
ECONOMETRICS II, Fall 2024

Bent E. Sørensen

Midterm 1—September 25, 2024.

Each sub-question in the following carries equal weight except if otherwise noted.

1. (40%)

a ) (5%) Write down the formula for the White robust standard error estimator.

b) (10%) Assume you are estimating the model

Yi = aXi + ui ,

by OLS. Here a is a scalar and we assume for simplicity that there is no intercept and that

in the true underlying model (not censured or truncated) the error term has mean 0.

Assume that you only have 2 observations: X ′ = (1, 2), Y ′ = (2, 5).

Find the OLS estimate â and the residuals.

c) (5%) Calculate the White robust standard error.

d) (20%) Now assume that the two observations above form a group and we have a second

group where (for computational simplicity) we also assume X ′ = (1, 2), Y ′ = (2, 5) . So your

data are now X ′ = (1, 2, 1, 2), Y ′ = (2, 5, 2, 5).

Estimate a again [(or you can use the estimate you found in part a))] and calculate the

residuals. Then calculate the Robust standard error if you cluster on the two groups. (The

question is about the standard error estimation.)

2. (20%) Assume a population has a continuous outcome determined by the model

yi = βxi + ui ,

where ui is a standard normal distribution. You can assume there is only one regressor.

However, a researcher only observe yi with probability p. The researcher does observe N
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individuals even only a sub-sample will have yi observed (selected). For the observed sub-

sample (that is, conditional on being selected), the distribution of ui is Normal with variance

one but mean (1 − p)βX. For the non-selected individuals the mean of ui is −pβX. For

simplicity, assume that we have a large sample so that mean X can be considered the same

in the full and in the selected sample.

i) (5%) Starting from the conditional distributions, verify from the that ui has mean 0.

ii) (15%) Write down the full log-likelihood for the probability of being selected and outcome

yi (for observed xi).

3. (10%) Write down the log-likelihood function for a sample i = 1, ..., N where

yi = Xiβ + ui

where ui is N(0, σ2) and the data are censored such that if the true yi < K, we only observe

yi = K.

4. (9%)

a) Write down the latent-variable model used to derive the Probit model and write down

the log-likelihood function for the probit model for a sample of N observations.

5. (21%) Go through the Matlab code below.

a) Explain in detail what model(s) the program estimate(s).

b) What does the variable PPPP do?

c) Near the end of the program there is a line where it says “WHAT GOES HERE.” What

goes there? .

*************************************************

Question %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Econometrics 2
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%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% This code simulates and estimates the parameters of ...something.....

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc

clear

global x T PPPP

% Set up the true parameters and placeholders for the results.

T = 50; % Number of periods.

PPPP = 1; % xxx order.

sigma = 2; % Standard deviation.

beta1 = 0.5; % xxxcoefficient.

if PPPP == 1 % For xxx.

sim = 10; % Number of simulations.

results_mat = zeros(sim,3); % Results matrix.

se_mat = zeros(sim,3); % Standard errors.

t_mat = zeros(sim,3); % t-stats.

elseif PPPP == 2

beta2 = 0.4; % xx coefficient.

sim = 5; % Number of simulations.

results_mat = zeros(sim,4); % Results matrix.

se_mat = zeros(sim,4); % Standard errors.
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t_mat = zeros(sim,4); % t-stats.

end

% Begin Simulation.

for s = 1:sim

% Generate the data using the model.

% xxx

% xxxx

u = normrnd(0,sigma,T,1);

x = zeros(T,1);

if PPPP== 1 % For process.

x(1) = u(1) + beta1*normrnd(0,sigma,1,1);

for j = 2:T

x(j) = u(j) + beta1*u(j-1);

end

init = [1 1 0.1]; % Initial values.

elseif PPPP == 2

c = normrnd(0,sigma,1,1);
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x(1) = u(1) + beta1*c + beta2*normrnd(0,sigma,1,1);

x(2) = u(2) + beta1*u(1) + beta2*c;

for j = 3:T

x(j) = u(j) + beta1*u(j-1) + beta2*u(j-2);

end

init = [1 1 0.1 0.1]; % Initial values.

end

options = optimset(’Display’,’off’); % Turn off the display.

