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Bent E. Sørensen

1 Truncation, Censoring, and Selectivity

1.1 Truncation

Consider the case of a regression model with a truncated sample. We assume

yi = Xiβ + ui ,

where ui is normally distributed with variance σ and the “OLS-assumptions” are

satisfied. Data with yi > K are discarded for some number K (which is often

normalized to 0 in textbooks), and this is called truncation. You have to memorize

this.

If the data are truncated, OLS is biased. β̂OLS = (X ′X)−1X ′Y = β +

(X ′X)−1X ′u and E(β̂ − β) = (X ′X)−1X ′Eu. With no truncation, Eu = 0 but

with truncation, we have E(ui|yi < K)=E(ui|ui < K − Xiβ) = −σ φ((K−Xiβ)/σ)
Φ((K−Xiβ)/σ)

.

(Note: Let us take the results about the mean of a truncated normal as given at

this moment, but it is not hard to show and we may do it at some stage.) You can
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see that this term is different from zero. You can also see that if Xiβ is negative

and numerically very large for all observations, the bias is almost 0. Why?

The probability that an observation from a distribution with density f is in

a small interval of length ∆u around ui is f(ui)∆u. (Strictly speaking it would

be
∫ ui+ ∆u

2

ui−∆u
2

f(z)dz). While densities are not probabilities, it is much easier to use

the shorthand of talking about the probability of yi or ui. So, because we only

have a truncated sample, the probability of observing yi in the truncated sample

is the unconditional probability divided by the probability that y < K as an

application of P (A|B) = P (A
⋂
B)/P (B). Here, A is ([yi − ∆u/2, yi + ∆u/2]

and the probability of A is f(ui)∆u = f(yi − Xiβ)∆u when yi < K and B here

is the set yi < K and the density is zero outside the set B. For f being the

normal density (with φ denoting the standard normal) we have the probability in

the numerator being 1
σ
φ(yi−Xiβ

σ
). We have that the probability in the denominator

is P (yi < K) = P (Xiβ + ui < K) = Φ(K−Xiβ
σ

). In total we have the truncated

density (the limit of ∆y going to zero) for observation i:

φ(
yi −Xiβ

σ
)/(σΦ(

K −Xiβ

σ
)) .

As you can convince yourself, this is a density (positive and integrating to unity).
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The log likelihood function (ignoring the π term) is

ΣN
i=1 − 0.5 log σ2 − 0.5

(yi −Xiβ)2

σ2
− log Φ(

K −Xiβ

σ
) .

You can think of this as a normal likelihood function with a correction term. Notice

that if Xiβ is very small (large negative number) then the last term is about 0

(the Φ term becomes unity and then the log makes it 0). The logic is that if Xiβ

is small, then yi is likely small and the chance of observation i being truncated

is almost nil so no there is no need to adjust. This is of course what we said

above about the bias except when we talk about the likelihood function, this is

observation is valid only if we are looking at β values near the true one. If all the

Xiβ terms are very small the last term is always tiny and can be ignored.

1.2 Censoring

Consider the case of a regression model with censored observations. We assume

y0
i = Xiβ + ui ,

where ui is normally distributed with variance σ and the “OLS-assumptions” are

satisfied. Data with y0
i > K are transformed to yi = K. This is called censoring.

Spend a few minutes on memorizing the this and the difference between truncation
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and censoring, it is not smart to lose points on the exam by not doing that.

The probability that an observation is in a small interval of length ∆y = ∆u

around yi is f(yi)∆y and is NOT conditional because we observe if the data are

truncated. f(ui)∆u = f(yi−Xiβ)∆u is the probability of being in the ∆y interval

when y < K. The only other value y can take is yi = K and the probability of

this is P (y0
i > K) = 1− Φ(K−Xiβ

σ
).

The log-likelihood function is therefore

ΣN
i=1I{yi < K}∗[−0.5 log σ2−0.5

(yi −Xiβ)2

σ2
]+I{yi = K}∗log (1− Φ(

K −Xiβ

σ
)) .

Davidson and MacKinnon point out that you can add and subtract log Φ(K−Xiβ
σ

),

in which case the likelihood has the form of a sum of a truncated likelihood and

a Probit likelihood (with σ identified from the first part). Conceptually this is

writing the first part as P (A) = P (A|B)P (B) where A here is the probability

of falling in a small interval around yi and B is the event yi < K. This is not

important and may instead be confusing.
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1.3 Selection

The general normal selection model is one where y is observed based on some out-

come z which we model as a Probit. There are a huge number of applications of

this. Say, y is the GPA of a student at, say, Rice, and z is literally the probability

of getting selected (admitted) [ignore that students may decline]. U.S. college ad-

mission typically depend on a large number of variables such as which state you

came from, whether your parents are alumni, and on and on. Assuming you have a

sample of students, you might have data for many of these variables but not others.

For example, you would likely not observe the quality of the student’s essay and

this would go into the error term in the admissions equation. If the quality of the

students essay also is correlated with the students performance, you would have

more efficient inference taking into account that now the errors in the GPA equa-

tion is correlated with the error in the selection equation. More importantly, you

will get bias if you do not control for this. This section is a little more technical,

we will show derivations, but it is more important that you understand intuitively

what is going on.
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Assume that you are interested in a relation

y0
i = Xiβ + ui ,

which could be wages after participating in a training program. The participation

is determined by a probit model, with underlying latent process

z0
i = Wiγ + vi .

We assume the error terms are normal and independent across individuals (or

whatever the i index stands for). We observe

zi = 1 if z0
i > 0; 0 otherwise

and

yi = y0
i if zi = 1 .

