ECONOMICS 7395, Spring 2007
 Bent E. Sørensen

Homework 4. February 20-due February 26.

Calculate and plot the impulse response functions for the model

$$
\binom{x_{1 t}}{x_{2 t}}=\binom{u_{1 t}}{u_{2 t}}+\left(\begin{array}{cc}
1 & .5 \\
.3 & .2
\end{array}\right)\binom{u_{1 t-1}}{u_{2 t-1}}+\left(\begin{array}{cc}
1 & 2 \\
0 & .5
\end{array}\right)\binom{u_{1 t-2}}{u_{2 t-2}}
$$

where the error terms are independent. If the variance of u_{1} is 1 and the variance of u_{2} is 2 , and u_{1} and u_{2} are independent calculate the variance decomposition for x_{1}.

Also, calculate the impulse response functions for

$$
\binom{x_{1 t}}{x_{2 t}}=\left(\begin{array}{cc}
.5 & 0 \\
.3 & .2
\end{array}\right)\binom{x_{1 t-1}}{x_{2 t-1}}+\binom{u_{1 t}}{u_{2 t}}
$$

Finally, calculate the variance decomposition for x_{1} when

$$
\binom{x_{1 t}}{x_{2 t}}=\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right)\binom{u_{1 t}}{u_{2 t}}+\left(\begin{array}{cc}
1 & .5 \\
.3 & .2
\end{array}\right)\binom{u_{1 t-1}}{u_{2 t-1}}+\left(\begin{array}{ll}
1 & 2 \\
0 & .5
\end{array}\right)\binom{u_{1 t-2}}{u_{2 t-2}}
$$

where u_{1} and u_{2} now are independent with variance 1 .

