Midterm Exam 1 Monday Sep 23 — 5 questions. All sub-questions carry equal weight except if otherwise indicated.

- 1. (21%) Consider a uniform distribution on [0, 6].
- a) Write down the CDF (distribution function). For all distributions, be specific about the support.
- b) Find the 90th percentile.
- c) What is the density function for Y if $Y = X^2$ when X follows the uniform distribution of the previous sub-questions.
- 2. (21%)
- a) What is the formula for the marginal density $f_X(x)$, when you are given the joint density f(x,y)?
- b) Let $f(x,y) = \frac{1}{2\sqrt{2\pi}}e^{-0.5[x^2+y]}$ be the joint density function for some random variables X and Y, where X takes values on the real line and Y on the positive real line. Find the marginal densities $f_X(x)$ and $f_Y(y)$.
- c) What is the probability that X < 0 and Y < 5? (The question is about the probability of the joint event.)
- 3. (42%) Consider two random variables X and Y. Assume they both are discrete and that X can take the values 0, 1, and 2 while Y can take the values 0, 2, and 3. The probabilities for (X,Y) are shown in the following table:

- i) Find the mean and the variance of X.
- ii) Are the random variables X and Y independent?
- iii) Find the conditional distribution of Y given X = 1.
- iv) Verify for these numbers that EY = EE(Y|X).
- v) Find the conditional variance Var(Y|X=0).
- vi) Show the Var(Y) = EVar(Y|X) + Var(E(Y|X)). You can choose to prove the identity instead.
- 4. (6%) Assume X follows an exponential distribution with mean 3. Write down the density for X conditional on X > 10.
- 5. (10%) X and Y are standard normal variables with mean 0, variance 2, and correlation 0.5. Find the number α such that the random variable $Z = Y \alpha X$ is distributed independently of X.