ECONOMICS 7330—Probability and Statistics, Fall 2025

Homework 2. Due Wednesday September 24.

- 1. Show that if the density satisfies f(x) = f(-x) for all $x \in R$ then the distribution function satisfies F(-x) = 1 F(x).
- 2. Let $X \sim U[0,1]$ be uniformly distributed on [0,1]. Suppose X is truncated to satisfy $X \leq c$ for some $0 \leq c \leq 1$.
- (a) Find the density function of the truncated variable X.
- (b) Find $E[X|X \le c]$.
- 3. (a) Show that if X is uniformly distributed on the interval [0,1] then $Y = -\theta \log(X)$ follows an exponential distribution with mean θ . (You need to explicit about the support of the variables.)
- 4. Let $f(x,y) = (3/16) xy^2$; 0 < x < 2, 0 < y < 2, be the joint density function for X and Y.
- (a) Find the marginal density functions $f_X(x)$ and $f_Y(y)$.
- (b) Find the distribution function (CDF) for X.
- (c) Are the two random variables independent?
- 5. Let the joint probability function for X and Y be defined by

$$f(x,y) = \frac{x+y}{32}$$
, $x = 1,2$; $y = 1,2,3,4$. Find:

- a) $f_X(x)$, the marginal probability function for X.
- b) $f_Y(y)$, the marginal probability function for Y.
- c) P(X < Y).
- d) P(Y = 3X).
- e) Are X and Y independent or dependent?