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1 Multivariate, Multinomial, Ordered, Se-

quential Discrete Probability Models

1.1 Multivariate Logit

A Multivariate Logit is a model where an agent can choose several

alternatives. Buy a new car, buy a new house, etc. These would just

the probability of say, buying a house AND buying a car would just be

exp(Xiβk)

1 + exp(Xikβk)

exp(Wiγk)

1 + exp(Wiγk)
,

which is just the product of the product of two logit probabilities. (Of

course, if you have theory that some of the γ coefficients are identical

to some of the β coefficients, you need to estimate it simultaneously.)

1.2 Multivariate Probit

The multivariate probit often makes more sense as it allows for cor-

related outcomes. Maybe you buy a new car and a new house at the
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same time because you got a big raise. You can think of many ex-

amples. Assume you have, for each agent i, a vector of latent Normal

random variables which for y0i1, ..., y
0
iK (independent across agents) with

mean

Ey0ik = Xiβk ,

and variance-covariance matrix Σ. You set

P (yik = 1) = P (y0ik > 0) .

So, for the case of K = 2, you get, for example,

P (yi1 = 0, yi2 = 0) =

∫ 0

−∞

∫ 0

−∞
f(y0i1, y

0
i2) dy

0
i1 dy

0
i2 .

Here, f is the bivariate normal density and you plug in the means and

the variance. If there are many choices, this may be time consuming

and there are numerical “short-cuts” that I will not cover here.

1.3 Multivariate Linear Probability Model

As for the bivariate choice model, you might simply estimate a mul-

tivariate regression model, ignoring that some predicted probabilities

would not be between 0 and 1. We will cover the multivariate regression

model soon.
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1.4 Multinomial Logit

Consider the case of a discrete probability model where the outcome is

one of the values k = 1, .., K. For the multinomial logit, the model it

is simple:

P (yi = k) =
exp(Xiβk)

Denom
,

where you normalize (say) β1 = 0 and

Denom = ΣK
1 exp(Xiβk) .

Because only one event can happen at a time, the probabilities have to

sum to unity. This is a simple generalization of the bivariate logit.

1.5 Multinomial Probit

The multinomial probit is a lot harder computationally. Assume you

have, for each agent i, a vector of latent Normal random variables which

for y0i1, ..., y
0
iK (independent across agents) with mean

Ey0ik = Xiβk ,

and variance-covariance matrix Σ. You set

P (yi = k) = P (y0ik > y0ij; ∀ j 6= k) .
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Normalize y01 to 0. This becomes the standard probit then for K = 2.

For K = 3 you then get, for example, the probability that yi = 3:

P (yi = 3) =

∫ ∞
0

∫ y0i3

−∞
f(y0i2, y

0
i3) dy

0
i2 dy

0
i3 .

This may look a bit evil, but it simple integrates the joint density of

the latent outcomes 2 and 3 over the area where y0i3 > 0 (because oth-

erwise, the first outcome would “be chosen” over the third) and where

y0i3 > y0i2. But unless you have optimized software, the integration (over

K − 1 latent variables) quickly becomes daunting. And if K is large,

there is a lot of parameters in the variance-covariance matrix. (Even

if you have to normalize one of them to unity.) I will not ask you to

write down the integral, but you should know the rest.

If you use the multinomial logit, you can get criticized for assuming

that the outcomes are independent. This is known as the “red bus-blue

bus problem.” Assume you need to commute to work and you can

drive your car or take a bus. However, the bus company has some blue

busses and some red busses. Assume, as is likely, that no-one cares

much about the color of the bus, you will get imprecise estimates if

you model the three outcomes (drive, red bus, blue bus). Or worse,

the blue busses get painted red, and now you assign the probability of
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taking a blue bus partly to the red bus and partly to driving. Which of

course is nuts, but the multivariate logit does not allow you estimate

that the bus-outcomes are highly correlated. (For this case, I would

use a nested logit or probit, see below.) Sometimes it is a less obvious,

so you need to consider whether a multivariate logit is suitable. In

Stata, there is an ”mprobit” command that does multivariate probit

assuming independent outcomes, but there isn’t much point in using

this a logit and probits give similar results, but there is also an “asm-

probit,” that allows for correlation between outcomes and uses indirect

inference (think GMM) rather than taking high dimensional integrals.

1.6 Ordered Logit/Probit

Sometimes we have clearly ordered outcomes. For example, the events

getting promoted, not getting promoted, getting laid off can be mod-

eled as ordered outcomes (although there may be a few people who

would prefer to be laid off, in applications we typically ignore that).

Scoring A, B, or C at an exam is a clear example. (Winning Gold,

Silver, or Bronze is not a good example, because we would here need
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to model competing agents and not just one agent.)

We label the outcomes k = 1, ..., K. To limit notation, I will assume

K = 3 here and that 1 is the best outcome. For the probit, we use the

latent variable model again (for κ1 > κ2):

P (yi = 1) = P (Xiβ + ui > κ1) ,

P (yi = 2) = P (κ2 < Xiβ + ui < κ1) ,

P (yi = 3) = P (Xiβ + ui < κ2) .

(This formulation assume there is no constant in Xi otherwise on κ has

to be set to zero. In the two dimensional case, that is what we implicitly

assumed, but I include to constants here, so you can see how it goes if

you have more than two choices.) Or, in the likelihood function

P (yi = 1) = Φ(Xiβ − κ1) ,

P (yi = 2) = Φ(Xiβ − κ2)− Φ(Xiβ − κ1) ,

P (yi = 3) = 1− Φ(Xiβ − κ2) .

You estimate both β and the κ’s and if you model makes sense the

estimated κ’s will have the right relative magnitudes.
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For the ordered logit you have

P (yi = 1) =
exp(Xiβ − κ1)

1 + exp(Xiβ − κ1)
,

P (yi = 2) =
exp(Xiβ − κ2)

1 + exp(Xiβ − κ2)
− exp(Xiβ − κ1)

1 + exp(Xiβ − κ1)
,

P (yi = 3) = 1− exp(Xiβ − κ2)
1 + exp(Xiβ − κ2)

,

etc. where you replace the Normal CDF in the previous with logistic

probabilites.

1.7 Sequential Logit/Probit

For a problem like the choosing to drive or take the red or blue bus (or

more realistically train/bus), it often make more sense to use sequential

model. First you decide whether to drive or take public transportation,

and if you decide to take public transportation you choose between

train or bus. If Pcar is the probability of taking the car, and Ptrain

and Pbus are the other probabilities. The probability of taking the care

is Pcar, the probability of taking the bus is (1 − Pcar)Pbus, etc. For

the probabilities you put your favorite probit or logit which would be
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a function of covariates. It is simple to generalize this to the slightly

more complicated problem where the car drive further chooses between

his/her Toyota or BMW or even whether you stop for gas. The first

of second step can be a multinomial or a multivariate model, it is all

modular.
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