
ECONOMETRICS II, Fall 2020.

Bent E. Sørensen

1 Estimation of Simple Time Series Models

This note assumes that you know time series models at the level covered in the note

that I post for Macro II.

We will assume that the data are normally distributed. As you know, OLS is maxi-

mum likelihood estimation of the linear model so OLS is often short-hand for maximum

likelihood of normal data, but it also goes the other way, the maximum likelihood es-

timator minimizes (a weighted) sum of squares which is often efficient even if the data

are not normally distributed (this assumes that the data are not very far from normally

distributed and of course it is not alway obvious what ”very far” means).

Assume the data, Y = y1, ..., yT are normally distributed with variance var(X) = Ω

and EY = µ. Ω has the variances on the diagonal and the covariances outside the

diagonal, so the observations y1, ..., yT will be independent if Ω is diagonal, otherwise

not, and they will be i.i.d. if the diagonal elements further are identical. The normal

likelihood function takes the form

£(µ,Ω) =
1√
|Ω|

exp{−1

2
(Y − µ)Ω−1(Y − µ)} .

Often, we will have µ′ = (x1β, ..., , xTβ) (a dynamic model with exogenous regressors)

and he following considerations are the same in this case, so we will use the simpler

setup for the mean at first. (Sometimes it is the error term in a regression model that

follow a time series model—I discuss this case at the end of this note.) The log-likelihood

function is

l(µ,Ω) = −1

2
log |Ω| − 1

2
(Y − µ)′Ω−1(Y − µ) .

The goal of these notes is to show:
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1. The equivalence of this expression of the log-likelihood and the expression l(θ) =

l(y1; θ) + ... + l(yT |y1, ..., yT−1). These are mathematically identical expressions

looking very different.

2. How this insight can make use deduce a closed-end formula for Ω−1/2 in AR(1)

case.

3. How this understanding can help us write the log-likelihood function for an AR(2)

using matrix notation for the first two observations.

4. That the likelihood function for the MA model cannot be simplified

5. How to use ML or approximations to estimate the linear regression model with

AR(1) errors.

Ω contains T ∗ (T + 1)/2 variance and co-variance terms, so we need to model it as a

function of fewer parameters. For examplem when Ω = σ2I is the identity matrix multi-

plied by a scalar, this reduces to the basic “OLS-assumptions” of i.i.d. observation (or,

strictly speaking, the error terms being i.i.d.) so then there is only one parameter in Ω.

In this case the determinant is just T σ2 and the term (Y −µ)′Ω−1(Y −µ) = ΣT
t=1

(yt−µ)2
σ2

which should be familiar to you.

Consider the case of heteroskedasticity. (I assume that is well known, but you may

not have thought of it in the likelihood framework, or at least not in the notation of this

note.) This is the case where Ω is diagonal
σ2
1 0 0 ... 0

0 σ2
2 0 ... 0

...

0 0 0 ... σ2
T

 ,
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the inverse square root matrix is just
1
σ1

0 0 ... 0

0 1
σ2

0 ... 0
...

0 0 0 ... 1
σT

 ,

In order to estimate this model, we need to decrease the number of parameters to be

estimated, for example, we may suspect—or derive from a model—that σ2
t = θ0+θ1x

2
t for

some x. In the case, we would write Ω = Ω(θ) (where θ′ = θo, θ1). You can then estimate

the model using two-step GLS: first OLS, then fit the model for σ to the residuals et

(run the regressions e2t = θ0 + θ1x
2
t + νt and calculate σ̂2

t = θ̂0 + θ̂1x
2
t ), and transform

the data as
yt
σ̂t

= µ ∗ 1

σ̂t
+ ut ,

where the error term ut = yt−µ
σt

now is homoskedastic. This would be two-stage feasible

GLS. The two-stage estimation is what we would normally do for this simple model, and

what we derive in undergrad econometrics, but here it illustrates how to go from the

vector-matrix representation to the scalar representation. Note, you have to divide all

regressors by the initial innovation standard deviation, including the constant which we

usually suppress. Note, this is the simplest example of feasible GLS, and dividing by the

standard deviation is the same as transforming the data using the inverse square-root

of Ω. If we use the typical notation ι = (1, ..., 1)′, we have

Ω−1/2yt = µΩ−1/2ι+ u ,

where you typically have more regressors but they will all be treated the same way.