[b_mle,~,~,~,~,hess] = fminunc(’logl_MA’,init,options); % Minimization.

results_mat(s,:) = b_mle’; % Store estimates.

se_mat(s,:) = sqrt(diag(inv(hess)))’; % Store standard errors.

t_mat(s,:) = results_mat(s,:)./se_mat(s,:); % Store t-stats.

end

% Display the results of each simulation.

for k = 1: size(results_mat,1)

fprintf(’Simulation %d \n’,k)

fprintf(’ b SE t \n’)

fprintf(’mu %0.4f %0.4f %0.4f \n’, results_mat(k,1), se_mat(k,1), t_mat(k,1))

fprintf(’sigma %0.4f %0.4f %0.4f \n’, results_mat(k,2), se_mat(k,2), t_mat(k,2))

fprintf(’beta1 %0.4f %0.4f %0.4f \n’, results_mat(k,3), se_mat(k,3), t_mat(k,3))
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if PPPP== 2

fprintf(’beta2 %0.4f %0.4f %0.4f \n’, results_mat(k,4), se_mat(k,4), t_mat(k,4)) .

end

fprintf(’\n’)

end

fprintf(’--------------------------------------------------------------\n’)

fprintf(’\n’)

% Display the empirical means and standard deviations.

fprintf(’Empirical Results \n’)

fprintf(’ Mean Std.Dev \n’)

fprintf(’mu %0.4f %0.4f \n’, mean(results_mat(:,1)), std(results_mat(:,1)))

fprintf(’sigma %0.4f %0.4f \n’, mean(results_mat(:,2)), std(results_mat(:,2)))

fprintf(’beta1 %0.4f %0.4f \n’, mean(results_mat(:,3)), std(results_mat(:,3)))

if MMMM == 2

fprintf(’beta2 %0.4f %0.4f \n’, mean(results_mat(:,4)), std(results_mat(:,4)))

end

fprintf(’\n’)

function [ L ] = logl_name( b0 )

% Loglikelihood for ..something....

global x T PPPP

omega = zeros(T,T); % Placeholder for Variance-Covariance Matrix.

mean = b0(1); % Mean.

stddev = b0(2); % Standard deviation.
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theta1 = b0(3); % xxx coefficient.

mu = ones(T,1)*mean; % Mean Vector.

if PPPP == 1 % For zz process.

omega = omega + eye(T).*(stddev^2).*(1+theta1^2); % Fill in the variances.

omega(2,1) = (stddev^2)*theta1; % Fill in the first order covariances.

omega(T-1,T) = omega(2,1);

for i = 2:T-1

omega(i-1,i) = (stddev^2)*theta1;

omega(i+1,i) = omega(i-1,i);

end

elseif PPPP == 2 % For zzz process.

theta2 = b0(4); % xx coefficient.

omega = omega + eye(T).*(stddev^2).*(1+(theta1^2)+(theta2^2)); % Fill in the variances.

omega(2,1) = (stddev^2).*(theta1 + (theta1*theta2)); % Fill in the first order covariances.

omega(T-1,T) = omega(2,1);

for i = 2:T-1

omega(i-1,i) = (stddev^2).*(theta1 + (theta1*theta2));

omega(i+1,i) = omega(i-1,i);

end

omega(3,1) = (stddev^2)*theta2; % Fill in .
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omega(4,2) = omega(3,1);

omega(T-2,T) = omega(3,1);

omega(T-3,T-1) = omega(3,1);

for i = 3:T-2

WHAT GOES HERE? (Two lines)

end

end

L = -0.5*T*log(2*pi) - 0.5*log(abs(det(omega))) ... % Loglikelihood function.

- 0.5*(x-mu)’*inv(omega)*(x-mu);

L = -L; % Negative of loglikelihood function (for minimization).

end
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