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1 Teaching notes on GMM II.

Assume that economic theory gives us the moment conditions

Eft(θ) = 0 ,

where ft(θ) = f(xt, θ) is an r dimensional vector of moment conditions and θ is a q dimen-
sional vector of parameters. The identification condition is that Eft = 0 for θ = θ0 and
otherwise not. (Further you need to assume a compact parameter space or some equivalent
assumption as outlined in class.)

Define

gT =
1
T

T∑

t=1

ft .

We will use the notation gT or gT (θ), but from now on the dependence of gT on the
underlying series, xt, will be implicit. The GMM estimator will be the estimator that makes
gT (θ) as close to zero as possible. Notice that gT is the empirical first moment of the series ft

which is why the estimator is called a moment estimator. Also note that the standard idea
of moment estimation, which consists of equating as well as possible a series of moments.
This would be achieved by choosing g′T = [xT −Ext, x2

T −E{x2
t }, ..., xK

T −E{xK
t }].

We now define the GMM-estimator as

θ̂ = argminθ g′T WT gT ,

where WT is a weighting matrix that (typically) depends on T such that there exist a
positive definite matrix W0, such that WT → W0 (a.s.). The latter condition allows us
to let the weighting matrix be dependent on an initial consistent estimator, which is very
important since the optimal GMM estimator will be a two step estimator, just as in the
GLS-case above.
Let DgT (θ) be the r × q dimensional matrix of derivatives with typical element DgTij =
∂gTi
∂θj

. We will assume DgT has full rank. When the underlying data follows continuous
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distributions this will usually follow with probability 1 from the identification condition.
(Below I will often just write Dg in order to simplify notation but, of course, all functions
will be evaluated using the T available observations.)

Then the first order condition of the optimization becomes

DgT (θ̂)′WT gT (θ̂) = 0 .

Solving non-linear optimization by the Newton algorithms
GAUSS and other programs use a Newton type algorithm to solve non-linear optimization
problems. There are many variations of this but most variations involve approximations to
how one finds derivatives and things like that. The computer will find the derivative of the
criterion function numerically but you will have the option to let a subroutine calculate it if
you have an analytical expression, this will often increase computational speeds significantly
if the number of parameters is high.

Newton type algorithms work by starting from an initial value θ0 and for a given value
θN−1 finding θN which minimize the linearized criterion function:

[gT (θN−1) + Dg(θN − θN−1)]′WT [gT (θN−1) + Dg(θN − θN−1)]

The solution is (check this!)

θN − θN−1 = −(Dg′WT Dg)−1Dg′WT gT (θN−1) ,

which is the NEWTON upgrade.

1.1 Asymptotic theory

We will assume that the series (x′t, z′t)′ is ergodic. A series xt is ergodic if

1
T

T∑

t=1

h(xt) → Eh(xt)

for all functions h(.) (for which the mean is well defined). Notice that the right hand side of
the above equation is assumed to not be a function of t. It is, more or less, impossible to test
if a series is ergodic. However, it is well known that an integrated time-series (e.g., a random
walk) is not ergodic. Most macroeconomic series are integrated, or nearly integrated, time
series, but most often the model can be rewritten in terms of stationary variables (typically
growth rates).
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For proof of consistency, see for example, Hansen (1982). The idea is simple enough. When
T is large the function gT (θ) is close to Eft(θ) and the minimum of gT will therefore be
close to the minimum of Eft, i.e., close to θ0. In order to make these statements precise we
need to be specific about what we mean by convergence of functions but I will leave this
for more specialized econometrics courses.

We will also assume that the series ft(θ) satisfies a central limit theorem, i.e. that

1√
T

T∑

t=1

ft(θ) ⇒ N(0, Ω) ,

where Ω = E[ftf
′
t ] if ft is not autocorrelated, but in general

Ω = lim
J→∞

J∑

j=−J

E[ftf
′
t−j ] .

So intuitively, where we in the GLS model had T (or L in the IV case) normally distributed
error terms, we here have K asymptotically normally distributed moment (or orthogonality)
conditions.

