 0.89 in the model, while it's 0.90 in the data.

6.2 The Baseline Economy

Solving the model for the set of calibrated parameter values delivers an equilibrium that features an allocation of males and females over occupations and a vector of occupation-specific wage rates compensating a unit of labor. The equilibrium also generates a gender wage gap in each occupation and an economy-wide gender wage gap. The economy-wide gender wage gap can be decomposed into a only between males and females.
between- and a within- occupation components. More specifically, let the earnings ratio between males and females for the whole economy be defined as egap $=\frac{e_{m}}{e_{f}}$, where e_{m} and e_{f} represent the mean earnings of males and females across occupations, respectively. That is,

$$
\begin{equation*}
\text { egap }=\frac{e_{m}}{e_{f}}=\frac{\sum_{j=1}^{J} \gamma_{m, j} e_{m, j}}{\sum_{j=1}^{J} \gamma_{f, j} e_{f, j}}, \tag{23}
\end{equation*}
$$

where $\gamma_{m, j}$ and $\gamma_{f, j}$ are the proportions of males and females in occupation j over total males and females in the population.

Thus,

$$
\begin{equation*}
\text { egap }=\frac{\sum_{j=1}^{J} \gamma_{m, j} e_{f, j}}{\sum_{j=1}^{J} \gamma_{f, j} e_{f, j}} \frac{\sum_{j=1}^{J} \gamma_{m, j} e_{m, j}}{\sum_{j=1}^{J} \gamma_{m, j} e_{f, j}} . \tag{24}
\end{equation*}
$$

The first term of the right hand side of the equation represents the between component whereas the second represents the within component. In the tables we report each component as a log-ratio. ${ }^{26}$

Table 12 reports the results. The first row contains the decomposition in the data. The overall gender wage gap is 23.2 percent. The within component is 24.1 percent while the between component is -0.9 percent. This is broadly consistent with Goldin (2014) who finds that the bulk of the gender wage gap exists within occupations and only a small component is due to the between portion.

In the baseline model (second row) the gender wage gap is 8.9 percent, this moment was not targeted. The model predicts a within component of 7.2 percent which accounts for 30 percent of the within component in the data. The model also generates a between component of 1.7 percent. The endogenous channel in our model- the interaction between preferences and coordination costs- has impli-

[^16]cations for the both the within and between components. Although this channel influences mostly the within component it also affects the between component because it affects how women sort into occupations. While it explains a substantial component of the within component it does not account for the majority, indicating that there are other forces in the economy that affect the gender wage gap within an occupation.

6.3 Counterfactual Experiments

In this section we conduct counterfactual experiments to assess the impact of various parameters on the gender wage gap. The key parameters of interest are the α^{\prime} s which reflect coordination costs, the v^{\prime} s which reflect preferences for consumption and for household care, and ρ which determines the elasticity of substitution between household care at different times of the day.

6.3.1 Coordination of Schedules and the Gender Wage Gap

In the first experiment we set α to be equal across occupations. We set α at a relatively high value of 2.72 (reflecting low coordination costs) which is the value estimated for "Health Care Support." One motivation for such an experiment is the introduction of a new technology such as on-line connections and internet technology. The effect is lower costs of coordinating with other workers. Since in this experiment women still have a higher preference for household care (lower v), everything else equal, they work less and allocate more hours to home production relative to men. However, the costs of doing so are lower.

The gender gap falls from 8.9 percent (baseline) to 6.3 percent. As shown in the third row of Table 12 the within component falls from 7.3 percent to 2.0 percent.

The within component falls substantially because with a relatively high α, the penalty for not working during prime time is lower. As a result, despite women's larger supply of household care, their earnings per hour are now much closer to those of males. Figure 5 shows the within component of the gender gap (vertical axis) when this counterfactual is repeated for different values of α (horizontal axis). Low values of α such as that for "Management," for example, imply a large within component of around 10 percent. As α becomes larger the coordination costs become negligible and the within occupation gender gap approaches zero. Figure 5 shows that there is little difference between moderately high α 's and very high α^{\prime} s- that is, once α reaches a value of 5 and greater, the within-occupation gender gap essentially disappears.

The between component rises when we equalize α 's across occupations. Both males and females move to occupations with initially low α 's because the coordination penalty is now lower. These occupations are even more attractive to women so the female share rises in these occupations. This effect by itself increases the between component, because low- α occupations tend to pay more. To assess the size of this effect, in Table 12 we separately report the gender wage gap between occupations holding earnings and occupation sizes fixed at their baseline values. This column, which we label "Sorting," isolates the effect of rising female share in initially low α occupations. In this case the between occupation gender gap is 0.2. However, in equilibrium, earnings and occupation sizes also change. Low- α occupations get larger and their earnings rise (because the coordination costs are now smaller in these occupations). Because the fraction of men is larger in highearnings occupations, and these occupations increase in size and earnings because now α is higher, the between component of the gender gap rises.

6.3.2 A Change in Female Household Care Hours

In this experiment we reduce the difference between male and female preferences for household care. One possible interpretation is that a change in social norms equalizes the household care responsibilities of males and females. We reduce the gap in the v^{\prime} s by 50 percent by reducing v_{m} to 0.535 and raising v_{f} to 0.465 . The within component falls from 7.2 percent to 3.6 percent. The reason for the fall is that an increase in v_{f} increases the amount of work during prime time. This lowers the penalty that females face.

An alternative way of looking at this counterfactual is shown in Figure 6. The horizontal axis measures the distance between v^{\prime} (a value of 0.14 is equal to the baseline and a value of 0 means $v_{m}=v_{f}$). On the vertical axis we measure the within component of the gender gap. As the distance between the v^{\prime} s drops, the within component goes to zero. The rate at which it drops to zero depends on the occupation. As occupations are defined by their α, we plot the within component against the within component for occupations with a small value of $\alpha, 0.6$; a middle value, 1.5 ; and a high value, 12 . When α is large, i.e. coordination costs are low, the within component is virtually zero even when women supply substantially more home care than men. For an occupation such as "Architecture and Engineers" with ($\alpha=0.64$), then the within gender gap is low only when preferences between males and females are similar.

Interestingly, the between component rises. As a result of the v^{\prime} s changing, women are now more likely to move into low α occupations. This sorting effect alone reduces the between occupation gender gap from 1.7 in the baseline case to 0.4. However, in equilibrium, earnings and occupation sizes change. In this case, because women now prefer to work more, their labor supply rises. This happens
in all occupations, but the effect is bigger in occupations which are relatively more populated by women. As a result, wage rates in female-intensive occupations fall (responding to the larger supply) leading to an increase in the between component from 1.7 to 3.0.

6.3.3 A Change in the Ability to Smooth Household Care During the Day

In our model, the value of ρ determines the elasticity of substitution between household care time during the two parts of the day. A high value of ρ means that it is relatively easy to substitute household care activities throughout the day. In our baseline calibration $\rho=0.48$ which indicates household care activities are fairly substitutable but imperfectly so. Although the timing of these activities may be difficult to change (reflecting an imperfect degree of substitution), someone other than the parent could be responsible for undertaking them. For example, curricular education normally takes place in a school during normal business hours, but parents outsource that activity to school teachers and staff. As shown in Section 2.2 we focus on care (i.e. doctor's appointments, school meetings, homework supervision) which may be hard to outsource. What exactly determines the degree of substitution is not clear. One interpretation is that there are constraints on the time of the day in which some activities take place. For example, an appointment with a school teacher normally takes place before 5 pm . An alternative interpretation is that they reflect parenting styles of modern societies, a recent phenomenon that has been extensively studied for instance by Doepke and Zilibotti (2019).

In order to study the effect of changes in the ability to substitute household care time during the day, we perform a counterfactual exercise in which we increase ρ to 0.65 . As in our baseline case, women put more value on household care activities and allocate more time to household care relative to men. The main difference
is that compared to the baseline case women can now more easily distribute the household care to off-peak times so they do not incur a productivity loss. As a result, the within gender wage gap decreases from 7.2 percent to 5.0 percent as predicted. The increase in ρ has little effect on sorting. However, there is again a substantial increase in the between occupation gender gap in equilibrium. Productivity and earnings rise in low α occupations. Since men initially had higher representation in these occupations, the between occupation component of the gender wage gap rises.

7 Final Remarks

Although women have made remarkable gains in the labor market over the past five decades, there is still a substantial gap in their earnings relative to men. Most of the unexplained gap is associated with earnings gaps that arises within occupations. In this paper we explore a mechanism which can explain why the gender gap differs across occupations.

Central to our analysis is the joint decision of workers to allocate time to market work and to household care. Using time-diary data we document that married women with children who report being full-time workers work less on the job and do more household care than their male counterparts. We also document that occupations vary in the degree to which total hours worked in the occupation are concentrated during peak hours of the day- a measure which we interpret as reflecting the degree of coordinated work schedules in the occupation. Our measure of an (in)flexible work schedule is therefore distinct from other papers in the literature which focus on the quantity of hours worked. We find that while men and single women receive a wage premium in occupations with concentrated
schedules, married women with children much less of one. Conditional on being in an occupation, less working time (more household care time) at peak hours of the day entails a productivity loss and thus earnings are lowered for women relative to men. We calibrate our model to US data and show that the greater demand for household care time by women together with the coordination of work time required in different occupations generates a gender wage gap of 8.9 percent which corresponds to approximately 40 percent of the observed gender earnings gap among married men and women with children. As in the data, most of the gender wage gap is within occupations. The value predicted by the model is 7.2 percent which accounts for 30 percent of the one observed in the data. If occupation-level coordination was set equal to the level of "Health Care Support"an occupation with relatively low coordination, the within-occupation gender gap due to women's higher demand for household time falls by more than half to 2.0 percent.

References

Acemoglu, D., and D. Autor (2011): Skills, Tasks and Technologies: Implications for Employment and Earningsvol. 4 of Handbook of Labor Economics, chap. 12, pp. 10431171. Elsevier, 1 edn.

Albanesi, S., and C. Olivetti (2009): "Production, Market Production and the Gender Wage Gap: Incentives and Expectations," Review of Economic Dynamics, 12(1), 80-107.

Altonji, J. G., and C. H. Paxson (1988): "Labor Supply Preferences, Hours Constraints, and Hours-Wage Trade-Offs," Journal of Labor Economics, 6(2), 254-276.

Altonji, J. G., and C. H. Paxson (1992): "Labor Supply, Hours Constraints, and Job Mobility," Journal of Human Resources, 27(2), 256-278.

Bick, A., and N. Fuchs-Schündeln (2018): "Taxation and Labour Supply of Married Couples across Countries: A Macroeconomic Analysis," Review of Economic Studies, 85(3), 1543-1576.

Blundell, R., M. Brewer, and M. Francesconi (2008): "Job Changes and Hours Changes: Understanding the Path of Labor Supply Adjustment," Journal of Labor Economics, 26(3), 421-453.

Cardoso, A. R., D. S. Hamermesh, and J. Varejao (2012): "The Timing of Labor Demand," Annals of Economics and Statistics, (105-106), 15-34.

Cha, Y., and K. A. Weeden (2014): "Overwork and the Slow Convergence in the Gender Gap in Wages," American Sociological Review, 79(3), 457-484.

Chen, M. K., J. A. Chevalier, P. E. Rossi, and E. Oehlsen (2019): "The Value of

Flexible Work: Evidence from Uber Drivers," Journal of Political Economy, forthcoming.

Chetty, R., J. N. Friedman, T. Olsen, and L. Pistaferri (2011): "Adjustment Costs, Firm Responses, and Micro vs. Macro Labor Supply Elasticities: Evidence from Danish Tax Records," The Quarterly Journal of Economics, 126(2), 749-804.

Cortes, P., and J. Pan (2016a): "Prevalence of Long Hours and Skilled Women's Occupational Choices," Discussion paper, Boston University, Questrom School of Business.
__ (2016b): "When Time Binds: Returns to Working Long Hours and the Gender Wage gap among the Highly Skilled," Discussion paper, Boston University, Questrom School of Business.

Deming, D. J. (2017): "The Growing Importance of Social Skills in the Labor Market," The Quarterly Journal of Economics, 132(4), 1593-1640.

Denning, J. T., B. A. Jacob, L. Lefgren, and C. vom Lehn (2019): "The Return to Hours Worked Within and Across Occupations: Implications for the Gender Wage Gap," Discussion paper.

Doepke, M., and M. Tertilt (2016): Families in Macroeconomicsvol. 2 of Handbook of Macroeconomics, chap. 0, pp. 1789-1891. Elsevier.

Doepke, M., and F. Zilibotti (2019): Love, Money, and Parenting: How Economics Explains the Way We Raise Our Kids. Princeton University Press.

Duchini, E., and C. V. Effenterre (2017): "Do women want to work more or more regularly? Evidence from a natural experiment," Discussion paper.

Eden, M. (2017): "The Week," Discussion paper, Brandeis University.

Erosa, A., L. Fuster, G. Kambourov, and R. Rogerson (2017): "Hours, Occupations, and Gender Differences in Labor Market Outcomes," NBER Working Papers 23636, National Bureau of Economic Research, Inc.

Flabbi, L., and A. Moro (2012): "The effect of job flexibility on female labor market outcomes: Estimates from a search and bargaining model," Journal of Econometrics, 168(1), 81-95.

Gicheva, D. (2013): "Working Long Hours and Early Career Outcomes in the HighEnd Labor Market," Journal of Labor Economics, 31(4), 785 - 824.

Goldin, C. (2014): "A Grand Gender Convergence: Its Last Chapter," American Economic Review, 104(4), 1091-1119.

Goldin, C., and L. F. Katz (2011): "The Cost of Workplace Flexibility for HighPowered Professionals," The Annals of the American Academy of Political and Social Science, 638(1), 45-67.

Guner, N., E. Kaya, and V. Sánchez-Marcos (2014): "Gender gaps in Spain: policies and outcomes over the last three decades," SERIEs: Journal of the Spanish Economic Association, 5(1), 61-103.

Guner, N., E. Kaya, and V. Sánchez Marcos (2019): "Labor Market Frictions and Lowest Low Fertility," IZA Discussion Papers 12771, Institute of Labor Economics (IZA).

Hamermesh, D. S. (1999): "The Timing of Work Over Time," The Economic Journal, 109, 37-66.