If individual i is not selected, we do not observe yi. The issue here is that if the

errors in the selection equation are correlated with the errors in the results from

the regression equation are biased. This is sometimes serious bias. (Some people

have argued that there is hardly any effect on wages of going the Harvard Business

School [I think it was] even though it correlates very strongly with income because

the selection criteria correlates so highly with earnings ability.
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Denote the variance of ui by σ2. The variance of vi is (as usual for a Probit

model) not identified and it is normalized to 1. The covariance of two random

variables can always we written as the correlation times the standard deviations

of the variables. Here, where one variance is unity, it is convenient to label the

correlation ρ and the covariance is then ρ σ.

We want to study the distribution of yi conditional on zi = 1. We therefore

study the conditional distribution of ui conditional on zi = 1. This is somewhat

difficult because zi = 1 is a set of vi’ s. The trick therefore is to use the identity

P (A|B) = P (B|A)P (A)/P (B) .

In our application, we write P (ui|zi = 1) as P (zi=1|ui)P (ui)
P (zi=1)

because we can easily

find the three terms involved. P (ui) is just the normal density and P (zi = 1)

is a Probit probability. That conditional term involves zi which is a function of

z0
i and we know how to find conditional normals (to remind ourselves, if for any

(x, y) we know Ex,Ey, σ2
y, σ

2
x, and covxy, then E(y|x) = Ey + covxy

σ2
y

(x − Ex) and
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var(y|x) = σ2
y − cov2

xy/σ
2
x. Let us take stock

Ez0
i = Wiγ (1)

Ey0
i = Xiβ (2)

var(z0
i ) = 1 (3)

var(y0
i ) = var(ui) = σ2 (4)

cov(x0, y0) = ρσ2 (5)

(6)

The mean of z0
i conditional on ui is Wiγ+ ρσ

σ2 (ui−0) = Wiγ+ ρ
σ
ui, by the usual

formula for normal conditionals, and the conditional variance is 1− (ρσ)2

σ2 = 1− ρ2.

So the hard work is to find

P (zi = 1|ui) = P (z0
i > 0|ui).

Now, note that the conditional distribution of z0
i can be represented as a random

variable ωi that satisfies ωi ∼ N(Wiγ + ρ
σ
ui, 1− ρ2). So then we need to find

P (ωi > 0)

As always, we do that by subtracting the mean and dividing by the standard
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deviation (on both sides) to get to a standard normal:

P (
ωi −Wiγ + ρ

σ
ui√

1− ρ2
> −

Wiγ + ρ
σ
ui√

1− ρ2
) = Φ(

Wiγ + ρ
σ
ui√

1− ρ2
)

or in term of observable variables

P (zi = 1|yi) = Φ(
Wiγ + ρ

σ
(yi −Xiβ)√

1− ρ2
) .

Now we can write the density for yi conditional on zi = 1 (and Xi) as

P (yi|zi = 1) = Φ(
Wiγ + ρ

σ
(yi −Xiβ)√

1− ρ2
) ∗ 1

σ
φ(

(yi −Xiβ)

σ
)/Φ(Wiγ) .

The full likelihood P (yi, zi = 1) is the conditional probability P (ui|zi = 1) times

the marginal P (zi = 1). The contribution of individual i to the likelihood is this

joint probability if Zi = 1 plus the probability zi = 0 (where no y is observed); i.e.:

I(zi = 1) ∗ [Φ(
Wiγ + ρ

σ
(yi −Xiβ)√

1− ρ2
) ∗ 1

σ
φ(

(yi −Xiβ)

σ
)] + I(zi = 0) ∗ [1− Φ(Wiγ)] .

Finally, we have the the log-likelihood is after re-ordering a bit:

ΣN
i=1I(zi = 1)∗[−0.5 log σ2−0.5

(yi −Xiβ)2

σ2
+log Φ(

Wiγ + ρ
σ
(yi −Xiβ)√

1− ρ2
)]+I(zi = 0)∗log Φ(−Wiγ) .

Notice what happens if ρ = 0: you have a Probit model and an independent nor-

mal which you can estimate by least squares. True, it is strange that y is only

observed when z = 1, but you do not have to adjust the least squares estimation
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in the case where the error term in the selection equation is not affecting the error

term in the regression.

1.3.1 Heckman correction term for selection

Heckman was the first to consider correction for selection (in his thesis, I think)

and this was the basis for his later Nobel prize.

The Heckman correction involves as two-step estimator. Assume you first estimate

the Probit equation and then the regression (not recommended—it is always most

efficient to estimate the full system, but sometimes we do anyway, at least in a

first exploration and earlier it may have been hard numerically to estimate the full

system).

Consider the regression

yi = Xiβ + ui ,

where you ignore that yi has been selected based on z. The problem now is that

Eui = 0 if you observed all outcomes (including the ones that were not selected) but

if E(ui|vi) = ρσvi, which is easy to see using the standard formula for conditional
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normals, we are allowed to write ui as ρσvi+ei where ei = ui−ρσvi is independent

of vi. We have

yi = Xiβ + ρσvi + ei ,

where ei is independent of Xi but because vi is instrumental in deciding whether yi

was observed, it is unlikely to have mean zero. In fact, E(vi|zi = 1) = E(vi|Wiγ +

vi > 0) = φ(Wiγ)
Φ(Wiγ)

, where ratio is called the inverse Mill’s Ratio.1 If you have

estimated the first state you have an estimate γ̂ and you run the regression

yi = Xiβ + κ
φ(Wiγ̂)

Φ(Wiγ̂)
+ ei ,

which is a consistent estimator of β (and approximately unbiased if γ is well es-

timated). Usually, economists do not attempt to extract the parameters ρ and

σ.

1To derive the inverse Mill’s ratio notice that
∫
x exp (−x2/2)dx =

∫
exp (−x2/2)(xdx) and

do a change of variables to y = x2

2 with dy = xdx.

11