Let Df = E ∂ft

∂θ (θ0). One can then show that for any convergent sequence of weighting
matrices the GMM-estimator is consistent and asymptotically normal with

√
T (θ̂ − θ ) ⇒ N(0,Σ) ,

where
Σ = (Df ′W0Df)−1Df ′W0ΩW0Df(Df ′W0Df)−1 .

Notice that this formula corresponds exactly to the one obtained in the linear case if you
substitute X for Df .

We can sketch the proof (see Hall’s book for more detail): By the mean value theorem
we can write

gT (θ̂) = gT (θ0) + DgT (θ)(θ̂ − θ0)

Now, pre-multiply this equation by DgT (θ̂)′WT and, by the first-order condition above,
the left-hand side is 0 and we get

0 = DgT (θ̂)′WT gT (θ0) + DgT (θ̂)′WT DgT (θ) (θ̂ − θ0) ,

where |θ − θ0| < |θ̂ − θ0| (which implies that when θ̂ is consistent and converges to θ0, so
will θ). We get

θ̂ − θ0 = −[DgT (θ̂)′WT DgT (θ)]−1DgT (θ̂)′WT gT (θ0) .
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This implies

√
T (θ̂ − θ0) = −[DgT (θ̂)′WT DgT (θ)]−1DgT (θ̂)′WT

√
TgT (θ0)

This has the form
AT

√
TgT (θ0) ,

where
√

TgT (θ0) converges in distribution to N(0, Ω) and AT converges in probability to
(Df ′W0Df)−1Df ′W0 which gives us the formula above. (Dg converges to Df by ergod-
icity.) Again, you need to look at more specialized articles to make sure this is all kosher
but, in general, the assumption that econometric theorists impose to prove the theorems
are rarely of such a form that practitioners can verify them.

The reasoning behind the GLS estimator also carries over and the optimal GMM-estimator
is the one where WT → Ω−1 in which case the asymptotic covariance of the GMM-estimator
is

Σ0 = (Df ′Ω−1Df)−1 .

In order to obtain an estimate Σ̂0 you need an estimate Ω̂ and then you use

Σ̂0 = (Dg′Ω̂−1Dg)−1 ,

where Dg, of course, is evaluated at θ̂.
Notice that this is the optimal estimator for a given set of instruments. The problem

of finding the best instruments is much harder and no satisfactory solution exists to that
problem in general (although often for special cases, like the OLS model). I will comment
on this (very important) issue below.

Also notice, that consistency is found without making assumption on the error terms
and without specifying the model such that the error terms are independent. Sometimes
authors will claim that this is a big strength of GMM, but if you error are not approximately
normal you will often have problems and, in particular, if you have a lot of autocorrelation
in your residuals you will not get very precise estimates. (The profession seems to go in
circles as to whether it is consider a strength to not have to make distributional assumptions
[“OLS is the Best Linear Unbiased estimator” or the opposite “OLS is the ML estimator”].
Some people can get “religious” about this issue, but my more pragmatic attitude is that
the important thing is to get error terms that are approximately uncorrelated.)
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1.2 Hypothesis Testing in a GMM-framework

There exists equivalents of the standard Wald-, LM-, and ML-test in the case of GMM
estimation. Note: This is only true in the case where the optimal weighting matrix has
been applied. In a case where you apply a non-optimal weighting matrix then there is no
equivalent of the ML-test available. (Ho, Perraudin, and Sørensen (1996) is an example of
a paper that applies a non-optimal weighting matrix).

Consider a test for s nonlinear restrictions

R(θ) = 0 ,

where R is an s× 1 vector of functions.

