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1 Teaching notes on GMM III (revised Nov 29, 2011).

1.1 Variance estimation.

Most of the material in this note builds on Anderson (1971), chapters 8 and 9. [This book
is now available in the Wiley Classics series]. In this revision, I have put the theory, which
isn’t on the exam in an appendix.

First recall that

Ω = lim
J→∞

J∑

j=−J

E[ftf
′
t−j ] .

Notice, that for any L dimensional vector a we have

a′Ωa =
J∑

j=−J

a′ft(a′ft−j)′ ,

so, since the quadratic form Ω is characterized by the bilinear mapping a → a′Ωa (and
similar for estimates Ω̂, you see that the behavior of the estimators are characterized by the
actions of the estimator on the univariate processes a′ft. In the following I will therefore
look at the theory for spectral estimation for univariate processes, and in this section we
will ignore that ft is a function of an estimated parameter. Under the regularity conditions
that is normally used, this is of no consequence asymptotically.

Defining the j’th autocorrelation γ(k) = Eftft−j , our goal is to estimate
∑∞

j=−∞ γ(j) .

Define the estimate (based on T observations) of the j’th autocorrelation by

c(j) =
∑T

t=j [ftf
′
t−j ]

T
; j = 0, 1, 2, ... .

Notice that we do not use the unbiased covariance estimate of the autocovariances (this is
obtained by dividing by T − j rather than T ).

1



We will use estimators of the form

Ω̂ =
J∑

j=−J

wjc(j) ,

where the wj are a set of weights. (The reason for these and how to choose them is the
subject of most of the following). The dependence of ft on the estimated parameter will be
suppressed in the following, but it is always evaluated at our estimate.

The spectral density is

f(λ) =
1
2π

∞∑

k=−∞
γ(k)cos(λk) .

NOTE: f now denotes the spectral density as is common in the literature, it is NOT the
moment condition!!!

We only need the spectral density at λ = 0 but the theory makes use of the whole function
and you will hear people talk about “spectral estimator.”

In most cases, the weights take the form

wj = k(
j

KT
) ,

where k() is a continuous function (a “kernel”), k(0) = 1, k(x) = k(−x), normalized such
that the implied w∗ satisfies

∫ π
−π w∗(λ|ν)dλ = 1 for all ν. We will always assume that KT

tends to infinity with T .

The most commonly used kernel was suggested by Bartlett and popularized in a 1987
Econometrica article by Newey and West. It has the form

wj = 1− abs(j)/KT

for abs(j) < KT , 0 otherwise. It is also sometimes known as a “tent” kernel (try and draw
it).

Andrews (1991) shows the consistency of various kernel smoothed spectral density esti-
mates (at 0 frequency), when the covariances are estimated via estimated orthogonality
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conditions (or as you would usually say: when you use the error terms rather than the
unobserved innovations). In this case, some more regularity conditions, securing that the
error term varies smoothly with the estimated parameters, are clearly necessary but since
those are usually satisfied in practise and no-one typically checks them, we will not go into
the details of this.

Andrews shows that the asymptotically optimal kernel is the Quadratic Spectral (QS) kernel
which have the form

kQS(x) =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
.

You may want to try and plot it (using, for example GAUSS). I do not want you to try and
remember the exact formula, but remember the name.

Andrew find the optimal bandwidth to have the form

K∗
T = 1.1447[α(1)T ]

1
3

for the Bartlett kernel, and
K∗

T = 1.3221[α(2)T ]
1
5

for the QS kernel. (Notice how slowly they grow with the number of observations T .)

The α parameter depends on the (unknown) spectral density function at frequency 0,
but Andrews suggest that one assume a simple form of the model, e.g. an AR(1) or an
ARMA(1,1), or maybe a VAR(1) in the vector case, and use this to obtain an initial es-
timate of f(0) which one then uses for an estimate of the α parameter. Notice that the
important thing here is to get the order of magnitude right, so it is not necessary that the
approximating AR(1) (say) model is the “correct” model. In case you knew the correct
parametric model for the long run variance you would obtain more efficiency using this
model directly rather than relying on non-parametric density estimators. In any event you
can show for example for an AR(1) model with autoregressive parameter ρ that

α(1) =
4ρ2

(1− ρ)6(1 + ρ)2
/

1
(1− ρ)4

.