Hsieh, C., E. Hurst, C. I. Jones, and P. J. Klenow (2019): "The Allocation of Talent and U.S. Economic Growth," Econometrica, 87(5), 1439-1474.

Labanca, C., and D. Pozzoli (2018): "Coordination of Hours within the Firm," Working Papers 7-2018, Copenhagen Business School, Department of Economics.

Mas, A., and A. Pallais (2017): "Valuing Alternative Work Arrangements," American Economic Review, 107(12), 3722-3759.

Prescott, E. C., R. Rogerson, and J. Wallenius (2009): "Lifetime Aggregate Labor Supply with Endogenous Workweek Length," Review of Economic Dynamics, 12(1), 23-36.

Rogerson, R. (2011): "Individual and Aggregate Labor Supply with Coordinated Working Times," Journal of Money, Credit and Banking, 43, 7-37.

Rogerson, R., and J. Wallenius (2009): "Micro and macro elasticities in a life cycle model with taxes," Journal of Economic Theory, 144(6), 2277-2292.

Rosen, H. S. (1976): "Taxes in a Labor Supply Model with Joint Wage-Hours Determination," Econometrica, 44(3), 485-507.

Stewart, J. (2010): "The Timing of Maternal Work and Time with Children," Industrial and Labor Relations Review, 64(1), 181-200.

Wasserman, M. (2019): "Hours Constraints, Occupational Choice, and Gender: Evidence from Medical Residents," Discussion paper.

Weiss, Y. (1996): "Synchronization of Work Schedules," International Economic Review, 37(1), 157-179.

Wiswall, M., and B. Zafar (2017): "Preference for the Workplace, Investment in Human Capital, and Gender*," The Quarterly Journal of Economics, 133(1), 457507.

Figures

Figure 1: Work among Full-time Workers
Notes: Data are from the 2003-2014 American Time Use Surveys (ATUS). The figure is based on 18-65 year old ATUS respondents who report to be full-time workers in the activity summary file. The figure reports average minutes spent by hour of the day on "work and work-related activities" on the diary day. Both weekdays and weekends are included. Individual observations are weighted by ATUS weights for multi-year data files.

Figure 2: Work among Full-time Workers
Notes: Data are from the 2003-2014 American Time Use Surveys (ATUS). The figure is based on 18-65 year old ATUS respondents who report to be full-time workers in the activity summary file. The figure reports average minutes spent by hour of the day on "work and work-related activities" on the diary day. Both weekdays and weekends are included. Individual observations are weighted by ATUS weights for multi-year data files. The top panel includes workers who are married with spouse present with at least one own child in the household. The bottom panel includes workers who are single and without children.

Figure 3: Household Care among Full-time Workers
Notes: Data are from the 2003-2014 American Time Use Surveys (ATUS). The figure is based on 18-65 years old ATUS respondents who report to be full-time workers in the activity summary file. The figure reports average minutes spent by hour of the day on "caring for and helping household members" on the diary day. Both weekdays and weekends are included. Individual observations are weighted by ATUS weights for multi-year data files. The top panel includes workers who are married with spouse present with at least one own child in the household. The bottom panel includes workers who are single and without children.

Figure 4: Timing of Work in Selected Occupations
Notes: Data are from the 2003-2014 American Time Use Surveys (ATUS). The figure is based on 18-65 years old ATUS respondents who report to be full-time workers in the activity summary file. Respondents are linked to detailed 2002 Census occupation codes of their main job. The figures show smoothed values from local polynomial regressions of minutes spent by hour of the day on "work and work-related activities." Shaded areas display confidence intervals. Both weekdays and weekends are included. Individual observations are weighted by ATUS weights for multiyear data files. The figure highlights select detailed 2002 Census occupations: Lawyers (2100), Financial analysts (840), Writer and authors (2850), Physicians and surgeons (3060), Secretaries and administrative assistants (5700), Cashiers (4720), Nursing, psychiatric and home health aides (3600), Computer operators (5800), First-line supervisors, retail and non-retail sales (4700).

Figure 5: Gender Earnings Gap Within Occupations: The Effect of α
Notes: The figure shows the value of the within component of the gender wage gap (y-axis), as defined in Section 6.2, for the whole economy when the parameter α (x-axis) is equal for every occupation and takes values from 0.6 (the minimum estimated value for our baseline economy) to 5 (as shown in the counterfactual of Section 6.3.1.

Figure 6: Gender Earnings Gap Within Occupations: The Effect of v
Notes: The figure shows the value of the within component of the gender wage gap (y-axis), as defined in Section 6.2, for the whole economy when we change the difference between females and males in the value of parameter v (x-axis) (as shown in Section 6.3.2). The value of 0.14 on the x-axis is the difference in the value of the parameter v for females and males obtained in the calibration of the baseline economy, that is $v_{f}=0.43$ and $v_{m}=0.57$. The figure shows the value of the within earnings gap (y-axis) as we decrease the value of v_{m} and increase the value of v_{f}. In this way, the distance between $v \mathrm{~s}$ decreases and, a value of 0 on the x -axis indicates that $v_{m}=v_{f}$.

Tables

Table 1: Work among Full-time Workers, Married with Children

| | Weekday | Weekend | | Weekday | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |

[^17]Table 2: Household Care among Full-time Workers, Married with Children

| | Weekday | Weekend | | | Weekday | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| Female Gap in Household Hours | $0.436^{* * *}$ | $0.264^{* * *}$ | $0.436^{* * *}$ | $0.349^{* * *}$ | $0.319^{* * *}$ | $0.266^{* * *}$ |
| | (0.0276) | (0.0332) | (0.0276) | (0.0270) | (0.0272) | (0.0327) |
| Observations | 12113 | 12344 | 12113 | 12113 | 12113 | 8393 |
| Day of Week and Year | | | x | x | x | x |
| Education, Age and Race | | | | x | x | x |
| Usual Weekly Hours | | | | | x | x |
| Usual Weekly Hours less than 50 | | | | | | x |
| Average Hours, Men | | | | | | |
| Average Hours, Women | 1.257 | 1.267 | | | | |
| Average Hours, Total | 0.963 | 1.093 | | | | |

Notes: Data are from the 2003-2014 American Time Use Surveys (ATUS). The table is based on 18-65 year old ATUS respondents who report working full-time in the activity summary file. We keep those who are married with spouse present and have at least one own child in the household. The dependent variable is total hours spent on "caring for and helping household members" on the diary day. Each column reports the coefficient on the "female" dummy. Column (5) controls for usual weekly hours worked reported in the activity summary file. Column (6) only includes workers who reported usual weekly hours of less than 50 . Individual observations are weighted by ATUS weights for multi-year data files.

Table 3: Household Care Activities of Parents by Marital and Work Status (Hours)

Panel A: Weekday

	Females			
Activity	Married NW	Married FT	Single FT	Married FT
With Children Aged Less Than 6				
Routine	1.4	1.0	0.8	0.4
Enrichment	0.6	0.4	0.3	0.3
Other	0.4	0.4	0.4	0.1
With Children Aged 6-18 Only		0.4	0.2	0.1
Routine	0.4	0.4	0.3	0.3
Enrichment	0.6	0.3	0.3	0.1
Other	0.4	0.2	0.3	

Panel B: Weekend

	Females			
Activity	Married NW	Married FT	Single FT	Married FT
With Children Aged Less Than 6			0.7	0.4
Routine	1.0	0.9	0.3	0.3
Enrichment	0.4	0.4	0.1	0.1
Other	0.1	0.1		
With Children Aged 6-18 Only				0.1
Routine	0.2	0.1	0.1	0.1
Enrichment	0.5	0.4	0.4	0.3
Other	0.1	0.1	0.1	0.1

Note: Data are from the 2003-2014 American Time Use Surveys (ATUS). The table shows the average hours allocated to household care activities by parents. Panel A is on weekdays and B on weekends. The three aggregate categories of activities are "Routine," "Enrichment" and "Other." "Other" includes activities such as "Organization and planning," "Attending household children's events," "Picking up/dropping off household children," and "Meetings and school conferences," among others. See Appendix for detailed activities that are included in each category. Married NW refers to married women with spouse present who are not working, Married FT refers to men and women who are married with spouse present and working full-time, Single FT refers to single women who are working full-time. Individual observations are weighted by ATUS weights for multi-year data files.

Table 4: Correlations between Importance of Occupational Characteristics and Ratio8to5

\#Cat.	Name: O*NET Characteristic	Corr. Coeff.
1	Assisting and caring for others	-0.1898^{*}
2	Coaching and developing others	0.0476
3	Developing_and_Building_Teams	0.0533
4	Establishing_and_Maintaining_Interpersonal_Relationships	0.2961^{*}
5	Face-to-Face_Discussions	0.2349^{*}
7	Social orientation	0.0487
8	Training_and_Teaching_Others	-0.0714
10	Guiding_Directing_and_Motivating_Subordinates	0.0509
	Concentration Index	0.7430^{*}
	Male Overwork	0.1290^{*}

\#Cat. Name: O*NET Skill Measures
Corr. Coeff.

1	Social Skills	0.2146^{*}
2	Abstract Skills	0.3638^{*}
3	Manual Skills	-0.4369^{*}
4	Routine Skills	-0.3748^{*}

Notes: Data are from the 2003-2014 American Time Use Surveys (ATUS). The table shows correlations between our standardized Ratio8to5 and O*NET occupational characteristics for 430 detailed Census 2002 occupations. Ratio8to5 is the ratio of total hours worked by all full-time workers during the hours $8 \mathrm{a} . \mathrm{m}$. to $5 \mathrm{p} . \mathrm{m}$. relative to total hours worked in each occupation category in the ATUS time diary data. The O*NET characteristics are "Assisting and Caring for Others" (Work Activities 1-27); "Coaching and Developing Others" (Work Activities 2-28); "Developing and Building Teams" (Work Activities 3-29); "Establishing and Maintaining Interpersonal Relationships"(Work Activities 4-30); "Face-to-Face Discussions" (Work Context 7-31); "Social Orientation" (Work Styles 9-32); "Training and Teaching Others" (Work Activities 6-33); "Guiding, Directing, and Motivating Subordinates (Work Activities 5-34). O*NET skill measures are those used by Deming (2017) for "Social Skills," and Acemoglu and Autor (2011) and Denning, Jacob, Lefgren, and vom Lehn (2019) for "Abstract," "Routine," and "Manual." See the Appendix for details on the variables used and for matching across O*NET Standard Occupation Codes (SOC) and 2002 Census occupation codes. The bottom rows show correlations between Ratio8to5 and our concentration index and between Ratio8to5 and "Male Overwork." The concentration index is the Herfindahl index of the share of hours worked in each day of the week/hour of day interval. "Male Overwork" is the share of male workers with at least some college education in the occupation who worked more than 50 hours per week. Occupational level measures are weighted by the number of 18-65 year old full-time workers in the occupation. Individual observations are weighted by ATUS weights for multi-year data files. (*) denotes significance at the 5% level.

Table 5: Gender Gap in Log Weekly Earnings by Coordination Measure Ratio8to5

	(1) baseline	(2) (1)+agg. education	$\begin{gathered} (3) \\ (2)+\text { overwork } \end{gathered}$	$\begin{gathered} (4) \\ (3)+\text { ONET } \end{gathered}$
Panel A: All				
female	$\begin{gathered} -0.218^{* * *} \\ (0.0194) \end{gathered}$	$\begin{gathered} -0.254^{* * *} \\ (0.0129) \end{gathered}$	$\begin{gathered} -0.244^{* * *} \\ (0.0129) \end{gathered}$	$\begin{gathered} -0.213^{* * *} \\ (0.0118) \end{gathered}$
ratio8to5	$\begin{aligned} & 0.113^{* * *} \\ & (0.0170) \end{aligned}$	$\begin{gathered} 0.0644^{* * *} \\ (0.0136) \end{gathered}$	$\begin{gathered} 0.0631^{* * *} \\ (0.0138) \end{gathered}$	$\begin{gathered} 0.0691^{* * *} \\ (0.0132) \end{gathered}$
femaleXratio8to5	$\begin{aligned} & -0.0490^{*} \\ & (0.0264) \end{aligned}$	$\begin{gathered} -0.0457^{* *} \\ (0.0180) \end{gathered}$	$\begin{gathered} -0.0436^{* *} \\ (0.0190) \end{gathered}$	$\begin{aligned} & -0.0279^{*} \\ & (0.0154) \end{aligned}$
Observations	263245	263245	263179	256738
Panel B: Single Without Children				
female	$\begin{gathered} -0.135^{* * *} \\ (0.0157) \end{gathered}$	$\begin{gathered} -0.169^{* * *} \\ (0.0117) \end{gathered}$	$\begin{gathered} -0.165^{* * *} \\ (0.0118) \end{gathered}$	$\begin{gathered} -0.132^{* * *} \\ (0.0113) \end{gathered}$
ratio8to5	$\begin{aligned} & 0.102^{* * *} \\ & (0.0146) \end{aligned}$	$\begin{gathered} 0.0623^{* * *} \\ (0.0132) \end{gathered}$	$\begin{gathered} 0.0613^{* * *} \\ (0.0131) \end{gathered}$	$\begin{gathered} 0.0617^{* * *} \\ (0.0105) \end{gathered}$
femaleXratio8to5	$\begin{aligned} & -0.0216 \\ & (0.0207) \end{aligned}$	$\begin{gathered} -0.0254 \\ (0.0162) \end{gathered}$	$\begin{gathered} -0.0242 \\ (0.0168) \end{gathered}$	$\begin{gathered} -0.0094 \\ (0.0141) \end{gathered}$
Observations	73536	73536	73516	71602

Panel C: Married With Children

female	$-0.263^{* * *}$	$-0.298^{* * *}$	$-0.286^{* * *}$	$-0.256^{* * *}$
	(0.0229)	(0.0159)	(0.0162)	(0.0136)
ratio8to5	$0.109^{* * *}$	$0.0652^{* * *}$	$0.0649^{* * *}$	$0.0722^{* * *}$
	(0.0189)	(0.0142)	(0.0151)	(0.0149)
femaleXratio8to5	-0.0626^{*}	$-0.0595^{* *}$	$-0.0582^{* *}$	$-0.0401^{* *}$
	(0.0327)	(0.0221)	(0.0236)	(0.0191)
Observations	110230	110230	110206	107642