Or, you can estimate all parameters (µ, θ0, and θ1) by Maximum Likelihood esti-

mates. Both ways are consistent under standard assumptions, but the standard errors

may be off if you do not estimate the parameters simultaneously (or otherwise control

for the noise that you introduce by dividing by an estimated value of the variance pa-

rameters). If you think it matters, you should do ML and not feasible GLS, but if the

results are clearly significant with feasible GLS, then ML won’t add much.
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This was just a warm-up. Estimating autoregressive (AR) models can similarly be done

using ML or two-step GLS (sometimes involving simplifying approximation) as I will ex-

plain next. Estimating moving average (MA) models can be done using approximations

or using ML, while two-step GLS not easy as I will explain below.

1.1 Estimation of AR models.

We will first consider estimation of the scalar AR(k) model:

yt = µ + a1yt−1 + ... + akyt−k + ut .

Estimation of the univariate AR model is covered in all introductory time series texts,

and in most text-books. I probably prefer Davidson-MacKinnon on this, but the point

of this note is to highlight the similarities and differences between OLS, feasible GLS,

and ML in the time series model.

The logic of the AR(1) model captures the logic of higher order models, although for

higher orders than AR(2), it is hard to analytically find the variance and autocovari-

ances. For the stationary AR(1) model, yt = µ+ ayt−1 + ut (with error variance σ2
u), it

is quite is to show (as you would have done in macro), that

var(yt) =
σ2
u

1− a2
,

and the k’th order autocoveriance is

E{(yt − E(yt))((yt−k − E(yt))} =
ak σ2

u

1− a2
,

which is also valid for k = 0. Note that by stationarity E(yt−k) = E(yt). Note: for

the purpose of finding variances and covariances, the mean doesn’t matter and be set to

zero to simplify computations. Filling these into the variance matrix (which you may
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do in an actual subroutine for ML estimation), we get

Ω =
σ2
u

1− a2


1 a a2 ... aT−1

a 1 a ... aT−2

...

aT−1 aT−2 aT−3 ... 1

 .

To do GLS analytically, we would have to find Ω−1/2. (Note: we sometimes include σu in

Ω and sometimes not, I hope that is not a source of confusion.) We can find one version

of Ω−1/2 by realizing what the matrix does: it creates variables that are uncorrelated

with unit variance. So if we can find linear transformations that does the same, those

linear transformation will be the rows in Ω−1/2. Think of the 2-dimensional case and

choose a lower diagonal Ω−1/2. We then have three equations in three unknowns

Ω−1/2 =

 c11 0

c21 c22

 .

that satisfies: var(c11 y1) =1; var(c21 y1 + c22 y2) = 1, and cov(c11 y1, c21 y1 + c22 y2) =

0. Because multiplying the y-vector with Ω−1/2 turn it into i.i.d. observations with

variance 1. Note: see the parallel to the heteroskedasticity case. Note that this is

not always pointed out in textbooks, but provides a very clear interpretation of the

potentially mysterious inverse square root matrix. (Davidson and MacKinnon explain

things similarly to this note, so you can look there for a parallel alternative treatment.)

Let us ignore the mean term, for simplicity, even if you will have it in your estimations.

The economic content of the AR(1) is that Et−1yt = ayt−1 but this means that Et−1(yt−
ayt−1) yt−1 = 0 (you can show that by the simplest application of the law of iterated

expectations). Or more generally, yt − ayt−1 is independent of all previous observations

and because yt − ayt−1 is the error term yt−ayt−1

σu
has variance one. But then we are

almost done, we just need to think about the first observation. It has variance σ2
u

1
1−a2 ,

as we show in the macro time series notes, so we can normalize it to get variance 1.
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What I am saying is that

Ω−1/2 =
1

σu


√

1− a2 0 0 ... 0 0

−a 1 0 ... 0 0
...

0 ... −a 1

 ,

is the matrix we are looking for. Now verify that Ω−1/2x gives you independent ob-

servations (with variance 1). (It gives you the innovations terms and a rescaled first

observation.) If you want, go ahead and multiply Ω−1/2ΩΩ′−1/2 and verify that you

get an identity matrix (using T = 3 should be enough to convince you). With these

insights, we can discuss various common ways of estimating the AR(1) model and un-

derstand how they all are related to each other. Multiplying the vectors and matrices

in l(µ,Ω) = −1
2

log |Ω| − 1
2
(Y − µ)′Ω−1(Y − µ), you get the same formula as if you find

l(µ, a, σ2) = log f(y1;µ, a, σ
2) + log f(y2|y1;µ, a, σ2) + ...+ log f(yT |yT−1;µ, a, σ2) which

is

−0.5 [ log(σ2)− log(1− a2) +
(y1 − µ

1−a)2

σ2/(1− a2)
+ ΣT

t=2( log(σ2) +
(yt − µ− ayt−1)2

σ2
) ]

Alternatively, you could ignore all this and regress yt on a constant and yt−1, which sim-

ply corresponds to leaving out the first terms involving y1, but when a is close to unity,

this term can matter a lot (the solution would have to have a smaller than unity for the

logarithm to be finite). You would almost never use the vector matrix for because the

variance matrix grows with the sample size.