You should plot the one given here in order to get a feel for it—for example, if ρ is 0, the
estimated Ω will not use any autocorrelation of order larger than 0. In general, if there is
a lot of autocorrelation, we need to include more lags or we will have a lot of bias while,
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if there is little autocorrelation, we are better of not including a lot of lags since the noise
from those will dominate the bias created by leaving them out. (You should know this
pattern and you should know there is a formula, but don’t try to memorize the exact form
of α(1). More formulas are giving in Andrews (1991), you will need for example α(2) to
use the QS kernel. Andrews also gives formulas for both α(1) and α(2), for the case where
the approximating model is chosen to be an ARMA(1,1), an MA of arbitrary order or a
VAR(1) model. Typically the simple AR(1) model is used.
In a typical GMM application you would run an initial estimation, maybe using the identity
weighting matrix, then you would obtain an estimate of the orthogonality conditions (in
other word, you would get some error terms) and on those you would estimate an AR(1)
model, obtaining an estimate ρ̂, and you would then find

α̂(1) =
4ρ̂2

(1− ρ̂)6(1 + ρ̂)2
/

1
(1− ρ̂)4

.

which you would plug into your formula for the optimal bandwidth [this would be for the
Bartlett kernel, for the QS kernel you would obviously have to find α(2)].
Usually you will have multivariate models and you would have to estimate either a multi-
variate model for the noise (e.g. a VAR(1)), although I personally estimate an AR(1) for
each component series and then use the average (i.e. setting the weights wa in Andrews’
article to 1) - this is the way the GMM program that I gave you is set up.

In my experience, the choice between (standard) k-functions matters little, while the choice
of band-width (KT ) is important. I am not quite sure how much help the Andrews’ formulae
are in practice, but at least they have the big advantage that if you use a formula then the
reader know you didn’t data mine KT .

Pre-whitening
Since the usual weighting scheme gives the autocorrelations less than full weight it is easy
to see, in the situation where they are all positive, that the spectral density estimate is
always biased downwards. Alternatively, remember that the spectral density estimate is a
weighted average of the sample spectral density for neighboring frequencies, so if the sam-
ple spectral density is not “flat”, the smoothed estimate is biased. Therefore Andrews and
Monahan (1992) suggest the used of so-called “pre-whitened” spectral density estimators.
The idea is simple (and not new - see the references in Andrews and Monahan) - if one
can perform an invertible transformation that makes the sample spectrum flatter, then one
should do that, then use the usual spectral density estimator, and finally undo the initial
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transformation. This may sound a little abstract but the way it is usually implemented is
quite simple: Assume you have a series of “error” terms ft and you suspect (say) strong
positive autocorrelation. Then you may want to fit an VAR(1) model (the generalization
to higher order VAR models is trivial) to the ft terms and obtain residuals, which we will
denote f∗t , i.e.

ft = Âft−1 + f∗t .

More specifically the process of finding the f∗t s from the ft is denoted pre-whitening. It is
easy to see that in large samples this implies (approximately)

(I − Â)
1
T

T∑

1

ft =
1
T

T∑

1

f∗t ,

so we see that

V ar{ 1
T

T∑

1

ft} = (I − Â)−1V ar{ 1
T

T∑

1

f∗t }(I − Â′)−1 ,

and to find your estimate of V ar{ 1
T

∑T
1 ft} you find an estimate of V ar{ 1

T

∑T
1 f∗t } and use

this equality. This is denoted “re-coloring”. The reason that this may result in less biased
estimates is that f∗t has less autocorrelation and therefore a flatter spectrum around 0. On
the other hand the pre-whitening operation may add more noise and one would usually only
use pre-whitening in the situation where strong positive auto-correlation is expected. Also
be aware that in this situation the VAR estimation is not always well behaved and you may
risk that I − Â will be singular. Therefore Andrews suggests that one use a singular value
decomposition of Â and truncate all eigenvalues larger than .97 to .97 (and less than -.97
to -.97) - see Andrews and Monahan (1992) for the details.
Andrews and Monahan supply Monte Carlo evidence that shows that for the models they
consider, pre-whitening results in a significant reduction in the bias, at the cost of an in-
crease (sometimes a rather large increase) in the variance. In many applications you may
worry more about bias than variance of your t-statistics, and pre-whitening may be pre-
ferred.