Notes: Standard errors in parentheses. ${ }^{*} p<.10,{ }^{* *} p<.05,{ }^{* * *} p<.001$. Data are from the 2003-2014 ATUS-CPS files. CPS data includes all individuals in the final interview month selected to participate in the ATUS and members of their households. Individuals are linked to detailed 2002 Census occupation codes of their main job. The sample in Panel A includes all 18-65 years old workers who reported usual weekly hours ≥ 35 and had positive weekly earnings. Panel B includes only those who are single and without children in the household. Panel C includes only those who are married with spouse present and with at least one own child in the household. The table reports the coefficients from regression of log weekly earnings on the main job on the female dummy, Ratio8to5, and the interaction term. We control for log weekly hours on the main job to focus on the hourly wage gap. Regression results using constructed hourly wages (weekly earnings divided by usual weekly hours) yield very similar results. Additional controls include a quartic in age, dummies for different levels of educational attainment, race dummies, and year dummies. Column (2) includes the average education level in the occupation as an additional control. Column (3) also includes the share of male workers with at least some college education in the occupation who work more than 50 hours per week. Column (4) also includes occupation-level skill measures such as "social skills," "abstract skills," "routine skills," and "manual skills" constructed from the O*NET. Ratio8to5 is defined for 493 detailed 2002 Census occupations. We were able to match 430 occupations to the O*NET skill measures. Standard errors are clustered at the occupation level. ATUS base weights are used to weight each individual observation. 55

Table 6: Log Weekly Earnings of Males by Working Status of Spouse and Coordination Measure Ratio8to5 - Married with Children

	(1) baseline	(2) $(1)+$ agg. education	(3) $(2)+$ overwork	(4) $(3)+$ ONET
ratio8to5	$0.146^{* * *}$	$0.108^{* * *}$	$0.109^{* * *}$	$0.104^{* * *}$
	(0.0233)	(0.0185)	(0.0189)	(0.0172)
Spouse PT	0.0128	0.0065	0.0068	0.0045
	(0.0086)	(0.0082)	(0.0082)	(0.0082)
Spouse FT	$-0.0465^{* * *}$	$-0.0521^{* * *}$	$-0.0509^{* * *}$	$-0.0500^{* * *}$
	(0.0088)	(0.0088)	(0.0083)	(0.0082)
Spouse PT X ratio8to5	$-0.0296^{* *}$	$-0.0356^{* *}$	$-0.0357^{* *}$	$-0.0259^{* *}$
	(0.0117)	(0.0110)	(0.0111)	(0.0110)
Spouse FT X ratio8to5	$-0.0550^{* * *}$	$-0.0561^{* * *}$	$-0.0572^{* * *}$	$-0.0476^{* * *}$
	(0.0113)	(0.0113)	(0.0112)	(0.0110)
Observations	68281	68281	68267	66655

Note: Standard errors in parentheses. ${ }^{*} p<.10,^{* *} p<.05,{ }^{* * *} p<.001$. Data are from the 2003-2014 ATUS-CPS files. CPS data includes all individuals in the final interview month selected to participate in the ATUS and members of their households. Individuals are linked to detailed 2002 Census occupation codes of their main job. The sample includes 18-65 years old married men with spouse present, who have at least one own child in the household, and who reported usual weekly hours ≥ 35 and had positive weekly earnings. "Spouse $\mathrm{PT}^{\prime \prime}$ is an indicator of a male worker who has a part-time working spouse. Similarly, "Spouse FT" refers to a male with a full-time working spouse. The table reports the main effect relative to men with a non-working spouse and the interaction with Ratio8to5. We control for log weekly hours on the main job to focus on the hourly wage gap. Regression results using constructed hourly wages (weekly earnings divided by usual weekly hours) yield very similar results. Additional controls include a quartic in age, dummies for different levels of educational attainment, race dummies, and year dummies. Column (2) includes the average education level in the occupation as an additional control. Column (3) also includes the share of male workers with at least some college education in the occupation who work more than 50 hours per week. Column (4) also includes occupation-level skill measures such as "social skills," "abstract skills," "routine skills," and "manual skills" constructed from the O^{*} NET. Ratio8to5 is defined for 493 detailed 2002 Census occupations. We were able to match 430 occupations to the O*NET skill measures. Standard errors are clustered at the occupation level. ATUS base weights are used to weight each individual observation.

Table 7: A Simple Case with Gender Differences

Occupation	\% Workers	Bunching Ratio	Earnings	$l_{1}+l_{2}$	l	\% Females	E. Gap
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)

Panel A: No Gender Differences

1	0.48	0.59	0.42	0.82	0.80
2	0.52	0.51	0.38	0.80	0.80

Panel B: Gender-Specific v

1	0.44	0.55	0.46	0.91	0.90	0	
2	0.56	0.52	0.35	0.73	0.73	89	1.005
Gender Earnings Gap	1.031						

Panel C: Gender-Specific v and Tastes

1	0.50	0.60	0.40	0.81	0.79	50	1.047
2	0.50	0.51	0.40	0.81	0.80	50	1.005

Gender Earnings Gap 1.026

Note: This table shows the results of the numerical exercises described in Section 5. Panel A refers to the case with no gender differences, i.e. homogeneous agents. Panel B is the case with gender differences in the preferences for household care, governed by parameter v. Panel C describes the same case of Panel B but we add gender specific taste shocks. Panel D describes the case of a reduction in the elasticity of substitution in household care time during the day. Column (1) refers to the different occupations considered, 1 and 2. Column (2) describes the share of total workers in each occupation. Column (3) is the 8 to5ratio as defined in Section 4. Column (4) contains the total earnings in equilibrium in each occupation. Column (5) contains the total number of working hours in each occupation. Column (6) presents the total number of effective hours, Column (7) the share of females in each occupation, and Column (8) the gender gap in earnings per hour in each occupation. Finally, in Panel B, C, and D, the table reports the ratio of earnings per hour of males over females for the whole economy, denoted as the gender earnings gap.

Table 8: Moments

Occupation no.	Occupation	Labor Share	8to5ratio	Av. Earn. Per Hour	\% Fem.
1	Management	0.185	0.807	1.00	0.31
2	Business and financial operations	0.062	0.856	0.90	0.52
3	Computer and mathematical	0.053	0.837	1.08	0.22
4	Architecture and engineering	0.042	0.825	1.03	0.08
5	Life, physical, and social science	0.014	0.830	0.96	0.34
6	Community and social service occupations	0.016	0.778	0.67	0.54
7	Legal	0.021	0.863	1.09	0.46
8	Education, training, and library	0.069	0.834	0.72	0.72
9	Arts, design, entertainment, sports, and media	0.014	0.817	0.82	0.33
10	Healthcare practitioners and technical	0.068	0.723	0.88	0.70
11	Healthcare support	0.009	0.710	0.42	0.87
12	Protective service	0.030	0.592	0.73	0.12
13	Food preparation and serving related	0.012	0.604	0.37	0.46
14	Building and grounds cleaning and maintenance	0.017	0.715	0.40	0.31
15	Personal care and service	0.008	0.667	0.42	0.73
16	Sales and related	0.091	0.788	0.72	0.34
17	Office and administrative support	0.085	0.826	0.54	0.72
18	Farming, fishing, and forestry	0.004	0.627	0.33	0.24
19	Construction and extraction	0.055	0.791	0.62	0.01
20	Installation, maintenance, and repair	0.042	0.764	0.65	0.03
21	Production	0.057	0.648	0.52	0.23
22	Transportation and material moving	0.045	0.659	0.51	0.11

Note: The table presents the occupational level moments we use in our calibration. Labor shares are calculated by dividing the total earnings of workers in each occupation by the total mass of earnings in the sample. The 8 to 5 ratio is our measure of coordination using time use data obtained as we explain in the text. We also report the average earnings per hour of workers in each of the occupations (Av.Earn.PerHour) and the share of females in the total number of workers in each occupation (\%Fem.).

Table 9: Model Fit

Panel A: Occupational-level Moments

Moment	Correlation Coeff. Model-Data
8to5ratio	1.00
Average Earnings Per Hour	1.00
\% Females	0.98
Occupational Shares	0.98

Panel B: Economy-wide Moments

Moment	Data	Model
Ratio Hours Worked Male-Female	1.2	1.23
ratio8to5 Work/ratio8to5 Household Care	2.03	2.22

Panel C: Overall Measure of Fit

Average Absolute \% Deviation (Model-Data) 5.3\%

Note: The table shows the model fit by comparing the value of the targeted moments in the data and in the model. For the occupational-level moments we show their values in the data and in the model (Panel A). For the economy-wide targeted moments we show in Panel B, for each targeted moment, the correlation across occupations between the value of the moments in the data and in the model. The last line of the table gives an overall measure of fit (average absolute percentage deviation between model and data).

Table 10: Parameter Values

Panel A: Occupational-specific Parameters

Occupation no.	Occupation	κ	α	A	T_{f}	T_{m}
2	Management	0.185	0.98	0.89	8.05	1.78
3	Business and financial operations	0.062	0.75	1.81	5.86	0.53
4	Computer and mathematical	0.053	0.64	2.12	1.51	0.65
5	Architecture and engineering	0.042	0.64	2.26	0.49	0.65
6	Life, physical, and social science	0.014	0.77	3.87	0.77	0.18
7	Community and social service occupations	0.016	1.46	2.91	2.45	0.25
8	Legal	0.021	0.63	3.41	1.19	0.17
9	Education, training, and library	0.069	1.24	1.51	15.55	0.14
10	Arts, design, entertainment, sports, and media	0.014	0.87	3.58	0.87	0.21
11	Healthcare practitioners and technical	0.068	2.50	1.41	11.31	0.04
12	Protective service	0.009	2.72	2.60	4.21	0.02
13	Food preparation and serving related	0.030	68.64	1.70	0.65	0.68
14	Building and grounds cleaning and maintenance	0.017	2.00	2.00	2.94	0.81
15	Personal care and service	0.008	3.31	2.59	2.80	0.11
16	Sales and related	0.091	1.21	1.05	7.33	1.35
17	Office and administrative support	0.085	1.37	1.28	34.97	5×10^{-5}
18	Farming, fishing, and forestry	0.004	3.90	3.17	0.53	0.26
19	Construction and extraction	0.055	0.82	1.41	0.17	1.88
20	Installation, maintenance, and repair	0.042	1.07	1.59	0.28	1.33
21	Production	0.057	3.20	1.05	4.23	1.89
22	Transportation and material moving	0.045	2.69	1.13	1.52	1.71

Panel B: Rest of Parameters

ρ	0.48
v_{f}	0.43
v_{m}	0.57

Note: Panel A shows the values of the parameters that are specific to the different occupations and Panel B the values obtained for the utility function, v_{m} and v_{f}, for males and females, respectively. In addition, Panel B presents the value obtained for the parameter that governs the elasticity of substitution of the technology for household care, ρ.

Table 11: Regressions: Model vs. Data

	Data	Model
female	$\begin{gathered} -0.272^{* * *} \\ (0.004) \end{gathered}$	-0.06
ratio8to5	$\begin{gathered} 0.086^{* * *} \\ (0.002) \end{gathered}$	0.29
femaleXratio8to5	$\begin{gathered} -0.015^{* * *} \\ (0.004) \end{gathered}$	-0.04
Standard errors in pa This table shows the for married workers the estimates of the s in its baseline calibra earnings per hour.	entheses. * estimates of ith children me regressi ion (colum	.05, *** p using ind for 22 occ enerated depende

Table 12: Gender Earnings Gap (\%)

	Overall	Between	Between (Sorting)	Within
Data	23.2	-0.9	-	24.1
Baseline	8.9	1.7	-	7.2
Equal $\alpha(\alpha=2.72)$	6.4	4.4	0.2	2.0
50% Drop in $v_{m}-v_{f}$	6.6	3.0	0.4	3.6
Increase in ρ	9.7	4.7	1.2	5.0

Note: The table shows the overall gender wage gap (Overall) and its decomposition into the portion explained by the differences in the gender wage gap across occupations (Between) and the portion explained by differences in earnings between males and females within occupations (Within). The column labeled Between (Sorting) shows a between gender gap when earnings across occupations and occupation sizes are fixed at their Baseline values. The table shows the values in the data, in the baseline economy and in two counterfactual economies: (i) when the parameter α is the same across occupations and equal to 2.72 (the one corresponding to Healthcare support), (ii) when the difference between the values for v_{m} and v_{f} decreases by 50%, and (iii) when ρ - the parameter that drives the elasticity of substitution between child care across the two time periods - rises from about 0.48 to 0.65 .

Appendix (Not for Publication)

A. 1 Data and Variables Description

A.1.1 ATUS sample

We base our analysis on the 2003-2014 American Time Use Surveys (ATUS). One respondent per household is drawn from the Current Population Survey samples and the interviews are conducted 2 to 5 months after the last CPS interview. The ATUS respondent is asked to fill out a time diary over the previous day, recording their activities and starting and ending times. There are 17 aggregate activities and we focus on two activities, "work and work-related activities" and "caring for and helping household members". For each individual we calculate minutes spent on these activities for each hour of the day using information on starting and ending times. The ATUS also contains demographic and labor force information including labor force status and usual hours worked of all household members. We match spouses using the household roster to incorporate labor force status and hours of the spouse. Our main sample of ATUS time diary respondents consist of 106,620 adults who are 18 to 65 years old. In comparing time use of men and women we focus on full-time workers (those whose usual weekly hours worked was greater or equal to 35), resulting in 66,023 observations. ${ }^{27}$ We make no other restrictions-notably we include self-employed workers and multiple-job holders. In comparisons of time use across gender, we examine separately married men and women with at least one child, and single men and women with no children. We define "married" as those who are married with spouse present. Spouse is based on marriage and not co-habitation. Presence of children is based on the presence

[^18]of own children under 18 as opposed to children in the household under 18.

A.1.2 Construction of ratio8to5

To construct the ratio of hours worked in the 8 to 5 time interval at the occupation level we make further restrictions to the ATUS sample above. We keep 18-65 year old full-time workers who worked full-time (minimum of 35 hours) in their main job, which results in a sample of 62,811 observations. We construct at the detailed 2002 Census occupation code level, the sum of total hours worked during the 8 to 5 time interval as well as total hours worked overall among our sample of timeuse respondents. Individual hours are weighted by the person-specific ATUS final weight. The ratio of the two sums is our coordination measure at the occupation level. The raw ratios are reported in Appendix Table A.4. We calculate 493 nonmissing ratios at the 2002 Census occupation code level. As the Appendix Table A. 4 shows, there are many occupations with very small numbers of full-time workers. Therefore, we weight correlations of our measure with other O*NET characteristics using the total number of full-time workers who are 18-65 (at the occupation level) as weights. We also weight each individual by their ATUS final weight. We have also conducted robustness checks keeping only those occupations with at least 100 observations from the ATUS sample. This resulted in 144 detailed occupations. Regression results based on this reduced set of occupations were even stronger. Results available upon request.

