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Seemingly Unrelated Regresssions (SURE)

We consider a sample i = 1, ..., N of (say) individuals. We are modeling two outcomes (in general,

K), say

h = Zβ1 + v

and

c = Wβ2 + u .

Here y is N × 1, c is N × 1, Z is N × P , and W is N × Q. We assume X and W are exogenous

and the usual conditions for OLS holds, but the observation across individual are independent but

var(ei, ui) = Σ. We can estimate these equations one-by-one using OLS, but this is not efficient if

the ei and ui are correlated (i.e., Σ is not diagonal). The efficient estimator is GLS after having

stacked the observations suitably. This is in principle trivial but to derive the formulas one has to

keep carefully track of how things stack up. (I got confused by the way Bruce Hansen does it and

I think it is not the best way, so here goes:)

Consider the stacked system

y = Xβ + e ,

where y′ = (h′, c′), e′ = (v′, u′) and X is block-diagonal with Z and W on the diagonal:

X =

(
Z 0

0 W

)
.

Of course, the OLS estimator is (X ′X)−1X ′Y , which gives the same coefficients as OLS for each

equation. But this is not efficient as it ignores the correlation. So what is the variance covariance

matrix for Eee′? If the variance in Σ are σ2v and σ2u and the covariance is σuv, then

Eee′ =



σ2v 0 0 ... 0 σuv 0 0 ... 0

0 σ2v 0 ... 0 0 σuv 0 ... 0

0 0
... ... 0 0 0

... ... 0

0 0 0 ... σ2v 0 0 0 ... σuv
σuv 0 0 ... 0 σ2u 0 0 ... 0

0 σuv 0 ... 0 0 σ2u 0 ... 0

0 0
... ... 0 0 0

... ... 0

0 0 0 ... σuv 0 0 0 ... σ2u


.

Take a bit of time to understand this. On the diagonal is for person i first the h terms and then

the c terms. The covariance in the first row is in column N + 1 because there is where the second

variable for observation i = 1 is located. For the second row, that happens in column N + 2 etc.

However, a much more compact way of writing this is

Eee′ = Σ ⊗ IN ,
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where IN is the identity matrix of order N . The GLS-estimator is then

β̂ = [X ′(Σ ⊗ IN )−1X]−1X ′(Σ ⊗ IN )−1Y .

Nothing is new here, except the work in figuring out the structure of the variance matric. The GLS

estimator is more efficient, and allows you easily test restrictions across the β1 and β2 parameters,

so I have sometimes used this because I wanted to test even if my dataset was so big that efficiency

was not an issue.. The variance of β is given by the GLS formula var(β) = [X ′(Σ ⊗ IN )−1X]−1 .

There is nothing in the setup here that does not instantly generalize to K equations, so the formulas

are valid for any number of equations. What if we didn’t observe, say, c, for some individuals? We

could still do the stacked GLS, but you would get the nice formula with the Kronecker product.

If the regressors are the same in the two equations, things simplify a lot. Let us call the joint

regressor Z. Now we have

X = I2 ⊗ Z ,

which would have same form with IK instead of I2 if we have K equation. We then get the GLS

formula

β̂ = [(I2 ⊗ Z ′)(Σ ⊗ IN )−1(I2 ⊗ Z)]−1[(I2 ⊗ Z ′)(Σ ⊗ IN )−1]Y .

using the multiplication formula for Kronecker products we get

β̂ = [Σ−1 ⊗ Z ′Z]−1(Σ−1 ⊗ Z ′)Y .

or

β̂ = [Σ ⊗ (Z ′Z)−1](Σ−1 ⊗ Z ′)Y .

or

β̂ = [I2 ⊗ (Z ′Z)−1Z ′]Y .

Look at this. I2 ⊗ (Z ′Z)−1Z ′ is block-diagonal with (Z ′Z)−1Z ′ on the diagonal, so we get(
β1

β2

)
=

(
(Z ′Z)−1Z ′h

(Z ′Z)−1Z ′c

)
,

that is, OLS equation by equation. (Which you could have logically deduced when you saw the

variance matrix cancelling out.) Note that the variance of β is

Var(β) = [I2 ⊗ (Z ′Z)−1Z ′]Var(Y )[I2 ⊗ (Z ′Z)−1Z]′ ,

or

Var(β) = [I2 ⊗ (Z ′Z)−1Z ′](Σ ⊗ IN )[I2 ⊗ (Z ′Z)−1Z ′]′ = Σ ⊗ (Z ′Z)−1Z ′Z (Z ′Z)−1 ,

or

Var(β) = Σ ⊗ (Z ′Z)−1 ,

so unless Σ is diagonal, you still need to estimate it if you want to test across the equations. You can

see that the t-stats for, say, β1 is the same as you get from equation-by-equation OLS estimation.
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