An alternative endogenous lag selection scheme [I won’t ask questions about
this].
In a recent paper Newey and West (1994) suggest another method of choosing the lag length
endogenously. Remember that the optimal lag-length depends on

α(q) = 2

(
f (q)

f(0)

)2

.
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Newey and West suggest estimating f (q) by

f̂ (q) =
1
2π

n∑

r=−n

|r|qc(r)

which you get by taking the definition and plugging in the estimated autocorrelations and
truncating at n. Similarly they suggest

f̂(0) =
1
2π

n∑

r=−n

c(r) .

Note that this is actually the truncated estimator (which have all weights equal to unity for
the first autocorrelations and 0 thereafter) of the spectral density that we want to estimate
but they suggest only to use this estimate in order to get

α̂(q) =

(
2f̂ (q)

f̂(0)

)2

,

and then proceed to find the actual spectral density estimator using a kernel which guar-
antees positive semi-definiteness. Newey and West show that one has to choose n of order
less than T 2/9 for the Bartlett kernel and order less than T 2/25 for the QS kernel. Note
that there still is an arbitrary constant (namely n) to be chosen, but one may expect that
the Newey-West lag selection scheme will be superior to the Andrews scheme in very large
samples, (if you let n grow with the sample) since it does not rely on an arbitrary approx-
imating parametric model. In Newey and West (1994) they perform some Monte Carlo
simulations, that show that their own lag selection procedure is superior to Andrews’ but
only marginally so. In the paper Andersen and Sørensen (1996) we do, however, find a
stronger preference for the Newey-West lag selection scheme in a model with high autocor-
relation and high kurtosis.

2 Theory Sketch

Now it is easy to show that
∫ π

−π
cos(λh)f(λ)dλ =

1
2
γ(h) ,

since
∫ π
−π cos(λh)cos(λj)dλ = πδhj (where δhj is Kronecker’s delta [1 for h = j, 0 other-

wise]). You can easily see that the spectral density is flat (i.e. constant) if there is no
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autocorrelation at all, and that f(λ) becomes very steep near 0, if all the autocovariances
are large and positive (the latter is called the ”typical spectral shape” for economic time
series by Granger and Newbold). In any event, since we want to estimate only f(0), this is
the all the intuition you need about this.

The Sample Spectral Density
Define

I(λ) =
1
2π

T∑

k=−T

c(k)cos(λk) .

I(λ) is that sample equivalent of the spectral density and is denoted the sample spectral
density. It is fairly simple to show (you should do this !) that

I(λ) =
1

2πT
|

T∑

t=1

fte
iλt|2 .

The importance of this is that it shows that the sample spectral density is positive. We
do not want spectral estimators that can be negative (or not positively semi-definite in the
multivariate case).

Anderson (1971), p. 454 shows that

EI(0) =
∫ π

−π
kT (ν)f(ν)dν ,

where

kT (ν) =
sin2 1

2νT

2πT sin2 1
2ν

is called Fejer’s kernel. Notice that the expected value is a weighted average of the values of
f(λ) in a neighborhood of 0. If the true spectral density is flat then the sample spectrum is
unbiased but otherwise not in general. Anderson also shows (page 457) that if the process
is normal then

V ar(I(0)) = 2[E{I(0)}]2

(for non-normal processes there will be a further contribution involving the 4th order cu-
mulants).

If
∑ |γ(k)| < ∞ then on can show that

lim
T→∞

EI(λ) = f(λ) ,
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and for normal processes on can show that

lim
T→∞

V arI(0) = 2f(0)2 ,

(and again there is a further contribution from 4th order cumulants for non-normal pro-
cesses).
One can also show that (for normal processes)

lim
T→∞

Cov{I(λ)I(ν)} = 0 ,

for λ 6= ν, so that the estimates for even neighboring λs are independent. This independence
together with the asymptotic unbiasedness is the reason that one can obtain consistent
estimates of the spectral density by “smoothing” the sample spectrum.
For a general (and extremely readable) introduction to smoothing and other aspects of
density estimation (these methods are not specific for spectral densities), see B. Silverman:
“Density Estimation for Statistics and Data Analysis”, Chapman and Hall, 1986.
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Consistent estimation of the spectral density
One can obtain consistent estimates of the spectral density function by using weights, i.e.
for a sequence of weights wj

f̂(γ) =
1
π

T−1∑

r=−T+1

cos(γr)wrc(r) .