A.1.3 Construction of the Concentration Index

We also constructed Herfindahl indices to measure concentration of hours worked at the occupation-level. This measure has the advantage of not picking any given time of the day as the "peak" in an arbitrary fashion and additionally incorporates
information across days of the week as well as hours of the day. Let k delineate day of the week by hour of the day bin and let work ${ }_{j}^{k}$ be the number of hours worked in bin k by 18-65 year old full-time workers in occupation j. work ${ }_{j}$ equals the total number of hours worked by 18-65 year old full-time workers in occupation j. Individual hours are weighted by the person-specific ATUS final weight. share ${ }_{j}^{k}$ is k 's share of total hours worked in occupation j analogous to market share of a firm in a given industry. The concentration ratio (Herfindahl index) for occupation $j=\sum_{k}\left(\operatorname{share}_{j}^{k}\right)^{2}$. We only keep occupations which have observations across all 7 days of the week, which results in 322 occupations.

A.1.4 O * NET Measures

In order to relate our coordination measure with other occupation-level skill and job characteristic measures, we downloaded O*NET skill and job characteristics measures from O*NET 24.2 (downloaded in March 2020). The O*NET database contains information on abilities, skills, tasks and work activities associated with detailed occupations. We downloaded 5 measures in the "Work Activities" category that appeared to us to require coordination with other workers: "Assisting and caring for others," "Coaching and developing others," "Developing and building teams," "Establishing and maintaining interpersonal relationships," "Training and teaching others," and "Guiding, directing, and motivating subordinates." We also downloaded a measure in the "Work Context" category: "Face-to-face discussions" as well as a measure in the "Work Styles" category: "Social orientation." In addition to these measures, we also downloaded skill measures used by Deming (2017), Acemoglu and Autor (2011) and Denning, Jacob, Lefgren, and vom Lehn (2019).

- For "Social skills" we follow Deming (2017) and use four measures: "Social perceptiveness: being aware of others' reactions and understanding why they react as they do," "Coordination: adjusting action in relation to other's actions," "Negotiation: bringing others together and trying to reconcile differences," and "Persuasion: persuading others to change their minds and behavior." We create a composite score for "Social Skills" by averaging the 4 individual scores.
- We also construct 4 other composite measures of skill requirements closely following Acemoglu and Autor (2011) and Denning, Jacob, Lefgren, and vom Lehn (2019).
- For "Abstract Analytical Skills" we average the following 3 measures: "Interpreting the Meaning of Information for Others: translating or explaining what information means and how it can be used," "Thinking Creatively: developing, designing, or creating new applications, ideas, relationships, systems, or products, including artistic contributions," and "Analyzing Data or Information: identifying the underlying principles, reasons, or facts of information by breaking down information or data into separate parts."
- For "Manual Skills" we averaged the following 4 measures: "Spend Time Using Your Hands to Handle, Control, or Feel Objects, Tools, or Controls: how much does this job require using your hands to handle, control, or feel objects, tools or controls," "Manual Dexterity: the ability to quickly move your hand, your hand together with your arm, or your two hands to grasp, manipulate, or assemble objects," "Operating Vehicles, Mechanized Devices, or Equipment: running, maneuvering, navigating, or driving vehicles or mechanized equipment, such as forklifts, passenger vehicles, aircraft, or water
craft," and "Spatial Orientation: the ability to know your location in relation to the environment or to know where other objects are in relation to you."
- For "Routine Skills" we averaged the following 5 measures: "Controlling Machines and Processes: using either control mechanisms or direct physical activity to operate machines or processes (not including computers or vehicles)," "Spend Time Making Repetitive Motions: how much does this job require making repetitive motions," "Pace Determined by Speed of Equipment: how important is it to this job that the pace is determined by the speed of equipment or machinery," "Importance of Being Exact or Accurate: how important is being very exact or highly accurate in performing this job," and "Importance of Repeating Same Tasks: how important is repeating the same physical activities or mental activities over and over, without stopping, to performing this job."

O*NET measures are reported for detailed 2018 Standard Occupation Code (SOC). We downloaded the Census crosswalk between 2018 SOC codes and 2010 Census Occupation codes https:/ /www.census.gov/topics/employment/industry-occupation/guidance/code-lists.html. The number of detailed occupations is smaller in the 2010 Census occupation codes than in the 2018 Census occupation codes. We utilize the 2018 American Community Survey to take weighted averages to more aggregate 2010 Census occupation codes. There were also a number of changes between 2002 and 2010 Census codes. We use the number of 18-65 full-time workers aged 18-65 in the American Time Use Survey (ATUS) as weights to aggregate O*NET measures to the 2002 Census occupation codes. We end up with 430 detailed occupations from the O*NET which we merge with the data from the ATUS.

A.1.5 Shift Work

We use the 2004 Current Population Survey May Work Schedules and Work at Home Supplement to calculate the fraction of workers in detailed occupations who are shift workers. We define as shift workers those who worked "Evening shift," "Night shift," "Rotating shift," "Split shift," "Irregular schedule," or "Some other shift." We keep only 18-65 olds whose usual hours worked in their main job is $>=35$. We also use CPS weights to calculate the share of workers in the occupation who are shift workers.

A.1.6 Share of Males who Work Long Hours

We use all individuals in the Current Population Surveys 2003-2014 including those who are not ATUS respondents to calculate the share of males who work long hours. More specifically, we select males who are 18-65 years old who have at least some college education. We calculate by detailed 2002 Census occupation category the share in this population who worked 50 or more hours. CPS weights are used in calculating these shares. We end up with 490 non-missing measures at the detailed occupation level.

A. 2 Tables

Table A.1: Classification of ATUS Activities among Routine Care, Enrichment Care,
and Other

Routine Childcare	
030101	Physical care of household children
030109	Looking after children as a primary activity
030301	Providing medical care to household children
Enriching childcare (children of all ages)	
030102	Reading to/with household children
030103	Playing with household children, not sports
030104	Arts and crafts with household children
030105	Playing sports with household children
030106	Talking with/listening to household children
030107	Helping/teaching household children (not related to education)
030201	Homework (household children)
030203	Home schooling of household children
Enriching childcare (children ages 2+)	
1201	Socializing and communicating
120307	Playing games
120309	Arts and crafts as a hobby
120310	Collecting as a hobby
120311	Hobbies, except arts 8c crafts and collecting
120401	Attending performances
120402	Attending museums
120403	Attending movies/films
1301	Participating in sports, exercise, or recreation
1302	Attending sporting/recreational events
Other childcare	
030108	Travel related to household children's health
030110	Travel related to caring for and helping household children (2003 and 2004)
030111	Tranization and planning for household children
030112	Attending household children's events
030199	Waiting for/with household children
030202	Caring for and heldropping off household children household children, not elsewhere classified
030204	Meetings and school conferences (household children)
030299	Waiting associated with household children's education
030302	Activities related to household children's education, not elsewhere classified
030303	Waiting medical care for household children
030399	
180301	

Note: These categorizations are used by Stewart (2010) A child must be present during enriching care activities. For children ages $2+$, enriching child care includes leisure activities during which the child was present (see text for further details).

Table A.2: Working Hours Gap Relative to Fathers with a Non-working Spouse

	Weekday	Weekend	Weekday			
Fathers with Part-time Spouse	$\begin{gathered} -0.121 \\ (0.116) \end{gathered}$	$\begin{aligned} & -0.0290 \\ & (0.121) \end{aligned}$	$\begin{gathered} -0.104 \\ (0.116) \end{gathered}$	$\begin{gathered} -0.163 \\ (0.117) \end{gathered}$	$\begin{gathered} -0.185 \\ (0.115) \end{gathered}$	$\begin{aligned} & -0.247^{*} \\ & (0.144) \end{aligned}$
Fathers with Full-time Spouse	$\begin{aligned} & -0.253^{* *} \\ & (0.0928) \end{aligned}$	$\begin{aligned} & 0.00497 \\ & (0.0967) \end{aligned}$	$\begin{aligned} & -0.249^{* *} \\ & (0.0926) \end{aligned}$	$\begin{aligned} & -0.269^{* *} \\ & (0.0945) \end{aligned}$	$\begin{aligned} & -0.245^{* *} \\ & (0.0927) \end{aligned}$	$\begin{gathered} -0.160 \\ (0.114) \end{gathered}$
Observations	7769	7784	7769	7769	7769	4766
Day of Week and Year			x	x	x	x
Education, Age and Race				x	x	X
Usual Weekly Hours					x	x
Usual Weekly Hours less than 50						X
Average Hours, Fathers with Non-working Spouse	8.040	2.164				
Average Hours, Fathers with Part-time Spouse	7.919	2.135				
Average Hours, Fathers with Full-time Spouse	7.788	2.169				

Notes: Data are from the 2003-2014 American Time Use Surveys (ATUS). The table is based on 18-65 year old ATUS male respondents who report working full-time in the activity summary file. We keep those who are married with spouse present and have at least one own child in the household. The dependent variable is total hours spent on "work and work-related activities" on the diary day. Each column reports the coefficient on the "part-time spouse" dummy and the "full-time spouse" dummy with the omitted group being "non-working spouse". Column (5) controls for usual weekly hours worked reported in the activity summary file. Column (6) only includes workers who reported usual weekly hours of less than 50 . Individual observations are weighted by ATUS weights for multi-year data files.

Table A.3: Household Care Hours Gap Relative to Fathers with a Non-working Spouse

	Weekday	Weekend	Weekday			
Fathers with Part-time Spouse	$\begin{gathered} 0.0702 \\ (0.0429) \end{gathered}$	$\begin{gathered} 0.0642 \\ (0.0551) \end{gathered}$	$\begin{aligned} & 0.0739^{*} \\ & (0.0429) \end{aligned}$	$\begin{aligned} & 0.0885^{* *} \\ & (0.0424) \end{aligned}$	$\begin{aligned} & 0.0925^{* *} \\ & (0.0422) \end{aligned}$	$\begin{gathered} 0.0650 \\ (0.0594) \end{gathered}$
Fathers with Full-time Spouse	$\begin{aligned} & 0.0715^{* *} \\ & (0.0342) \end{aligned}$	$\begin{aligned} & -0.103 * * \\ & (0.0439) \end{aligned}$	$\begin{aligned} & 0.0707 * * \\ & (0.0342) \end{aligned}$	$\begin{aligned} & 0.112 * * * \\ & (0.0341) \end{aligned}$	$\begin{gathered} 0.108^{* *} \\ (0.0339) \end{gathered}$	$\begin{gathered} 0.115^{* *} \\ (0.0469) \end{gathered}$
Observations	7769	7784	7769	7769	7769	4766
Day of Week and Year			X	X	X	X
Education, Age and Race				X	X	X
Usual Weekly Hours					X	X
Usual Weekly Hours less than 50						X
Average Hours, Fathers with Non-working Spouse	0.776	1.036				
Average Hours, Fathers with Part-time Spouse	0.846	1.101				
Average Hours, Fathers with Full-time Spouse	0.847	0.934				

[^19]Table A.4: Ratio8to5 by Occupation

	Occupations	\# FT Workers	ratio8to5	ratio8to5_Std	\% Females
1	Tank Car, Truck, and Ship Loaders	5	0.000	-4.979	0.000
2	Miscellaneous Mathematical Science Occupations	2	0.000	-4.979	0.000
3	Media and Communication Equipment Workers, All Other	1	0.000	-4.979	1.000
4	Textile Bleaching and Dyeing Machine Operators and Tenders	2	0.092	-4.360	0.370
5	Food Preparation and Serving Related Workers, All Other	2	0.160	-3.898	0.523
6	Postal Service Mail Sorters, Processors, and Processing Machine Operators	55	0.243	-3.336	0.474
7	Fishers and Related Fishing Workers	7	0.304	-2.927	0.087
8	Plating and Coating Machine Setters, Operators, and Tenders, Metal and Plastic	11	0.319	-2.823	0.000
9	Electrical and Electronics Repairers, Industrial and Utility	8	0.328	-2.765	0.000
10	Locomotive Engineers and Operators	25	0.340	-2.685	0.012
11	Railroad Brake, Signal, and Switch Operators	7	0.340	-2.680	0.000
12	Extruding and Drawing Machine Setters, Operators, and Tenders, Metal and Plastic	7	0.384	-2.386	0.000
13	Bartenders	83	0.401	-2.271	0.573
14	Derrick, Rotary Drill, and Service Unit Operators, Oil, Gas, and Mining	17	0.404	-2.247	0.000
15	Ushers, Lobby Attendants, and Ticket Takers	2	0.423	-2.121	0.504
16	Metal Furnace and Kiln Operators and Tenders	12	0.431	-2.065	0.000
17	Motion Picture Projectionists	1	0.432	-2.063	0.000
18	Door-to-Door Sales Workers, News and Street Vendors, and Related Workers	39	0.437	-2.026	0.778
19	Paper Goods Machine Setters, Operators, and Tenders	27	0.438	-2.019	0.326
20	Gaming Services Workers	37	0.455	-1.906	0.596
21	Respiratory Therapists	72	0.467	-1.825	0.496
22	Shoe and Leather Workers and Repairers	4	0.468	-1.816	0.000
23	Material Moving Workers, All Other	17	0.473	-1.786	0.059
24	Residential Advisors	21	0.473	-1.785	0.774
25	Food and Tobacco Roasting, Baking, and Drying Machine Operators and Tenders	8	0.478	-1.749	0.279
26	Tool Grinders, Filers, and Sharpeners	9	0.481	-1.727	0.000
27	Emergency Medical Technicians and Paramedics	72	0.484	-1.709	0.221
28	Bailiffs, Correctional Officers, and Jailers	245	0.484	-1.706	0.209
29	Cutting, Punching, and Press Machine Setters, Operators, and Tenders, Metal and Plastic	67	0.492	-1.656	0.197
30	Service Station Attendants	31	0.493	-1.651	0.165
31	Fire Fighters	160	0.494	-1.641	0.038
32	Musicians, Singers, and Related Workers	52	0.505	-1.565	0.225
33	Manufactured Building and Mobile Home Installers	5	0.511	-1.526	0.293
34	Molders and Molding Machine Setters, Operators, and Tenders, Metal and Plastic	30	0.517	-1.484	0.266
35	Agricultural and Food Science Technicians	15	0.518	-1.480	0.357
36	Mining Machine Operators	27	0.518	-1.478	0.015
37	Maintenance Workers, Machinery	29	0.519	-1.471	0.019
38	Helpers-Extraction Workers	7	0.520	-1.469	0.000
39	Electronic Equipment Installers and Repairers, Motor Vehicles	17	0.524	-1.437	0.000
40	Hotel, Motel, and Resort Desk Clerks	38	0.530	-1.398	0.776
41	Logging Workers	28	0.533	-1.381	0.000
42	Security Guards and Gaming Surveillance Officers	350	0.533	-1.378	0.181
43	Bridge and Lock Tenders	2	0.533	-1.377	0.404
44	Dispatchers	129	0.536	-1.357	0.403
45	Police and Sheriff's Patrol Officers	392	0.536	-1.356	0.111
46	Communications Equipment Operators, All Other	6	0.539	-1.339	0.755
47	Lay-Out Workers, Metal and Plastic	4	0.540	-1.333	0.000
48	Postal Service Clerks	94	0.540	-1.331	0.422
49	Miscellaneous Plant and System Operators	18	0.540	-1.328	0.196

