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1 Teaching notes on structural VARs.

1.1 Vector MA models:

1.1.1 Probability theory

The simplest (to analyze, estimation is a different matter) time series models are the moving

average (MA) models:

xt = µ + ut + B1ut−1 + ... + Blut−l = µ + B(L)ut,

where the innovation ut is white noise and the lag-polynomial is defined by the equation.

The positive integer l is called the order of the MA-process. MA processes are quite

easy to analyze because they are given as a sum of independent (or uncorrelated) variables.

However, they may not always be easy to estimate: since it is only the xts that are observed,

the uts are unobserved; i.e., latent variables.

1.1.2 Structural interpretation of Vector MA models

The model structure

xt = µ + ut + B1ut−1 + ... + Blut−l = µ + B(L)ut,

is sometimes used for structural MA-models where each ut vector consists of variables such

as productivity shocks, monetary shocks, fiscal policy shocks, etc. Because the u-terms

have mean zero (also when conditioned on any lagged observations) the term “shock” is

appropriate in this model.

The effect on the i’th element, xit, of xt of a unit shock to j’th element of ut−k is bijk
where the subscript k implies that we are looking at the i, j’th element of Bk, where we

interpret Bk to be a matrix of 0’s if k > l. Another way of expression this is

∂xit

∂ujt−k
= bijk .
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Notice that the notation can vary a lot for the ijth element of matrix Bk—some authors

prefer bk,ij or other variants. We assume that the ut terms are stationary and independent

and the stationarity assumption implies that we can write the previous equation as

∂xit+k

∂ujt
= bijk ;

i.e., as an equation that show the predicted effect of current shocks. If you plot bijk as func-

tion of k, you get the so-called impulse response function. (The shock to ujt is the “impulse”

and the predicted response of xxit+k is the “response.”) So, if xt is, say, 3 dimensional the

structural MA-model implies 3 times n impulse response function if the Bk matrices have

dimension 3× n. In practice, the matrices are most often chosen to be quadratic, with the

number of endogenous variables equal to the number of “impulses.”

Impulse response functions are great tools to analyze the workings of models. It variable

1, say, is a productivity shock, the impulse response functions for the x-variables related

to this shock very clearly show how the productivity shock reverberates through the econ-

omy. In particular for engineers working with linear systems, this is a useful tool because

typically the can actually select an “impulse” (feed some input into the physical system)

and measure the response. In macroeconomics we do not have that ability although in iso-

lated case you might be able to observe natural experiments that act as exogenous impulses.

Vector MA-models are very convenient to use for forecasting. Denote the expectation of

xt conditional on xt−h, xt−h−1, .... (The notation E(xt|It−h where “I” means “information

set” is also used sometimes.) For the Vector MA

xt|t−h = Bhut−h + ...Bkut−k ,

interpreted as 0, if h > k. The “h-period forecast error” xt − xt|t−h is then

xt − xt|t−h = ut +B1ut−1 + ...Bh−1ut−h+1 ,

which, of course, converges to xt is h→∞.

A related tool is variance decompositions: If the variance-covariance matrix Σu is diag-

onal and u has p elements, we can write the variance matrix as:

Σu =


σ21 . . . 0

. . .

0 σ2p
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then

V ar(xit − xit|t−h) = Σp
l=1 (σ2l Σh−1

k=0 (bi,lk )2 )

The fraction of the variance of xit − xit|t−h coming from innovations to xjt is therefore

f ij =
σ2j Σh−1

k=0 (bi,jk )2

Σp
l=1 σ2l Σh−1

k=0 (bi,lk )2
.

(Here, interpret B0 as the identity matrix. In some applications B0 will be not be the

identity matrix.) Notice that Σjf
i
j = 1 and that f ij is the fraction of the variance of the

h-period ahead forecast error of variable i that is explained (or caused) by the innovations

to shock j. This can be very a very useful way to describe, for example, which variable is

“most important” in generation the business cycle because the variance of output (or output

growth) is a reasonable measure of the “size” of the business (or any other) cycle, and the

proportion of that explained by, say, productivity shocks, tells us exactly how important

productivity shocks are for the business cycle on average, at a given forecast horizon. It is

possible that, say, demand shocks are more important in the short run and supply shocks in

the large run—if you have the economy described by a linear vector-MA with independent

innovations, you can answer such a question.

1.2 AR models:

The most commonly used type of time series models are the auto regressive (AR) models.

In vector form it is usually denoted a VAR process:

xt = µ + A1xt−1 + ... + Akxt−k + ut ,

where the innovation ut is a martingale difference sequence (or white noise). Here k is a

positive integer called the order of the AR-process. Such a process is usually referred to as

an VAR(k) process.

As for the MA-processes, “VAR-modeling” can is used in a much more specific sense where

the innovations (the error terms) are interpreted at shock to particular “driving” processes

(such as productivity shocks). I will refer to this as structural VAR modeling which originally

suggested by Christopher Sims as an alternative to the big Keynesian macro econometric

models. The basic philosophy was that the usual macro models only can be identified un-

der extensive a priori restrictions (in order for individual equations to be identified it is

usually assumed that a given endogenous variable only depends on a limited number of
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other endogenous variables). Sims finds many of these a priori restrictions “incredible” and

suggest that one starts with an unrestricted VAR model instead. Sims’ article is called

“Macroeconomics and Reality” and is reprinted various places but there are by now many

surveys and books about structural VAR modelling.

If a finite order VAR-model is invertible, then if xt = A(L)ut (where I suppress the constant

term for convenience) then xt satisfies the (infinite order) Vector MA-model

xt = A−1(L)ut .

