ECONOMICS 7344 – MACROECONOMIC THEORY II, Spring 2022

Homework 1, Monday March 21. Due Wednesday March 30.

1. Define the lag polynomials $a(L) = a_0 + a_1 L$ and $b(L) = b_0 + b_1 L + b_2 L^2$. (Notice: in the notes, and in class, it is often assumed $a_0 = 1$ and $b_0 = 1$. This is just for simplification and doesn't matter for any results since you can always re-scale the data and the lag-polynomial such that the first coefficient becomes unity (write a(L) as $a_0 a'(L)$ where the lag polynomial $a'(L) = 1 + \frac{a_1}{a_0}L$ and similarly for b(L)). The constant a_0 will not affect the properties of the lag-polynomial that we care about.)

Assume $a_0 = 1$, $a_1 = -2$, $b_0 = 3$, $b_1 = -.3$, and $b_2 = .5$. i) If $x_t = 3$, $x_{t-1} = -3$, $x_{t-2} = -2$, $x_{t-3} = 9$, and $x_{t-4} = 9$, what is $a(L)x_t$? and $b(L)x_t$? (This should be a number.)

ii) Find the roots of a(L) and b(L).

iii) What is c(L) = a(L)b(L)? What are the roots of c(L)?

iv) Find the roots of c(L). Is the AR-model $c(L)x_t = 8 + u_t$ stable?

v) Find the coefficients to the constant (identify), L, and L^2 in the lag-polynomial $b^{-1}(L)$.

Now define the polynomials d(x) = 1 + .2x and $e(x) = 1 + .5x^2$. vi) Find the roots of f(L)=d(L)e(L). Is f(L) invertible?

2. (24% of midterm 1, Spring 2005) Assume that income follows the AR(1) process

$$y_t = 2 + 0.4y_{t-1} + e_t \quad (*)$$

where e_t is white noise with variance 3.

a) Is this time-series process stable?

b) Assume that y_0 is a random variable. For what values of the mean $E(y_0)$ and the variance $var(y_0)$ will the time series y_t ; t = 0, 1, 2, ... be stationary?

- c) What is $E_1 y_3$ if $y_1 = 5$ and $y_0 = 2$?
- d) Write the infinite Moving Average model that is equivalent to the AR(1) model (*)

[assuming that the process now is defined for any integer value of t]. (Half the points are from getting the correct mean term.)

3. Assume that income follows the AR(2) process

$$y_t = 3 + 0.4y_{t-1} + y_{t-2} + e_t$$

where e_t is white noise.

- a) Is this time-series process stable?
- b) What is $E_{t-2}y_t$ if $y_{t-2} = 10$ and $y_{t-3} = 10$?
- c) What is $E_{t-1}y_t$ if $y_{t-2} = 6$ and $y_{t-3} = 10$?

4. Let

$$x_t = \alpha_0 + u_t + 0.6 * u_{t-1} + u_{t-2} ,$$

where u_t is white noise.

Find the auto-covariances for x_t in terms of σ_u^2 (the variance of u_t).

5. Assume that y_t follows the AR(2) process

$$y_t = 200 + 1.2y_{t-1} - 0.4y_{t-2} + e_t \quad (*)$$

where e_t is white noise with variance 9.

a) Is this process stable? (You need to show why).

b) Find the mean and variance of y_t for t = 1, 2, and 3 conditional on all information data t=0 and earlier.

6. (20% of midterm 1, 2008, here only the first sub-question) Assume that y_t follows the AR(2) process

$$y_t = 200 + 0.5y_{t-1} + 0.1y_{t-2} + e_t \quad (*)$$

where e_t is white noise with variance 2.

a) (8%) Find the mean and variance of y_t assuming that y_t is stationary.