Continued on next page

	Occupations	\# FT Workers	ratio8to5	ratio8to5_Std	\% Females
50	Supervisors, Protective Service Workers, All Other	49	0.542	-1.314	0.185
51	Stationary Engineers and Boiler Operators	63	0.546	-1.292	0.062
52	Nursing, Psychiatric, and Home Health Aides	810	0.547	-1.284	0.881
53	Crushing, Grinding, Polishing, Mixing, and Blending Workers	48	0.549	-1.270	0.046
54	Taxi Drivers and Chauffeurs	122	0.552	-1.252	0.193
55	First-Line Supervisors/Managers of Fire Fighting and Prevention Workers	37	0.558	-1.210	0.038
56	Cleaning, Washing, and Metal Pickling Equipment Operators and Tenders	5	0.559	-1.204	0.267
57	Personal and Home Care Aides	264	0.560	-1.197	0.819
58	Dining Room and Cafeteria Attendants and Bartender Helpers	55	0.560	-1.194	0.504
59	Forging Machine Setters, Operators, and Tenders, Metal and Plastic	4	0.566	-1.158	0.000
60	Statistical Assistants	14	0.567	-1.151	0.555
61	Waiters and Waitresses	282	0.568	-1.141	0.734
62	Chemical Technicians	41	0.568	-1.140	0.172
63	Bakers	63	0.571	-1.121	0.465
64	Food Cooking Machine Operators and Tenders	18	0.571	-1.120	0.448
65	Dishwashers	55	0.575	-1.093	0.265
66	Tire Builders	14	0.580	-1.060	0.100
67	Baggage Porters, Bellhops, and Concierges	32	0.582	-1.049	0.098
68	Packaging and Filling Machine Operators and Tenders	141	0.582	-1.043	0.473
69	First-Line Supervisors/Managers of Police and Detectives	85	0.585	-1.027	0.226
70	Food Servers, Nonrestaurant	48	0.587	-1.012	0.512
71	Metal Workers and Plastic Workers, All Other	226	0.587	-1.011	0.187
72	Boilermakers	11	0.587	-1.010	0.000
73	Biological Technicians	14	0.591	-0.989	0.399
74	Ship and Boat Captains and Operators	11	0.592	-0.980	0.070
75	Industrial Truck and Tractor Operators	290	0.594	-0.965	0.045
76	Production Workers, All Other	471	0.596	-0.949	0.388
77	First-Line Supervisors/Managers of Food Preparation and Serving Workers	241	0.597	-0.947	0.642
78	Stock Clerks and Order Fillers	489	0.598	-0.942	0.445
79	Hosts and Hostesses, Restaurant, Lounge, and Coffee Shop	17	0.598	-0.936	0.945
80	Machine Feeders and Offbearers	21	0.599	-0.933	0.420
81	Air Traffic Controllers and Airfield Operations Specialists	29	0.599	-0.929	0.241
82	Food Service Managers	417	0.600	-0.928	0.432
83	Gaming Cage Workers	7	0.600	-0.925	0.879
84	Aircraft Mechanics and Service Technicians	71	0.600	-0.922	0.020
85	Printing Machine Operators	93	0.606	-0.883	0.134
86	Railroad Conductors and Yardmasters	29	0.607	-0.875	0.030
87	Heat Treating Equipment Setters, Operators, and Tenders, Metal and Plastic	2	0.611	-0.853	0.000
88	Counter Attendants, Cafeteria, Food Concession, and Coffee Shop	26	0.612	-0.842	0.676
89	Aircraft Structure, Surfaces, Rigging, and Systems Assemblers	10	0.613	-0.839	0.453
90	Motor Vehicle Operators, All Other	12	0.616	-0.815	0.222
91	Engine and Other Machine Assemblers	13	0.618	-0.807	0.119
92	Helpers, Construction Trades	32	0.619	-0.795	0.029
93	Cashiers	566	0.621	-0.781	0.778
94	Electrical, Electronics, and Electromechanical Assemblers	90	0.622	-0.775	0.515
95	Machinists	200	0.622	-0.774	0.059
96	Miscellaneous Entertainment Attendants and Related Workers	33	0.623	-0.770	0.516
97	Coin, Vending, and Amusement Machine Servicers and Repairers	26	0.623	-0.770	0.203
98	Janitors and Building Cleaners	821	0.624	-0.761	0.275
99	Milling and Planing Machine Setters, Operators, and Tenders, Metal and Plastic	2	0.625	-0.756	0.000
100	Cooks	524	0.627	-0.743	0.403

	Occupations	\# FT Workers	ratio8to5	ratio8to5_Std	\% Females
101	Telemarketers	35	0.627	-0.742	0.642
102	Parking Lot Attendants	24	0.629	-0.728	0.032
103	Lathe and Turning Machine Tool Setters, Operators, and Tenders, Metal and Plastic	12	0.630	-0.725	0.081
104	Telephone Operators	27	0.630	-0.724	0.655
105	First-line Supervisors/Managers of Gaming Workers	64	0.630	-0.723	0.297
106	Registered Nurses	1369	0.633	-0.701	0.912
107	Health Diagnosing and Treating Practitioners, All Other	3	0.634	-0.694	0.596
108	Laborers and Freight, Stock, and Material Movers, Hand	641	0.634	-0.693	0.166
109	Miscellaneous Assemblers and Fabricators	462	0.635	-0.691	0.371
110	Prepress Technicians and Workers	20	0.637	-0.677	0.607
111	Transportation Attendants	26	0.637	-0.674	0.529
112	Structural Iron and Steel Workers	34	0.639	-0.663	0.000
113	Reservation and Transportation Ticket Agents and Travel Clerks	55	0.639	-0.663	0.600
114	Grinding, Lapping, Polishing, and Buffing Machine Tool Setters, Operators, and Tenders, Metal and Plastic	22	0.641	-0.650	0.304
115	Extruding, Forming, Pressing, and Compacting Machine Setters, Operators, and Tenders	17	0.642	-0.639	0.146
116	Chemical Processing Machine Setters, Operators, and Tenders	34	0.645	-0.621	0.181
117	Cutting Workers	49	0.645	-0.620	0.241
118	First-Line Supervisors/Managers of Production and Operating Workers	499	0.650	-0.590	0.194
119	Cooling and Freezing Equipment Operators and Tenders	2	0.650	-0.587	0.000
120	Textile, Apparel, and Furnishings Workers, All Other	12	0.651	-0.583	0.461
121	Farmers and Ranchers	217	0.653	-0.566	0.328
122	Cleaners of Vehicles and Equipment	118	0.654	-0.564	0.165
123	Packers and Packagers, Hand	184	0.655	-0.556	0.505
124	Office Machine Operators, Except Computer	18	0.657	-0.542	0.627
125	Industrial and Refractory Machinery Mechanics	262	0.657	-0.542	0.025
126	Laundry and Dry-Cleaning Workers	81	0.657	-0.542	0.609
127	Food Batchmakers	44	0.658	-0.531	0.593
128	Bus Drivers	181	0.662	-0.505	0.569
129	Tool and Die Makers	49	0.663	-0.501	0.012
130	Photographers	57	0.664	-0.493	0.401
131	Signal and Track Switch Repairers	3	0.668	-0.463	0.000
132	Graders and Sorters, Agricultural Products	49	0.670	-0.450	0.677
133	Driver/Sales Workers and Truck Drivers	1420	0.672	-0.436	0.060
134	Inspectors, Testers, Sorters, Samplers, and Weighers	382	0.673	-0.434	0.395
135	Miscellaneous Agricultural Workers	340	0.673	-0.429	0.194
136	Clinical Laboratory Technologists and Technicians	183	0.674	-0.426	0.729
137	Refuse and Recyclable Material Collectors	36	0.674	-0.425	0.043
138	Textile Winding, Twisting, and Drawing Out Machine Setters, Operators, and Tenders	11	0.678	-0.395	0.421
139	Licensed Practical and Licensed Vocational Nurses	252	0.682	-0.374	0.911
140	Chefs and Head Cooks	115	0.682	-0.370	0.194
141	Animal Breeders	1	0.684	-0.356	0.000
142	Lodging Managers	75	0.685	-0.351	0.534
143	Food Preparation Workers	161	0.686	-0.345	0.600
144	Shipping, Receiving, and Traffic Clerks	267	0.686	-0.341	0.305
145	Other Life, Physical, and Social Science Technicians	56	0.688	-0.332	0.555
146	Other Extraction Workers	22	0.688	-0.328	0.014
147	Clergy	231	0.690	-0.317	0.189
148	Crane and Tower Operators	21	0.690	-0.316	0.064
149	Crossing Guards	15	0.693	-0.299	0.521
150	Pile-Driver Operators	1	0.694	-0.291	0.000
151	Supervisors, Transportation and Material Moving Workers	121	0.694	-0.288	0.206

	Occupations	\# FT Workers	ratio8to5	ratio8to5_Std	\% Females
152	Weighers, Measurers, Checkers, and Samplers, Recordkeeping	43	0.694	-0.287	0.398
153	Drilling and Boring Machine Tool Setters, Operators, and Tenders, Metal and Plastic	4	0.695	-0.284	0.000
154	Farm, Ranch, and Other Agricultural Managers	163	0.696	-0.279	0.173
155	Optometrists	15	0.698	-0.263	0.306
156	Couriers and Messengers	94	0.700	-0.252	0.153
157	Petroleum Engineers	14	0.700	-0.247	0.107
158	Transportation Inspectors	18	0.701	-0.245	0.227
159	Bus and Truck Mechanics and Diesel Engine Specialists	174	0.701	-0.243	0.004
160	Rolling Machine Setters, Operators, and Tenders, Metal and Plastic	10	0.701	-0.243	0.129
161	Religious Workers, All Other	37	0.703	-0.232	0.683
162	Gaming Managers	16	0.704	-0.225	0.219
163	Podiatrists	6	0.704	-0.221	0.000
164	Agricultural Inspectors	9	0.705	-0.214	0.318
165	First-Line Supervisors/Managers of Correctional Officers	24	0.707	-0.204	0.309
166	Broadcast and Sound Engineering Technicians and Radio Operators	37	0.708	-0.198	0.093
167	Announcers	22	0.708	-0.195	0.380
168	First-Line Supervisors/Managers of Housekeeping and Janitorial Workers	123	0.708	-0.193	0.443
169	Heavy Vehicle and Mobile Equipment Service Technicians and Mechanics	117	0.709	-0.189	0.008
170	Jewelers and Precious Stone and Metal Workers	20	0.709	-0.188	0.514
171	Geological and Petroleum Technicians	11	0.709	-0.186	0.381
172	Recreation and Fitness Workers	101	0.710	-0.184	0.675
173	Marine Engineers and Naval Architects	6	0.711	-0.173	0.000
174	Helpers-Production Workers	23	0.711	-0.172	0.266
175	Aircraft Pilots and Flight Engineers	51	0.713	-0.161	0.035
176	Avionics Technicians	8	0.713	-0.161	0.063
177	Combined Food Preparation and Serving Workers, Including Fast Food	60	0.714	-0.152	0.639
178	Entertainers and Performers, Sports and Related Workers, All Other	9	0.715	-0.151	0.507
179	Ambulance Drivers and Attendants, Except Emergency Medical Technicians	4	0.719	-0.124	0.000
180	Personal Care and Service Workers, All Other	27	0.720	-0.116	0.524
181	Millwrights	34	0.720	-0.112	0.007
182	Dancers and Choreographers	5	0.720	-0.112	0.667
183	Power Plant Operators, Distributors, and Dispatchers	24	0.724	-0.088	0.066
184	Butchers and Other Meat, Poultry, and Fish Processing Workers	123	0.725	-0.081	0.253
185	Sawing Machine Setters, Operators, and Tenders, Wood	20	0.725	-0.079	0.020
186	Water and Liquid Waste Treatment Plant and System Operators	52	0.728	-0.058	0.094
187	Woodworking Machine Setters, Operators, and Tenders, Except Sawing	21	0.729	-0.057	0.376
188	Materials Engineers	24	0.730	-0.046	0.106
189	Massage Therapists	25	0.730	-0.046	0.883
190	Textile Knitting and Weaving Machine Setters, Operators, and Tenders	4	0.731	-0.038	0.503
191	Septic Tank Servicers and Sewer Pipe Cleaners	6	0.732	-0.034	0.000
192	Animal Trainers	16	0.733	-0.029	0.469
193	Explosives Workers, Ordnance Handling Experts, and Blasters	3	0.733	-0.025	0.000
194	Operating Engineers and Other Construction Equipment Operators	217	0.734	-0.023	0.025
195	Computer Operators	85	0.734	-0.018	0.411
196	Painting Workers	87	0.734	-0.016	0.107
197	Physicians and Surgeons	503	0.735	-0.010	0.313
198	Tailors, Dressmakers, and Sewers	34	0.736	-0.008	0.871
199	Biomedical Engineers	7	0.736	-0.005	0.000
200	Other Transportation Workers	5	0.736	-0.003	0.040
201	Editors	105	0.737	-0.001	0.549
202	Paving, Surfacing, and Tamping Equipment Operators	10	0.737	0.004	0.000