For an AR(2) model yt = µ+a1yt−1+a2yt−2+ut. The log of the conditional density for the

tth observation when t is larger than 2 is −0.5 log(σ2)−0.5 (yt−µ−a1yt−1−a2yt−2)2/σ2.

You cannot do this for the first two observations. You can calculate (you have done it)

the variance and first order covariance of y1, y2, you can put them (using the formulas)

in a 2 by 2 matrix Ω2 and use the log likelihood function

−0.5 [ log |Ω2|+(y1−Ey, y2−Ey)′Ω−12 (y1−Ey, y2−Ey) + ΣT
t=3( log(σ2)+

(yt − µ− a1yt−1 − a2yt−2)2

σ2
) ] .
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Here you know the unconditional mean Ey and the other terms. If you don’t want the

matrix inversion, you can use what you know about the bivariate normal and use the

conditioning formula from the first handout to find the distribution of y2 conditional on

y1 (because you need f(y1, y2) = f(y1)f(y2|y1). But the point is that it is much easier

to use the little two-by-two matrix vector distribution for the first two observations and

this matrix does not grow in dimension with T .

MA models.

Let us now consider the scalar MA process.

xt = µ + ut + b1ut−1 + ... + blut−l ,

If you assume that the initial values u0, u−1, ..., u−l are all zero then we have

u1 = x1 − µ

u2 = x2 − µ − b1u1

and in general

ut = xt − µ − b1ut−1 ... − blut−l .

In order to use the above equations for estimation one has to calculate u1 first and then

u2 etc. recursively.

Now the ut terms has been found as functions of the parameters and the observed

variables xt. These equations are very convenient to use for estimation since the uts are

identically independently distributed, so that the likelihood function Lu in terms of the

ut has the simple form

Lu(u1, ..., uT ;ψ) = ΠT
t=1

1√
2πσ2

e
−u2t
2σ2 ,

where ψ is the vector of parameters of the model. Now, unfortunately it is not the ut’s

that we observe; but rather the xt vector. The equations above however gives ut as a

function of the xts so the likelihood function Lx(x1, ..., xt;ψ) (where b is the vector of

parameters of the MA-model) is just

Lx(x1, ..., xT ;ψ) = Lu(u1(x1), ..., uT (x1, ..., xT );ψ)ΠT
t=1

1√
2πσ2

e
−ut(x1,...,xt)

2

2σ2 .
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1

The strategy of assuming the initial values of the innovation to be zero will not have

any influence in large samples; but it may not be advisable in small datasets. It is not

possible to find a convenient expression for the exact likelihood function. but this is

very messy in general and usually not used. If we do not make arbitrary assumption

about the initial innovations is complicated to estimate the MA model (and therefore

also the ARMA models) because the uts are unobserved. It turns out that one can esti-

mate the model by a very general algorithm, called the Kalman Filter, that is incredibly

useful—in particular for estimating models with unobserved components. But we will

not cover this in Econometrics II.2 However, you can (unless the sample is too large) es-

timate the model using the full variance matrix. I will illustrate this for an MA(1) model.

For the model,

yt = µ+ ut + but−1 ,

1Be aware that most of the parameters of the likelihood function in this notation are implicit in

the mapping from xts to uts. Note that in general, you have to be careful when making this kind

of substitutions in likelihood functions. The rule for changing the variable of the likelihood function

through a transformation is that if

y = f(x) ,

where x and y are both T-dimensional vectors, and f is a one-to-one mapping, that often will depend

on parameters, of RT onto RT (or relevant subsets), then

Ly(y1, ..., yT ) = Lx(f
−1(y1, ..., yT ))|Df−1(y)| = Lx(f

−1(y1, ..., yT ))
1

|Df(f−1y)|
.