Let DR be dR
dθ (and we assume that DR is evaluated at the optimal GMM-estimator in the

unrestricted model), then the Wald test is

TR(θ)′[DRΣ̂DR′]−1R(θ) ,

or
TR′[DR(Dg′WT Dg)−1Dg′WT Ω̂−1

T WT Dg(Dg′WT Dg)−1DR′]−1R ,

where WT is the weighting matrix and Dg is the derivative of gT with respect to the
parameters. Here Dg (and DR if this is dependent on the parameters) are evaluated at the
unrestricted estimator of θ. Let us define

Σ̂ = (Dg′WT Dg)−1 Dg′WT Ω̂−1
T WT Dg (Dg′WT Dg)−1 ,

In the formula for the Wald-test Σ̂ is our estimator of the variance of θ̂ and when we pre-
and post-multiply this by DR we get an estimate of the asymptotic variance of R(θ̂).

The LM-test can be implemented in different ways. I strongly recommend you check
with a trusted source (like the article in the handbook or Gallant (1987)). For example,
there is a formula in Ogaki (1992) that I cannot quite get to agree with Gallant’s formula
and a much simpler looking formula in Davidson and MacKinnon, that I cannot see how
they get. They may be OK, but I recommend you be careful. The formula given here
should agree with Gallant (1987). This version has the form

LM = Tg′T WT Dg(Dg′WT Dg)−1DR′(DRΣ̂DR′)−1DR(Dg′WT Dg)−1Dg′WT gT
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where Dg and GT are evaluated at θ̂.
One way to motivate this version of the LM test is notice that if the restriction R(θ)

is true the DR(θ̂)dθ (evaluated at the restricted estimator) should be approximately zero
where θ̂ is evaluated at the constrained minimum. The idea (of this version of the LM-test)
is that you choose dθ as the update in a NEWTON algorithm, i.e.,

θN − θ̂ = (Dg′WT Dg)−1Dg′WT gT (θ̂) ,

The idea of the LM test is that if the model fits well, the NEWTON step away from the
restricted parameter value will be small or, at least, orthogonal to DR. Now you find the
LM test-statistic by evaluating

[DR(θN − θ̂)]′V −1DR(θN − θ̂) ,

where V = DRΣ̂DR′ is the variance of DR(θ − θ̂) (ignoring the small sample variance in
DR), and

DR(θN − θ̂) = DR(Dg′WT Dg)−1Dg′WT gT (θN−1) ,

using the expression for the Newton-step found above.

Finally the LR-test (of course it should strictly speaking be “LR-type test” for Likelihood-
Ratio type) is

LR = 2 ∗ T [JT (θr
2)− JT (θu

2 )] ,

where JT is the objective function (NB) evaluated at the optimal weighting matrix and
where the superscripts u and r of course indicates that the estimators were found in the
unrestricted and the restricted models respectively.

The Wald-, LM-, and LR-test can all be shown to converge in distribution to a χ2-
distribution with s (number of restrictions) degrees of freedom in the case where the re-
strictions are true.

Hansen (1982) suggested the following test for mis-specification: Consider

JT = TgT (θ̂2)′Ω̂−1
T gT (θ̂2) .

If the model is correctly specified this statistic is asymptotically χ2 distributed with degrees
of freedom equal to r − q, where q is the number of parameters estimated. So a value
that is far out in the tail indicates that the whole model is mis-specified. By the whole
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model I do not mean that all parts of the model are mis-specified; but rather that some
part of the model is mis-specified - it could be that it was just the instruments that were
not pre-determined. This test is known as the test for overidentifying restrictions or
sometimes as the “Hansen J-test”.
Note that you cannot test unless you have more moment conditions than parameters (an
“overidentified model”), in the case the model is exactly identified the JT will be identically
0.
In Hansen and Singleton (1982) the model was rejected by the J-test, and my subjective
impression is that from then on it became acceptable for a while to present an econometric
estimation that rejected the model, as one that accepted the model. (This is the “scientific
method” that Summers reject for macroeconomics. It seems that Summers won in that
dimension, because at present it is basically impossible to publish an article that rejects the
model.)

I often find the J-test useless. Models are never exactly true so the result of the J-test
will usually be that it accepts the model (due to lack of power) if the number of observa-
tions is low, and rejects the model if the number of observations is high.