	Occupations	\# FT Workers	ratio8to5	ratio8to5_Std	\% Females
203	Nuclear Engineers	7	0.739	0.011	0.000
204	Sheet Metal Workers	73	0.739	0.012	0.029
205	Television, Video, and Motion Picture Camera Operators and Editors	17	0.739	0.016	0.032
206	First-Line Supervisors/Managers of Retail Sales Workers	1575	0.740	0.018	0.409
207	First-Line Supervisors/Managers of Farming, Fishing, and Forestry Workers	31	0.741	0.029	0.076
208	Pumping Station Operators	12	0.744	0.047	0.000
209	Molders, Shapers, and Casters, Except Metal and Plastic	14	0.744	0.049	0.401
210	Structural Metal Fabricators and Fitters	7	0.745	0.052	0.000
211	Health Diagnosing and Treating Practitioner Support Technicians	204	0.746	0.062	0.798
212	Counter and Rental Clerks	45	0.749	0.079	0.366
213	Producers and Directors	89	0.749	0.085	0.341
214	Electrical Power-Line Installers and Repairers	74	0.750	0.086	0.008
215	Computer Control Programmers and Operators	33	0.751	0.098	0.009
216	Welding, Soldering, and Brazing Workers	276	0.752	0.103	0.028
217	Cementing and Gluing Machine Operators and Tenders	7	0.755	0.119	0.532
218	Athletes, Coaches, Umpires, and Related Workers	72	0.756	0.131	0.457
219	Diagnostic Related Technologists and Technicians	144	0.759	0.147	0.735
220	Computer Support Specialists	229	0.759	0.150	0.242
221	Writers and Authors	82	0.760	0.157	0.526
222	Semiconductor Processors	2	0.760	0.158	0.318
223	News Analysts, Reporters and Correspondents	58	0.760	0.159	0.454
224	Hazardous Materials Removal Workers	11	0.761	0.164	0.233
225	Other Teachers and Instructors	238	0.762	0.167	0.623
226	Administrative Services Managers	64	0.762	0.168	0.351
227	Artists and Related Workers	68	0.765	0.189	0.545
228	Postsecondary Teachers	669	0.765	0.190	0.458
229	Conveyor Operators and Tenders	4	0.766	0.197	0.050
230	Sales Engineers	29	0.767	0.205	0.134
231	Dredge, Excavating, and Loading Machine Operators	31	0.767	0.206	0.004
232	Maids and Housekeeping Cleaners	435	0.767	0.206	0.914
233	Electric Motor, Power Tool, and Related Repairers	26	0.768	0.209	0.082
234	Pharmacists	110	0.768	0.210	0.469
235	Highway Maintenance Workers	67	0.768	0.210	0.005
236	Logisticians	38	0.768	0.212	0.322
237	Switchboard Operators, Including Answering Service	13	0.768	0.213	0.676
238	First-Line Supervisors/Managers of Landscaping, Lawn Service, and Groundskeeping Workers	124	0.769	0.219	0.041
239	Retail Salespersons	831	0.774	0.253	0.514
240	Order Clerks	58	0.775	0.260	0.583
241	Roofers	60	0.776	0.261	0.012
242	Commercial Divers	3	0.777	0.271	0.000
243	Directors, Religious Activities and Education	36	0.777	0.271	0.485
244	First-Line Supervisors/Managers of Construction Trades and Extraction Workers	421	0.777	0.272	0.039
245	Secondary School Teachers	728	0.778	0.277	0.573
246	Cabinetmakers and Bench Carpenters	36	0.779	0.282	0.043
247	Engineering Technicians, Except Drafters	232	0.780	0.288	0.181
248	Tax Preparers	30	0.781	0.295	0.618
249	General and Operations Managers	604	0.781	0.298	0.328
250	First-Line Supervisors/Managers of Mechanics, Installers, and Repairers	212	0.782	0.304	0.065
251	Animal Control Workers	6	0.783	0.314	0.375
252	Aerospace Engineers	55	0.784	0.318	0.202
253	Sales Representatives, Services, All Other	265	0.785	0.322	0.320

	Occupations	\# FT Workers	ratio8to5	ratio8to5_Std	\% Females
254	Industrial Production Managers	181	0.785	0.323	0.153
255	Construction Managers	464	0.786	0.332	0.046
256	Riggers	5	0.787	0.338	0.000
257	Child Care Workers	446	0.787	0.338	0.940
258	Chiropractors	30	0.789	0.354	0.264
259	Other Installation, Maintenance, and Repair Workers	86	0.790	0.357	0.067
260	Sailors and Marine Oilers	6	0.790	0.359	0.266
261	Conservation Scientists and Foresters	15	0.791	0.365	0.256
262	First-Line Supervisors/Managers of Office and Administrative Support Workers	905	0.791	0.367	0.682
263	Miscellaneous Health Technologists and Technicians	59	0.792	0.370	0.620
264	Chief Executives	922	0.792	0.373	0.287
265	Real Estate Brokers and Sales Agents	361	0.793	0.378	0.584
266	Construction Laborers	434	0.793	0.378	0.040
267	First-Line Supervisors/Managers of Non-Retail Sales Workers	681	0.793	0.382	0.274
268	Sewing Machine Operators	102	0.794	0.384	0.717
269	Nonfarm Animal Caretakers	60	0.794	0.389	0.734
270	Managers, All Other	2083	0.795	0.391	0.346
271	Shoe Machine Operators and Tenders	1	0.795	0.392	1.000
272	Computer Scientists and Systems Analysts	462	0.796	0.396	0.270
273	Mail Clerks and Mail Machine Operators, Except Postal Service	52	0.796	0.396	0.477
274	Electricians	420	0.796	0.398	0.015
275	Payroll and Timekeeping Clerks	103	0.797	0.406	0.898
276	Transportation, Storage, and Distribution Managers	157	0.798	0.410	0.170
277	Physician Assistants	46	0.798	0.411	0.774
278	Miscellaneous Personal Appearance Workers	57	0.799	0.421	0.935
279	Database Administrators	69	0.799	0.422	0.358
280	Architects, Except Naval	118	0.800	0.426	0.241
281	Roustabouts, Oil and Gas	2	0.800	0.426	0.000
282	Tax Examiners, Collectors, and Revenue Agents	44	0.801	0.434	0.387
283	Maintenance and Repair Workers, General	203	0.802	0.437	0.040
284	Agents and Business Managers of Artists, Performers, and Athletes	20	0.803	0.446	0.233
285	Fish and Game Wardens	2	0.803	0.448	0.000
286	Opticians, Dispensing	21	0.803	0.450	0.513
287	Interviewers, Except Eligibility and Loan	54	0.804	0.456	0.751
288	Upholsterers	21	0.805	0.459	0.009
289	First-Line Supervisors/Managers of Personal Service Workers	70	0.806	0.464	0.669
290	Special Education Teachers	233	0.806	0.467	0.874
291	Detectives and Criminal Investigators	92	0.806	0.469	0.119
292	Network Systems and Data Communications Analysts	227	0.806	0.470	0.229
293	Dentists	68	0.806	0.470	0.247
294	Engineering Managers	66	0.807	0.473	0.081
295	Customer Service Representatives	888	0.807	0.475	0.650
296	Engineers, All Other	214	0.807	0.475	0.131
297	Cement Masons, Concrete Finishers, and Terrazzo Workers	40	0.807	0.476	0.008
298	Appraisers and Assessors of Real Estate	53	0.808	0.478	0.385
299	Job Printers	18	0.808	0.483	0.053
300	Management Analysts	394	0.809	0.484	0.398
301	Public Relations Managers	41	0.809	0.486	0.556
302	Miscellaneous Media and Communication Workers	28	0.809	0.488	0.673
303	Grounds Maintenance Workers	404	0.809	0.490	0.057
304	Medical Records and Health Information Technicians	60	0.810	0.493	0.770

	Occupations	\# FT Workers	ratio8to5	ratio8to5_Std	\% Females
305	Model Makers and Patternmakers, Wood	1	0.811	0.499	1.000
306	Telecommunications Line Installers and Repairers	112	0.812	0.505	0.029
307	Insulation Workers	15	0.812	0.506	0.022
308	Pressers, Textile, Garment, and Related Materials	16	0.812	0.509	0.783
309	Heating, Air Conditioning, and Refrigeration Mechanics and Installers	198	0.813	0.512	0.011
310	Education Administrators	541	0.813	0.516	0.621
311	Fire Inspectors	13	0.813	0.517	0.012
312	Chemists and Materials Scientists	78	0.813	0.517	0.346
313	Construction and Building Inspectors	62	0.814	0.519	0.167
314	Social and Community Service Managers	220	0.814	0.519	0.619
315	Earth Drillers, Except Oil and Gas	8	0.814	0.523	0.000
316	Human Resources Managers	201	0.815	0.527	0.644
317	Counselors	377	0.815	0.527	0.710
318	Procurement Clerks	22	0.816	0.531	0.546
319	Helpers-Installation, Maintenance, and Repair Workers	10	0.817	0.539	0.118
320	Civil Engineers	203	0.817	0.540	0.123
321	Designers	369	0.817	0.540	0.546
322	Multiple Machine Tool Setters, Operators, and Tenders, Metal and Plastic	5	0.817	0.542	0.281
323	Environmental Engineers	25	0.817	0.543	0.139
324	Pipelayers, Plumbers, Pipefitters, and Steamfitters	276	0.818	0.551	0.007
325	Hairdressers, Hairstylists, and Cosmetologists	221	0.819	0.552	0.916
326	Sales Representatives, Wholesale and Manufacturing	718	0.819	0.554	0.277
327	Carpenters	637	0.819	0.555	0.009
328	Radio and Telecommunications Equipment Installers and Repairers	105	0.819	0.556	0.073
329	Medical Assistants and Other Healthcare Support Occupations	315	0.820	0.561	0.859
330	Private Detectives and Investigators	39	0.820	0.563	0.508
331	Wholesale and Retail Buyers, Except Farm Products	96	0.820	0.564	0.569
332	Bookbinders and Bindery Workers	15	0.821	0.571	0.126
333	Medical and Health Services Managers	354	0.823	0.584	0.714
334	Carpet, Floor, and Tile Installers and Finishers	82	0.823	0.585	0.051
335	Industrial Engineers, including Health and Safety	137	0.824	0.585	0.245
336	Environmental Scientists and Geoscientists	63	0.824	0.586	0.195
337	Lawyers	657	0.824	0.588	0.345
338	Atmospheric and Space Scientists	8	0.825	0.593	0.158
339	Office and Administrative Support Workers, All Other	303	0.825	0.594	0.781
340	Tellers	156	0.825	0.595	0.879
341	Drywall Installers, Ceiling Tile Installers, and Tapers	76	0.825	0.596	0.006
342	Data Entry Keyers	230	0.825	0.598	0.799
343	Medical, Dental, and Ophthalmic Laboratory Technicians	43	0.826	0.600	0.399
344	Automotive Service Technicians and Mechanics	366	0.826	0.601	0.008
345	Computer and Information Systems Managers	351	0.826	0.601	0.240
346	Parking Enforcement Workers	2	0.827	0.606	0.434
347	Urban and Regional Planners	20	0.827	0.609	0.285
348	Network and Computer Systems Administrators	162	0.828	0.614	0.192
349	Electrical and Electronics Engineers	225	0.828	0.617	0.140
350	Funeral Directors	15	0.828	0.618	0.078
351	Rail-Track Laying and Maintenance Equipment Operators	5	0.829	0.620	0.000
352	Human Resources Assistants, Except Payroll and Timekeeping	37	0.829	0.622	0.849
353	Elementary and Middle School Teachers	1678	0.829	0.623	0.849
354	Marketing and Sales Managers	591	0.830	0.630	0.387
355	Other Business Operations Specialists	182	0.831	0.633	0.726

	Occupations	\# FT Workers	ratio8to5	ratio8to5_Std	\% Females
356	Psychologists	93	0.831	0.634	0.700
357	Miscellaneous Social Scientists and Related Workers	23	0.831	0.636	0.606
358	Chemical Engineers	57	0.832	0.641	0.153
359	Computer, Automated Teller, and Office Machine Repairers	151	0.832	0.644	0.179
360	Personal Financial Advisors	211	0.834	0.654	0.293
361	Public Relations Specialists	70	0.834	0.656	0.608
362	Physical Therapists	86	0.834	0.659	0.768
363	Financial Analysts	59	0.835	0.663	0.334
364	Social Workers	541	0.835	0.664	0.794
365	Brickmasons, Blockmasons, and Stonemasons	55	0.836	0.668	0.014
366	Computer Software Engineers	728	0.836	0.668	0.189
367	Purchasing Managers	137	0.836	0.671	0.431
368	Meter Readers, Utilities	31	0.836	0.671	0.038
369	Barbers	25	0.837	0.676	0.208
370	Astronomers and Physicists	17	0.838	0.682	0.177
371	Compliance Officers, Except Agriculture, Construction, Health and Safety, and Transportation	125	0.838	0.684	0.459
372	Painters, Construction and Maintenance	221	0.838	0.684	0.062
373	Drafters	102	0.838	0.684	0.208
374	Other Education, Training, and Library Workers	61	0.838	0.684	0.772
375	Other Healthcare Practitioners and Technical Occupations	45	0.838	0.686	0.483
376	Lifeguards and Other Protective Service Workers	40	0.840	0.693	0.560
377	Precision Instrument and Equipment Repairers	37	0.840	0.696	0.160
378	Agricultural Engineers	2	0.840	0.697	0.363
379	Miscellaneous Community and Social Service Specialists	140	0.841	0.703	0.705
380	Woodworkers, All Other	13	0.841	0.706	0.394
381	Plasterers and Stucco Masons	20	0.842	0.707	0.022
382	Economists	22	0.842	0.710	0.276
383	Veterinarians	33	0.843	0.714	0.418
384	Reinforcing Iron and Rebar Workers	6	0.843	0.718	0.000
385	Parts Salespersons	61	0.844	0.725	0.099
386	Production, Planning, and Expediting Clerks	154	0.844	0.725	0.453
387	Operations Research Analysts	70	0.845	0.728	0.477
388	Automotive Body and Related Repairers	77	0.845	0.728	0.030
389	Cost Estimators	72	0.845	0.730	0.098
390	Subway, Streetcar, and Other Rail Transportation Workers	10	0.845	0.732	0.000
391	Information and Record Clerks, All Other	46	0.846	0.735	0.882
392	Purchasing Agents, Except Wholesale, Retail, and Farm Products	165	0.846	0.737	0.471
393	Securities, Commodities, and Financial Services Sales Agents	194	0.848	0.750	0.410
394	Property, Real Estate, and Community Association Managers	281	0.849	0.754	0.562
395	Purchasing Agents and Buyers, Farm Products	7	0.849	0.755	0.130
396	Receptionists and Information Clerks	477	0.849	0.756	0.912
397	Financial Specialists, All Other	33	0.849	0.756	0.690
398	Textile Cutting Machine Setters, Operators, and Tenders	4	0.849	0.758	0.843
399	Computer Hardware Engineers	47	0.850	0.764	0.101
400	Mechanical Engineers	192	0.850	0.765	0.066
401	Accountants and Auditors	1027	0.851	0.768	0.578
402	Biological Scientists	74	0.851	0.770	0.504
403	Natural Sciences Managers	15	0.852	0.779	0.430
404	Home Appliance Repairers	22	0.854	0.789	0.000
405	Glaziers	19	0.854	0.793	0.000
406	Automotive Glass Installers and Repairers	9	0.855	0.796	0.000