The last two forms are equivalent; but the last mentioned is often the most convenient form. The

matrix Df with i, jth element Dfij = ∂fi
∂xj

is known as the Jacobian matrix of the mapping (or

transformation). In the application to the MA-process you can check that u as a function of x has

unit Jacobian (so that the Jacobi-determinant is unity). You should also be aware that if the Jacobi-

determinant is a function of the observations but not of the parameters, then it can be ignored for the

purpose of maximizing the likelihood function, and this is often done without comment in the literature.
2In Hamilton’s Time Series book, he outlines another iterative method.
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it is easy to find the variance matrix, as the (stationary) variance matrix is

Ω = σ2
u


1 + b2 b 0 ... 0 0

b 1 + b2 b ... 0 0
...

0 0 0 ... b 1 + b2

 .

However, there is no simple formula for the inverse or the inverse square root. This

leaves you with 1. Maximum Likelihood using the full variance matrix:

max l(µ, σ2
u, b) = −0.5 log |Ω| − 0.5(x− µ)′Ω(b, σ2

u)
−1(x− µ) ,

where you let the computer do the inverse (so this is limited to not-too-large sample).

Or 2., you use Kalman filter which we will not cover here but is a way to sequen-

tially have the computer find the terms in an expansion of the form f(x1, ..., xT ) =

f(x1)f(x2|x1)....f(xT |xT−1, ..., x1).

The Regression Model with AR(1) errors Consider the common model

yt = xtβ + et ,

where β are coefficients, and

et = aet−1 + ut ,

where ut ∼ N(0, σ2. We can estimate this model in several different ways:

1) Maximum Likelihood using the full variance matrix:

max l(µ, β, σ2
u, a) = −0.5 log |Ω| − 0.5(y − xβ)′Ω(a, σ2

u)
−1(y − xβ) ,

where Ω = Ω(a, σ2
u), which is just a way of saying that the variance matrix is a function of

a and σu, as found above, although I suppress this in the following for simpler expressions.

But, because the formula for Ω−1/2 is so simple, almost everybody would do I would use

Another way of doing maximum likelihood for autoregressive processes is to use that

f(e1, ..., eT ) = f(e1)f(e2|e1)....f(eT |eT−1, ..., e1). (This is true for all processes, but for

9



the autoregressive processes, the conditional densities are easy to find except for the first

observations. (The first k for a AR(k).) Using that et − a et−1 has mean 0 and variance

σ2
u, we know the distribution of the first observation (the unconditional distribution)

we get (realizing that all observation has a factor σ2
u in the variance) the log-likelihood

function

−0.5T log σ2
u+0.5 log (1− a2)−0.5

(y1 − x1β)2

σ2
u/(1− a)2

−0.5 ΣT
t=2

( yt − xtβ − a [yt−1 − xt−1β] )2)

σ2
u

.

2) Maximum likelihood conditioning on the first observation. This means that you just

drop the first observation. In this case you are minimizing the sum of squares and this

is equivalent to minimizing the sum of squares, but there is a product of a and β so you

would need to use a Newton (or similar) algorithm. If your data are not stationary, you

have to condition on the first observation.

3) Cochrane-Orcutt two-step estimator. This is a feasible GLS estimator ignoring the

first observation. The error term satisfies et = aet−1 + ut. (This is the previous model

in a slightly different form: notice that et = yt − xtβ, so the “demeaned” yt follows an

AR(1) model.) The Cochrane-Orcutt procedure estimates β̂ (consistently) by OLS, and

the residuals êt are estimates of the true error terms. It then regresses êt on its own lag

and obtains â. And then it calculates ỹt = yt − âyt−1 and x̃t = xt − âxt−1, except you

cannot do that for the first observation, so you discard that (same for all regressors, if

there are several) and re-estimates the slope

ỹt = x̃tβ + ut ,

by OLS. (If you just include an intercept here, it would be (1 − a)µ where µ is the

original intercept, so you would correct for this if you are interested in the mean.)

4) Prais-Winsten two-step estimator. The first steps is the same as for the Cochrane-

Orcutt estimator. However, you do not discard the first observation but define ỹ1 =
√

1− a2 y1 and x̃1 =
√

1− a2 x1 and then perform OLS using all T transformed obser-

vations. This is the same as 2-stage feasible GLS and, as for the likelihood estimator,

inclusion of the first term can matter significantly if a is numerically close to unity. No-

tice, that this looks exactly like the likelihood function and if you iterate the estimator
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you should get the ML estimate. (Iterate means that after the second step estimate of

β and intercept, you could solve for et again, and find a again, and do the OLS again,

and then solve for et again, then....but this is not very common. The point here is to

see that it is about the same.) Again, if a is near unity, ML may be better.
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