Simulated GMM
You may sometimes be in the situation where you cannot find an analytic expression for
ft. However, you might be able to simulate ft. It is most easily explained by an example.
Consider, for example, an MA(2) process

yt = ut + b1 ut−1 + b2ut−2 , (∗)

where the error terms are N(0, σ2) distributed. The parameter vector here is θ′ = {b1, b2, σ
2}.

For this model, I would actually use the Kalman-filter to evaluate the likelihood function for
this particular model, but this is just an example, so imagine I couldn’t find the likelihood
function or the conditional likelihood function. Then I might simulate some moments for
the yt process. For example, I might use a random number generator to draw N = 100, 000
observations u1, ..., uN and calculate y3, ..., yN using equation (*). I would set this up as a
subroutine named, e.g., SIM(θ) in GAUSS [meaning that you call the subroutine SIM as
a function of a given set of parameters]. Then, in the same subroutine I could calculate,
say, m1(θ) = ΣN

i=3yi, m2 = ΣN
i=3y

2
i m3 = Σt

i=3y
4
i . Note that we would have to call the

routine for a given parameter vector θ = {b1, b2, σ
2}. Assume now that xt, t = 1, ..., T is

your actual data. Now you would define g′T = {m1 − ΣT
t=1xt,m2 − ΣT

t=1x
2
t , m4 − ΣT

t=1x
4
t }.
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and you would minimize
θ̂ = argminθ g′T WT gT .

This would give you a consistent estimate of θ. Note that this might be slow because for
each step θN in the Newton algorithm, you need to call SIM(θN ) in order to calculate the
moments. As a matter of fact, for this model this would not be a problem since a modern
computer can do this very quickly. In principle, any model that can be simulated (which
more or less is the universe of models can be put into the SIM routine and some moments
returned). In practice, you would have trouble with a large General Equilibrium (GE)
model— GE models typically would need to be simulated which means that you would add
a layer of non-linear simulations for each θN ...but as computers get faster you might be able
to do it for a small GE model if you program cleverly. (Since there would be billions of
calculations they better be streamlined.)

You need to choose N much larger than T—otherwise you need to take the extra vari-
ance that comes from simulating the moments into account when calculating std. errors.

Choice of moments. What matter much more for efficiency than the choice of weighting
matrix is the choice of moments. In the case, as in the Hansen-Singleton model, where
“choice of moments” means “choice of instruments” theory give little guidance. You can
show that as T gets larger you should use more instruments, but in practice you have one
T and you have to use common sense (use instruments that are not to correlated, don’t
use too many, ...). In the case, such as the MA(2) example, where you actually choose
moments, you can more or less guess which moments will be good. For example, the ones
I chose above, were pretty bad. An MA(2) model is characterized by non-zero first and
second autocorrelations and higher order correlations being zero. So good moments would
be the empirical variance, first, second, third, and maybe fourth order autocorrelations,
rather than the higher moments I chose above.
It is possible to be quite systematic about this. Gallant and Tauchen suggested a method
called Efficient Method of Moments (EMM) that can be used if you have a model
with a likelihood function that you cannot write down such as a stochastic volatility model
but you have a model that captures similar features of the data such as a GARCH model,
you can actually estimate the GARCH model even if it is misspecified and then use the
first derivatives of the likelihood function as the moment conditions. More precisely, if
s(θ, x) is the score function (the derivative of the likelihood function) as a function of the
data, you use simulated method of moments to match this to the model, but drawing a
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long series of observations yi and calculate s(θ, y) and then your moment conditions are
gT = s(θ, x)− s(θ, y). For the particular models that I mentioned this turns out to actually
work very well—see the very comprehensive Monte Carlo papers by Andersen and Sorensen
(1996) and Andersen, Chung, and Sorensen (1999). I also have some hand-written notes on
EMM that you can have if you are interested.
Literature: Gallant (1987)
Newey and McFadden: Large Sample Estimation and Hypothesis Testing. In Handbook of
Econometrics IV, eds. Engle and McFadden, North-Holland, 1994.
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