	Occupations	\# FT Workers	ratio8to5	ratio8to5_Std	\% Females
407	Travel Agents	31	0.855	0.798	0.816
408	Etchers and Engravers	4	0.855	0.799	0.522
409	Photographic Process Workers and Processing Machine Operators	24	0.856	0.804	0.702
410	Physical Scientists, All Other	88	0.856	0.805	0.543
411	Technical Writers	54	0.856	0.806	0.509
412	Financial Managers	728	0.857	0.812	0.538
413	Budget Analysts	41	0.857	0.812	0.617
414	Bill and Account Collectors	113	0.858	0.818	0.721
415	Loan Counselors and Officers	250	0.858	0.820	0.481
416	Advertising Sales Agents	109	0.859	0.823	0.476
417	Advertising and Promotions Managers	39	0.859	0.824	0.723
418	Control and Valve Installers and Repairers	13	0.859	0.825	0.039
419	Loan Interviewers and Clerks	91	0.860	0.833	0.718
420	Claims Adjusters, Appraisers, Examiners, and Investigators	218	0.861	0.837	0.666
421	Preschool and Kindergarten Teachers	346	0.861	0.840	0.972
422	Medical Scientists	83	0.862	0.843	0.617
423	Correspondence Clerks	3	0.863	0.850	1.000
424	Cargo and Freight Agents	3	0.863	0.850	0.367
425	Sales and Related Workers, All Other	100	0.863	0.852	0.565
426	Human Resources, Training, and Labor Relations Specialists	483	0.864	0.856	0.737
427	Teacher Assistants	336	0.864	0.862	0.911
428	Furniture Finishers	7	0.865	0.864	0.307
429	Miscellaneous Construction and Related Workers	14	0.866	0.870	0.000
430	Computer Programmers	283	0.866	0.870	0.256
431	Recreational Therapists	10	0.866	0.871	0.872
432	Insurance Sales Agents	290	0.867	0.881	0.441
433	Small Engine Mechanics	21	0.867	0.882	0.000
434	Office Clerks, General	345	0.869	0.891	0.863
435	Meeting and Convention Planners	42	0.870	0.897	0.889
436	Insurance Claims and Policy Processing Clerks	160	0.872	0.911	0.813
437	Surveying and Mapping Technicians	48	0.872	0.911	0.142
438	Therapists, All Other	57	0.872	0.914	0.816
439	Electronic Home Entertainment Equipment Installers and Repairers	25	0.872	0.915	0.000
440	Miscellaneous Vehicle and Mobile Equipment Mechanics, Installers, and Repairers	33	0.873	0.921	0.000
441	Market and Survey Researchers	71	0.873	0.923	0.767
442	Surveyors, Cartographers, and Photogrammetrists	23	0.874	0.927	0.187
443	Miscellaneous Legal Support Workers	115	0.874	0.928	0.786
444	Billing and Posting Clerks and Machine Operators	204	0.875	0.932	0.887
445	Postal Service Mail Carriers	212	0.877	0.944	0.316
446	Speech-Language Pathologists	56	0.877	0.947	0.980
447	Insurance Underwriters	65	0.881	0.972	0.571
448	Security and Fire Alarm Systems Installers	31	0.881	0.973	0.000
449	Credit Analysts	22	0.884	0.996	0.449
450	Fence Erectors	13	0.886	1.005	0.000
451	Dietitians and Nutritionists	41	0.888	1.018	0.969
452	Eligibility Interviewers, Government Programs	52	0.888	1.022	0.748
453	Dental Hygienists	36	0.891	1.042	0.977
454	Bookkeeping, Accounting, and Auditing Clerks	614	0.892	1.049	0.927
455	Secretaries and Administrative Assistants	1565	0.893	1.052	0.962
456	Agricultural and Food Scientists	23	0.895	1.071	0.356
457	Dental Assistants	85	0.896	1.073	0.988

	Occupations	\# FT Workers	ratio8to5	ratio8to5_Std	\% Females
458	Librarians	117	0.896	1.077	0.791
459	Archivists, Curators, and Museum Technicians	19	0.898	1.087	0.616
460	Pest Control Workers	29	0.899	1.098	0.000
461	Furnace, Kiln, Oven, Drier, and Kettle Operators and Tenders	6	0.899	1.099	0.341
462	Nuclear Technicians	3	0.907	1.151	0.121
463	Financial Examiners	5	0.908	1.154	0.253
464	Models, Demonstrators, and Product Promoters	10	0.909	1.165	0.857
465	Actors	8	0.909	1.165	0.330
466	File Clerks	106	0.909	1.165	0.836
467	Radiation Therapists	5	0.910	1.170	0.444
468	Elevator Installers and Repairers	9	0.912	1.180	0.095
469	Occupational Therapists	48	0.912	1.183	0.882
470	Paralegals and Legal Assistants	195	0.913	1.192	0.872
471	Court, Municipal, and License Clerks	49	0.913	1.192	0.797
472	Statisticians	25	0.915	1.206	0.719
473	Credit Authorizers, Checkers, and Clerks	35	0.918	1.222	0.892
474	Locksmiths and Safe Repairers	11	0.919	1.228	0.018
475	Library Technicians	9	0.920	1.234	0.770
476	Word Processors and Typists	70	0.920	1.240	0.963
477	Physical Therapist Assistants and Aides	34	0.922	1.250	0.746
478	Funeral Service Workers	9	0.925	1.268	0.100
479	Sociologists	5	0.925	1.271	1.000
480	Library Assistants, Clerical	32	0.931	1.315	0.804
481	Paperhangers	5	0.936	1.344	0.647
482	Mathematicians	1	0.938	1.355	0.000
483	Transit and Railroad Police	6	0.944	1.400	0.000
484	Audiologists	7	0.944	1.401	0.766
485	Fabric and Apparel Patternmakers	2	0.944	1.402	0.417
486	Brokerage Clerks	6	0.949	1.433	0.416
487	Occupational Therapist Assistants and Aides	5	0.951	1.443	1.000
488	Mining and Geological Engineers, Including Mining Safety Engineers	10	0.952	1.454	0.024
489	Actuaries	12	0.954	1.464	0.306
490	Tour and Travel Guides	9	0.960	1.506	0.560
491	New Accounts Clerks	11	0.970	1.576	1.000
492	Proofreaders and Copy Markers	5	0.986	1.682	0.875
493	Desktop Publishers	2	1.000	1.778	0.423

Notes: Data are from the 2003-2014 American Time Use Surveys (ATUS). The sample is all 18-65 years old ATUS respondents who report to be full-time workers in the activity summary file. Respondents are linked to detailed 2002 Census occupation codes of their main job. \# FT Workers is the number of full-time workers by occupation. \% Females is the percentage of females in each occupation. ratio8to5 is the ratio of total hours spent on "work and work-related activities" during the hours 8 a.m. to 5 p.m. relative to total hours spent on "work and work-related activities" on the diary day. Both weekdays and weekends are included. In calculating Ratio8to5, individual observations are weighted by ATUS weights for multi-year data files. "ratio8to5_std" reports standardized values with mean zero and standard deviation equal to 1 .

Table A.5: Gender Gap in Log Weekly Earnings: Controlling for the Effect of Shift Work

	(1) baseline	(2) $(1)+$ agg. education	(3) $(2)+$ overwork	(4) $(3)+$ ONET+ fracshift
Panel A: All				
female	$-0.218^{* * *}$	$-0.254^{* * *}$	$-0.244^{* * *}$	$-0.212^{* * *}$
	(0.0194)	(0.0129)	(0.0129)	(0.0119)
ratio8to5	$0.113^{* * *}$	$0.0644^{* * *}$	$0.0631^{* * *}$	$0.0494^{* *}$
	(0.0170)	(0.0136)	(0.0138)	(0.0215)
femaleXratio8to5	-0.0490^{*}	$-0.0457^{* *}$	$-0.0433^{* *}$	-0.0266^{*}
	(0.0264)	(0.0180)	(0.0190)	(0.0155)
Observations	263245	263245	263179	256689

Panel B: Single Without Children

female	$-0.135^{* * *}$	$-0.169^{* * *}$	$-0.165^{* * *}$	$-0.131^{* * *}$
	(0.0157)	(0.0117)	(0.0118)	(0.0114)
ratio8to5	$0.102^{* * *}$	$0.0623^{* * *}$	$0.0613^{* * *}$	0.0301^{*}
	(0.0146)	(0.0132)	(0.0131)	(0.0174)
femaleXratio8to5	-0.0216	-0.0254	-0.0242	-0.0079
	(0.0207)	(0.0162)	(0.0168)	(0.0141)
Observations	73536	73536	73516	71586

Panel C: Married With Children

female	$-0.263^{* * *}$	$-0.298^{* * *}$	$-0.286^{* * *}$	$-0.255^{* * *}$
	(0.0229)	(0.0159)	(0.0162)	(0.0138)
ratio8to5	$0.109^{* * *}$	$0.0652^{* * *}$	$0.0649^{* * *}$	$0.0642^{* *}$
	(0.0189)	(0.0142)	(0.0151)	(0.0262)
femaleXratio8to5	-0.0626^{*}	$-0.0595^{* *}$	$-0.0582^{* *}$	$-0.0403^{* *}$
	(0.0327)	(0.0221)	(0.0236)	(0.0194)
Observations	110230	110230	110206	107618

Notes: Standard errors in parentheses. ${ }^{*} p<.10,^{* *} p<.05,^{* * *} p<.001$. Data are from the 2003-2014 ATUS-CPS files. See Table 5 for details. In Column (4) occupation-level share of shift workers are also included along with skill measures constructed from the O^{*} NET. We use the 2004 Current Population Survey May Work Schedules and Work at Home Supplement to calculate the fraction of workers in detailed occupations who are shift workers. We define as shift workers those who worked "Evening shift," "Night shift," "Rotating shift," "Split shift," "Irregular schedule," or "Some other shift." We keep only 18-65 olds whose usual hours worked in their main job is ≥ 35.

Table A.6: Gender Gap in Log Weekly Earnings by Concentration Index

	(1) baseline	(2) $(1)+$ agg. education	(3) $(2)+$ overwork	(4) $(3)+$ ONET
Panel A: All				
female	$-0.246^{* * *}$	$-0.285^{* * *}$	$-0.275^{* * *}$	$-0.230^{* * *}$
	(0.0136)	(0.0127)	(0.0130)	(0.0126)
cratio	$0.0955^{* * *}$	$0.0634^{* * *}$	$0.0700^{* * *}$	$0.0578^{* * *}$
	(0.0153)	(0.0123)	(0.0127)	(0.0123)
femaleXcratio	$-0.0577^{* *}$	$-0.0548^{* * *}$	$-0.0558^{* *}$	$-0.0284^{* *}$
	(0.0232)	(0.0161)	(0.0171)	(0.0142)
Observations	255110	255110	255110	250069

Panel B: Single Without Children

female	$\begin{gathered} -0.147^{* * *} \\ (0.0129) \end{gathered}$	$\begin{gathered} -0.188^{* * *} \\ (0.0130) \end{gathered}$	$\begin{gathered} -0.183^{* * *} \\ (0.0138) \end{gathered}$	$\begin{gathered} -0.140^{* * *} \\ (0.0131) \end{gathered}$
cratio	$\begin{gathered} 0.0906^{* * *} \\ (0.0134) \end{gathered}$	$\begin{gathered} 0.0635^{* * *} \\ (0.0121) \end{gathered}$	$\begin{gathered} 0.0667^{* * *} \\ (0.0118) \end{gathered}$	$\begin{gathered} 0.0560^{* * *} \\ (0.0102) \end{gathered}$
femaleXcratio	$\begin{gathered} -0.035^{*} \\ (0.0198) \end{gathered}$	$\begin{gathered} -0.0382^{* *} \\ (0.0155) \end{gathered}$	$\begin{gathered} -0.0381^{* *} \\ (0.0158) \end{gathered}$	$\begin{gathered} -0.0176 \\ (0.0135) \end{gathered}$
Observations	70966	70966	70966	69508
Panel C: Married With Children				
female	$\begin{gathered} -0.303^{* * *} \\ (0.0170) \end{gathered}$	$\begin{gathered} -0.342^{* * *} \\ (0.0166) \end{gathered}$	$\begin{gathered} -0.329^{* * *} \\ (0.0163) \end{gathered}$	$\begin{gathered} -0.284^{* * *} \\ (0.0146) \end{gathered}$
cratio	$\begin{gathered} 0.0933^{* * *} \\ (0.0168) \end{gathered}$	$\begin{gathered} 0.0648^{* * *} \\ (0.0129) \end{gathered}$	$\begin{gathered} 0.0735^{* * *} \\ (0.0146) \end{gathered}$	$\begin{gathered} 0.0592^{* * *} \\ (0.0137) \end{gathered}$
femaleXcratio	$\begin{gathered} -0.0770^{* *} \\ (0.0273) \end{gathered}$	$\begin{gathered} -0.0723^{* * *} \\ (0.0189) \end{gathered}$	$\begin{gathered} -0.0748^{* * *} \\ (0.0208) \end{gathered}$	$\begin{gathered} -0.0430^{* *} \\ (0.0169) \end{gathered}$
Observations	106930	106930	106930	104875

Notes: Standard errors in parentheses. ${ }^{*} p<.10,{ }^{* *} p<.05,{ }^{* * *} p<.001$.
Data are from the 2003-2014 ATUS-CPS files. CPS data includes all individuals in the final interview month selected to participate in the ATUS and members of their households. Individuals are linked to detailed 2002 Census occupation codes of their main job. The construction of the cratio variable is explained in A.1.3. We only keep occupations which have observations across all 7 days of the week, which results in 322 occupations. Standard errors are clustered at the occupation level. ATUS base weights are used to weight each individual observation.