If you define

w∗(λ|ν) =
1
π

T−1∑

r=−T+1

cos(λr) cos(νr)wr ,

it is easy to see that
f̂(ν) =

∫ π

−π
w∗(λ|ν)I(λ)dλ .

We will only use these formula’s for ν = 0, but the important thing to see is that our
estimate of the spectral density is a smoothed estimate of the sample spectral density. Also
note that the usual way to show that a set of weights result in a positive density estimate
is to check that the implied w∗(.|0) function is positive.

Anderson (page 521) shows that

lim Ef̂(0) =
∫ π

−π
w∗(λ|0)f(λ)dλ .

This means that the kernel smoothed estimate is not in general consistent for a fixed set
of weights. Of course if the true spectral density is constant the smoothed estimate will be
consistent (since the weights will integrate to 1 in all weighting schemes you would actually
use), but the more “steep” the actual spectral density is, the more bias you would get. We
will show how one can obtain an asymptotically unbiased estimate of the spectral density
by letting the weights be a function of T, but the above kind of bias is still what you would
expect to find in finite samples, which is why it is worth keeping in mind.

For the asymptotic theory the smoothness of the function k near 0 is important, define
kq as

lim
x→0

1− k(x)
|x|q = kq ,

where q is the largest exponent for which kq is finite. Various ways of choosing the function
k to generate the weights result in different values of q and kq. Under regularity conditions
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(most importantly
∑∞

r=−∞ |r|qγ(k) < ∞) you find that for KT → ∞ such that the q-th
power grows slower than T , Kq

T /T → 0, then

limKq
T [Ef̂(ν)− f(ν)] =

−kq

2π

∞∑

r=−∞
|r|q cos(νr)γ(k) .

Note that this implies that the smoothed estimate is consistent, and the most important is
the rate of convergence, which is faster the larger Kq

T (subject to being less than T).
It is easy to verify that q = 1 for the Bartlett kernel, and q = 2 for most other kernel
schemes used. For the variance one can show that

lim
T→∞

T

KT
var{f̂T (0)} = 2f2(0)

∫ 1

−1
k2(x)dx

(for the estimate at points not equal to zero or π the factor 2 disappears - this is due to
the fact that the spectral density is symmetric around 0, so at 0 a symmetric kernel will in
essence smooth over only half as many observations of the sample spectral density). So we
notice that the variance does not go to zero at the usual parametric rate 1

T , but only at the
slower rate KT /T . So in order to get low variance you would like KT to grow very slowly,
but in order to obtain low bias you would like KT to grow very fast. You can also see that
asymptotically the kernel with higher values of q will totally dominate the ones with lower
values of q since you for the same order of magnitude of the variance get a lower order of
magnitude of the bias. In practice this may no be so relevant, however, since the parameter
q only depends on the kernel near 0, which only really comes into play in extremely large
samples.

The only kernels that allow for a q larger than 2 are kernels that do not necessarily give
positive density estimates, which people tend to avoid (although Lars Hansen have used
the truncated kernel, which belongs to those). Among the kernels that have q = 2 Andrews
show that the optimal kernel is the one which minimizes k2

q (
∫ 1
−1 k2(x)dx)4. (See Andrews

(1991), Theorem 2, p. 829). This turns out to minimized by the Quadratic Spectral (QS)
kernel.

The usual way the bias and the variance is traded off is by minimizing the asymptotic
Mean Square Error. For simplicity define

f (q) =
1
2π

∞∑

r=−∞
|r|qγ(r) .
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It is simple to show that the MSE is

KT

T
f2(0)

∫ 1

−1
k2(x)dx +

(
1

Kq
T

)2

k2
q [f

(q)]2

Now in order to minimize the MSE, differentiate with respect to KT , set the resulting
expression equal to 0, solve for KT and obtain

KT =

(
2qk2

q [f
(q)]2

f(0)2
∫

k2

) 1
2q+1

T
1

2q+1

For example for the Bartlett kernel you can find k(0) = 1 and
∫

k2 = 2/3. Andrews define

α(q) =
2[f (q)]2

f(0)2

and the optimal bandwidth

K∗
T =

(
qk2

q∫
k2(x)dx

) 1
2q+1

(α(q)T )
1

2q+1

so you find
K∗

T = 1.1447[α(1)T ]
1
3

for the Bartlett kernel, and
K∗

T = 1.3221[α(2)T ]
1
5

for the QS kernel.
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