So for invertible VAR-models we can use the methods outlined above to calculation im-

pulse response functions and variance decompositions. As in the univariate case, you may

find the inverse lag-polynomial by recursive substitution—the mechanics is exactly the same.

In practice, empirical economists often estimate a VAR-model (MA-models are hard to

estimate). Say, you have a time series for x′t = yt, pt,mt, where the variables could be out-

put growth, productivity growth, and money growth, respectively. Then you can estimate

a VAR and invert this to perform variance decompositions and impulse response functions

etc., but notice that this only makes sense if the error terms can be interpreted as exogenous

shocks which is often quite a leap of faith.

1.2.1 Identification

This brings me to the last topic of identification. Consider the case of the 1-order VAR

for a p-dimensional vector. What you can estimate from the data is p × p + p(p + 1)/2

parameters (ignoring the vector of constants for simplicity), namely the matrix A and the

different parameters of the variance matrix. To make this explicit, we can write

xt = Axt−1 + Σuvt , (∗)

where vt is a vector white noise process and Σu is lower triangular (you can always choose

a Cholesky triangular matrix for for square root of the variance matrix).

The “Cowles commission” way of identifying models was to assume (typically) that the

error matrix was diagonal and the economic theorizing would lead to assumptions on which

variables were function of each other, e.g., output depending on money and productivity

but, e.g., these independent of each other. This could be written as

A0xt = Axt−1 + vt .
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Here you might let the elements of vt have separate variances but then you would need to

put enough restrictions on A0 to not have more than p×p+p(p+1)/2 parameters. Another

way of putting it is what you cannot estimate a model

A0xt = Axt−1 + Σuvt ,

because this is equivalent to

xt = A−10 Axt−1 +A−10 Σuvt ,

and one cannot untangle both A0 and A from an estimated p× p coefficient to xt−1. Many

people in the VAR tradition choose to estimate the model in the form (*), assuming the

estimated error terms corresponds to innovations to exogenous driving variables. They

would not assume that each error term is exogenous but, if

Σu =


σ21 0 0

σ21 σ22 0

σ31 σ32 σ23

 ,

that u1 is an exogenous innovation (shock, impulse, etc.), that u2 − σ21u1 is an exogenous

innovation, and u3− σ31u1− σ32u2 is an exogenous innovation. So, e.g., σ21 allows variable

number 2, in the example: money, to be a function of variable number 1 output, within the

current period t, and variable number 3 (productivity) to be a function of the other two

innovations within the current period. (Note that you need to modify the impulse response

functions and variance decompositions to allow for non-diagonal covariance matrix, but that

should be straight-forward.) So you might hear an economist say that he or she chooses an

“ordering;” here, they might choose to order the x vector as x′t = pt,mt, yt such that money

within the current period can react to productivity shocks (but not the other way around)

and output to the other two (but not the other way around)—this is basically the idea in

RBC models. (Of course, in this case here this simply corresponds the choosing an upper

triangular Cholesky matrix, but people prefer to stick with a low triangular and talk about

“orderings” of the variables.

This might all make perfect sense. (Although, I do not believe that monetary policy would

ever be a function of just productivity shocks.) However, there seems to be a very unfortu-

nate tendency in this literature to not involve much economic argumentation. While people

in the Cowles tradition (whatever problems they might have had otherwise) at least thought

hard about what restriction to put on A0, you might hear “structural VAR” modelers just
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spend one line, stating something like “I choose an ordering and the impulse response func-

tions look about the same with other orderings...” which basically means (in my view) that

they have given up on economics.

A second critical issue is that if you involve such variables as money then you are as-

suming (sadly, this is again often done implicitly, without discussion) that output is ONLY

a function of these variables or at least that no variable that might affect money is cor-

related within the current period output (only productivity shocks are allowed to impact

money in the current period). I cannot see that happen. Also, to use this model (or vari-

ations of it) you have to assume that you can measure productivity shocks in the sense of

increased knowledge/technique/blue prints/etc. and something like Solow residuals, which

are often applied, are not, in my opinion, very good measures of this. In general, one has

to make “brave” assumption to represent the whole economy as a low order VAR. (Higher

order VAR’s might be better, but you then end up having to estimate a large amount of

parameters which likely will lead to imprecise estimates in the type of samples available to

macroeconomists.) However, in other applications, the methodology might work fine. What

you have to do, is to argue more in terms of economics for whatever restrictions you use

whether you put restriction on A0 on Σ or some other combination. I outline an alternative

methodology below (it is just an outline, see the original paper if you want more details):

1.2.2 Blanchard-Quah long-run identification

A clever alternative way of identifying models was suggested by Blanchard and Quah. They

argued that supply shocks would affect output forever but demand shocks only temporary.

Writing (say) a two-dimensional process as(
∆x1t

∆x2t

)
=

(
u1t

u2t

)
+

(
c111 c121
c211 c221

)(
u1t−1

u2t−1

)
+

(
c112 c122
c212 c222

)(
u1t−2

u2t−2

)
+ ...

then the hypothesis that demand shocks (say variable 2) has no long run effects can be

implemented as the restriction that the sum of the impulses with respect to variable 2 is

zero (it is here essential that the variables are written in growth rates). I won’t go through

the model in details but verify for yourself that

∂xit+h

∂ujt
= Σh

k=0b
ij
k ;
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which simply follows from the definition of of the impulse response function—here applied

to the variable ∆xt—and the fact that

xt+h = ∆xt+h + ∆xt+h−1 + ...+ ∆xt+1 + xt .

The idea is clever and illustrates that sometimes theoretical considerations can result in

non-obvious ways of identifying the model. For empirical research, the infinite sum of the

impulse responses are likely to not be robustly estimated, so this approach has not had a

significant influence on empirical practise although it pops up in research once in a while.
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