A. 3 The Effect of Taste Shocks

Table A.7: Regressions: Model vs. Data

	Data	Model
female	$-0.272^{* * *}$ (0.004)	-0.06
ratio8to5	$0.086^{* * *}$ (0.002)	0.29
femaleXratio8to5	$-0.015^{* * *}$	
(0.004)		

Table A.8: Gender Earnings Gap (\%)

	Overall	Between	Between (Sorting)	Within
Data				
Baseline	23.2	-0.9	-	24.1
Equal Taste Distrib.	10	3.9	1.6	-
7.3				
		3.8	6.9	

Note: The table shows the overall gender wage gap (Overall) and its decomposition into the portion explained by the differences in the gender wage gap across occupations (Across) and the portion explained by differences in earnings between males and females within occupations (Within). The column labeled Between (Sorting) shows a between gender gap when earnings across occupations and occupation sizes are fixed at their Baseline values. The table shows the values in the data, in the baseline economy and in a counterfactual economy where there are no differences in tastes for occupations between males and females.

In this counterfactual we set the taste distributions for males and females to be the same. Specifically we set $T_{i, m}=T_{i, f}=1$ for $i=1, \ldots, 22$. Tables A. 7 reports the regression for the model-simulated data. None of the coefficients change substantially relative to the baseline case (and are identical up to two decimals). Equating
the taste distributions has the effect of inducing females to switch to high α occupations (these occupations have low gender gaps). The gender gap (see A.8) rises to 10 percent, from 8.9 percent in the baseline case. This rise is entirely cause by a rise in the between component. The reallocation that moves women out of high α occupations lowers females' average earnings. The within drops somewhat (-0.4 percent) because high earnings (mostly low α) occupations now become smaller in size.

A. 4 Unitary Elasticity of Substitution in Final Production

Table A.9: Regressions: Model vs. Data

	Data	Model
female	$\begin{gathered} -0.272^{* * *} \\ (0.004) \end{gathered}$	-0.06
ratio8to5	$\begin{gathered} 0.086^{* * *} \\ (0.002) \end{gathered}$	0.17
femaleXratio8to5	$\begin{gathered} -0.015^{* * *} \\ (0.004) \end{gathered}$	-0.04
Standard errors in parentheses. ${ }^{*} p<.10,{ }^{* *} p<.05,{ }^{* * *} p<.01$. Note: This table shows the estimates of the regression using the data for married workers with children (column Data) and 22 occupations, and the estimates of the same regression using data generated by the model in its baseline calibration but assuming a Cobb-Douglas aggregate technology (column Model). The dependent variable is earnings per hour.		

This counterfactual describes the outcome of reducing the elasticity of substitution across occupations from its baseline value of 3 to 1 (Cobb-Douglas). This change increases the dispersion in wage rates across occupations (because quantities can't adjust as easily as with a larger elasticity). Within an occupation little changes and as a result the link between the bunching ratio and earnings weakens somewhat. This is reflected in a smaller coefficient of the regression between

Table A.10: Gender Earnings Gap (\%)

	Overall	Between	Between (Sorting)	Within
Data	23.2	-0.9	-	24.1
Baseline	26.3	19	-	7.3
Equal $\alpha(\alpha=2.72)$	21.6	19.6	17.5	2.0
50% Drop in $v_{m}-v_{f}$	24.5	20.9	16.4	3.6
Increase in ρ	26.5	21.4	18.6	5.0

Note: The table shows the overall gender wage gap (Overall) and its decomposition into the portion explained by the differences in the gender wage gap across occupations (Across) and the portion explained by differences in earnings between males and females within occupations (Within). The column labeled Between (Sorting) shows a between gender gap when earnings across occupations and occupation sizes are fixed at their Baseline values. The table shows the values in the data, in the baseline economy and in two counterfactual economies: (i) when the parameter α is the same across occupations and equal to 2.72 (the one corresponding to Healthcare support), (ii) when the difference between the values for v_{m} and v_{f} decreases by 50%, and (iii) when ρ - the parameter that drives the elasticity of substitution between child care across the two time periods - rises from about 0.48 to 0.65 .
earnings and the ratio (see A.9). The coefficient drop from 0.29 in the baseline case to 0.17 . It is nonetheless still large, showing that the relationship between the coordination frictions and the gender gap is robust to changes in the aggregate technology. The interaction and female coefficients barely change.

Regarding the gender gap, there is large increase in the overall wage gender gap (from 8.9 percent to 26.3 percent). This increase is entirely due to the between component (the within component does not change). The between component rises because slight negative correlation between an occupation's share of females and earnings becomes even more negative. The changes in the within component across the different counterfactuals are about the same as in the high elasticity of substitution case. The changes in the between component are the same propor-
tionally; the only difference is that the between component is higher in all the counterfactuals.

[^0]: *Affiliation: University of Houston, University of Houston, and Temple University, respectively. Corresponding author: German Cubas, University of Houston, 3623 Cullen Boulevard Room 204 Houston, TX 77204-5019, USA. E-mail address: germancubas@gmail.com. We thank Julio Garin, Gueorgui Kambourov, Matthias Doepke, Michele Tertilt, and Ryan Michaels, as well as seminar participants at CAFRAL-Reserve Bank of India, Cal State-Fullerton, Drexel, Fudan University, Disparities in the Labor Market-FED Board, Iecon-FCEA, LACEA-LAMES, Midwest Macro, NASMES, SED, SOLE, Universidad Católica de Uruguay, University of Georgia, Universidad de Montevideo, Families and the MacroeconomyMannheim, Rutgers, LSE, U.S. Census Bureau, Seoul National University, University of Oklahoma, CMSG (Montreal) 2019, INSPER, and FGV-EESP. Saumya Rana provided excellent research assistance.

[^1]: ${ }^{1}$ Our occupational choice model integrates the timing of work with the timing of household care in a unified framework where family responsibilities play a key role. This feature differentiates our work from previous work which study the timing and synchronization of works schedules. Examples of these studies are Hamermesh (1999) and Cardoso, Hamermesh, and Varejao (2012), Weiss (1996) and Eden (2017).
 ${ }^{2}$ The requirement for long hours has been also associated with less flexible work schedules. Thus our work also relates to Wiswall and Zafar (2017), Goldin and Katz (2011), and Flabbi and Moro (2012).

[^2]: ${ }^{3}$ A recent paper by Denning, Jacob, Lefgren, and vom Lehn (2019) finds that the positive relationship between hours worked and earnings is virtually absent within occupations and it is only observed across occupations. This finding suggests that the hours gap between men and women cannot account for the within-occupation gender wage gap if this hours penalty is applied. In our paper we show that differences in the within-occupation gender wage gap can be large even when the gender hours gap is small.
 ${ }^{4}$ They also find that workers particularly dislike working evening and weekend shifts which at first appears to be counter to our story. Occupations which require evening and weekend shifts (such as security guards) may appear to be flexible in terms of our bunching measure but this may just be a reflection of a 24 hour production cycle. To address this issue, we rerun our regressions controlling for the share of workers who are shift workers in the occupation. We find our results are robust to adding these additional controls.

[^3]: ${ }^{5}$ We do not include the aggregate category, "household activities", which includes housework. If we include "household activities", the gender gap is considerably larger. In most of our analysis we take a conservative route by restricting our attention to the aggregate category "caring for and helping household members" which only includes child care and elder care reported as the primary activity. In Table 3 we also explore a more expanded definition of child care such as "socializing and communicating" when a child is present.
 ${ }^{6}$ The fact that women are more likely to work part-time and part-time workers are paid a lower hourly wage is well-established. We focus on full-time workers in our study to push home our point that schedules and when work happens matters for hourly wages in addition to the number of hours worked.

[^4]: ${ }^{7}$ Average minutes worked per hour is well below 60 which may reflect the fact that we are averaging over all 7 days of the week including weekends. We do not intend to eliminate weekends as work also takes place on those days. In addition, work over weekends varies across occupations.

[^5]: ${ }^{8}$ We downloaded from O*NET 24.2 (downloaded in March 2020). O*NET reports scores on the importance of occupational characteristics for detailed 2018 Standard Occupation Code (SOC). We used the Census crosswalk between 2018 SOC codes and 2010 Census Occupation codes and used the 2018 American Community Survey to take weighted averages to more aggregate 2010 Census occupation codes. There were also a number of changes between 2002 and 2010 Census codes. We use the number of full-time workers aged 18-65 in the American Time Use Survey (ATUS) as weights to aggregate O^{*} NET measures to the 2002 Census occupation codes.

[^6]: ${ }^{9}$ For "Social skills" we follow Deming (2017) and use four measures: "Social perceptiveness: being aware of others' reactions and understanding why they react as they do," "Coordination: adjusting action in relation to other's actions," "Negotiation: bringing others together and trying to reconcile differences," and "Persuasion: persuading others to change their minds and behavior." We create a composite score for "Social Skills" by averaging the 4 individual scores. We also construct 4 other composite measures of skill requirements closely following Acemoglu and Autor (2011) and Denning, Jacob, Lefgren, and vom Lehn (2019). See Appendix A. 1 for details.

[^7]: ${ }^{10}$ Specification with constructed log hourly wages where we divide weekly earnings by usual weekly hours yielded very similar results.

[^8]: ${ }^{11}$ Appendix Table A. 2 and Table A. 3 examine work hours and household care of married fathers

[^9]: ${ }^{12}$ There is evidence that women also allocate more hours than men to household care activities that we are abstracting from (e.g. preparing meals). To the extent that these activities conflict with work schedules our results provide a lower bound for the mechanism we propose in explaining the gender gap.
 ${ }^{13}$ That our prime period starts at the beginning of the "day", as opposed to the middle (as in the data) is an innocuous assumption. It is convenient and nothing of substance changes if we assume that the prime period starts in the middle of the day. Moreover, the "prime" period in the model need not be equal to half of the total time endowment. The model is flexible and can be adapted to however one defines business hours to be in the data.

[^10]: ${ }^{14}$ To be clear, that we define each subperiod to be equal to 0.5 in length is a normalization. It is akin to defining the total time endowment to be equal to 1 .

[^11]: ${ }^{15}$ The role of the total factor productivity parameters is only to help deliver the empirical distribution of earnings across occupations. Replicating that distribution is necessary to obtain a plausible between-occupations gender wage gap.

[^12]: ${ }^{16}$ Throughout the paper the terms gender gap in earnings per hour and gender wage gap are used interchangeably.
 ${ }^{17}$ Note that in this particular example the share of workers in each occupation is 50 percent so all the differences in earnings per hour come from differences in effective hours and not from

[^13]: differences in the wage rates across occupations.
 ${ }^{18}$ We use the number of full-time workers aged $18-65$ in the American Time Use Survey (ATUS) as weights to aggregate our detailed Census 2002 occupation level measures to 2002 major SOC categories.
 ${ }^{19}$ This assumption is typical in discrete choice models and made for tractability.
 ${ }^{20}$ Because the paper is not concerned with the distribution of tastes within occupations, setting a common dispersion parameter is irrelevant. We could assume either a different common dispersion parameter or a different dispersion parameter by occupation and gender. Doing so would yield different values for the (female) Frechet parameters driving the mean for the model to be consistent with the empirical female shares across occupations.

[^14]: ${ }^{21}$ Calibrating the remaining 91 parameters is in itself a challenging computational problem.
 ${ }^{22}$ Because we only model two activities and we normalize the length of each period to be 0.5 , the model can't deliver either work or home care bunching ratios in levels. Therefore we target the ratio.

[^15]: ${ }^{23}$ There is little information about coordination costs for an α that exceeds 50 as in the case of "Protective Services", it basically has the same effect of an α that is larger than 5 . This is a special occupation and it could be that our moment-matching function is not correctly identifying the value of α for it.
 ${ }^{24}$ Note that the coefficients will not exactly match those in Table 5 due to the fact that our occupation measure is aggregated to 22 groups.
 ${ }^{25}$ The values of the coefficient differ because of the heterogeneity over many dimensions (age, education, etc.) across individuals within occupations, whereas in the model the heterogeneity is

[^16]: ${ }^{26}$ There is not a unique way to perform this decomposition. For example you could fix the share of males in the occupations instead of females. The magnitudes can slightly change but the results are qualitatively the same.

[^17]: Notes: Data are from the 2003-2014 American Time Use Surveys (ATUS). The table is based on 18-65 year old ATUS respondents who report working full-time in the activity summary file. We keep those who are married with spouse present and have at least one own child in the household. The dependent variable is total hours spent on "work and work-related activities" on the diary day. Each column reports the coefficient on the "female" dummy. Column (5) controls for usual weekly hours worked reported in the activity summary file. Column (6) only includes workers who reported usual weekly hours of less than 50. Individual observations are weighted by ATUS weights for multi-year data files.

[^18]: ${ }^{27}$ We exclude approximately 3.3 percent of workers who report that their "hours vary".

[^19]: Notes: Data are from the 2003-2014 American Time Use Surveys (ATUS). The table is based on 18-65 years old ATUS male respondents who report working full-time in the activity summary file. We keep those who are married with spouse present and have at least one own child in the household. The dependent variable is total hours spent on "caring for and helping household members" on the diary day. Each column reports the coefficient on the "part-time spouse" dummy and the "full-time spouse" dummy with the omitted group being "non-working spouse". Column (5) controls for usual weekly hours worked reported in the activity summary file. Column (6) only includes workers who reported usual weekly hours of less than 50 . Individual observations are weighted by ATUS weights for multi-year data files.

