
ECONOMETRICS II, Fall 2019

Bent E. Sørensen

Final Exam—December 2, 2019. Total number of points is 75%.

Each sub-question in the following carries equal weight except when otherwise noted.

1. (15%) Consider the AR(2) model

yt = µ+ a yt−1 + b yt−2 + ut ,

where the error term is white noise with variance σ2
u. Assume the model is stationary.

a) Find (derive) the mean of y.

b) Find the first order autocovariance. (It is a complete answer with the variance in the

solution. You will find the variance in the next question.)

c) Find (derive) the variance.

2. (10%) Assume you have a model

Yt = µ+ AXt + ut ,

where Y ′t = {Y 1
t , Y

2
t } are two variables (like income and consumption) and VarYt = Σ. As-

sume you have data for t = 1, ..., T , and the data are independent for different time periods.

Assume you stack the data so that the full Y vector (and correspondingly for the columns

of X), is Y ′ = {Y 1
1 , ....Y

1
T , Y

2
1 , ....Y

2
T }.

a) Show that the variance-covariance matrix for the residuals takes the forms Σ⊗ IT . (Here,

IT is T -dimensional identity matrix.)

b) Show that if the data are stacked as Y ′ = {Y ′1 , ...., Y ′T}, then the variance-covariance
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matrix is IT ⊗ Σ.

3. (20%) Consider the model

y = µ+ u ,

where u is N(0, σ2).

a) Write down the likelihood function for a sample of N observations. Assume the ob-

servations are independent.

b) Find the gradient vector and the outer product of gradients. (You only need to do this

for one observation. I am asking for GiG
′
i in the notation of the ML-note.)

c) Find the Hessian (the matrix of second derivatives).

d) Show that the expectation of the outer product of gradients is equal to minus the expected

value of the Hessian. (If you prefer, you can give a general proof, as in class, instead.)

4. (30%) At the end of the exam is the GMM code from one of your home works.

a) Explain how to change the code so that only lagged consumption is used as instruments.

b) The code for the weighting matrix is not included, but write down the Newey-West esti-

mator for, say, a bandwidth of 3.

c) Explain how you would use the code to test if beta (the first parameter) takes a value of

0.98. You could use the LR-type test so a correct answer would explain the details of this,

but you may also use a Wald test but again the full answer would explain the details (for

full points you have to explain the parts from the code that would be used, for example, you

can write down the formula for the test and then point out where the needed parts are in

the code).

%{

Xavier Martin G. Bautista
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Fall 2018

Macro 3

HW 2

GMM_Main.m

This replicates Hansen and Singleton (1982). Estimation is done using

GMM. The variance matrix can be estimated using either Newey-West or

Quadratic Spectral kernels.

Note: Convention used is U(C) = (C^(1-gamma))/(1-gamma).

%}

%% 1. Change working directory and load data.

close all

clear

clc

addpath(’D:/Xavier_Laptops/Xavier_Asus/Xavier_Classes/Fall_2018/Macro3/HW2’)

global c lag re rf n T Z

load data

lag = 3; % Number of lags used as instruments. Make sure to change this with Z.

c = data(:,1); % c(t)/c(t-1).

re = data(:,2); % Value-weighted average of stock returns.

rf = data(:,3); % T-bill rate.
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T = size(data,1);

Z = [ones(T-lag,1) c(1:T-3) c(2:T-2) c(3:T-1)... % Instruments: 3 lags of consumption, T-bill rate

re(1:T-3) re(2:T-2) re(3:T-1)... % value-weighted average of stock returns.

rf(1:T-3) rf(2:T-2) rf(3:T-1)];

n = size(Z,2); % Number of instruments including constant.

clear data

%% 2. GMM Stage 1: Identity Weighting Matrix.

b0 = [0.5 0.5]; % Initial guess of beta and gamma, respectively.

W = weight(b0,0); % 0 = Identity matrix, 1 = Newey-West, 2 = Quadratic Spectral.

opt = optimset(’FinDiffType’,’central’,’HessUpdate’,’BFGS’); % Use central difference for derivative and BFGS algorithm.

b1 = fminunc(’gmm_obj’,b0,opt,W); % Weighting matrix is fixed (so fminunc doesn’t optimize over it).

clear W

%% 3. GMM Stage 2: Optimal Weighting Matrix.

% Newey-West.

W = weight(b1,1);

bNW = fminunc(’gmm_obj’,b1,opt,W); % GMM Estimation.

gradNW = Df(bNW); % Gradient.

vmatNW = inv(gradNW’*W*gradNW); % Variance matrix. Note: W = inv(omega).

clear gradNW W Dgp1 Dgp2 Dgm1 Dgm2

4



% Quadratic Spectral.

W = weight(b1,2);

bQS = fminunc(’gmm_obj’,b1,opt,W); % GMM Estimation.

gradQS = Df(bQS); % Gradient.

vmatQS = inv(gradQS’*W*gradQS); % Variance matrix. Note: W = inv(omega).

clear gradQS W Dgp1 Dgp2 Dgm1 Dgm2

%% 4. Print results.

clc

XXX print commands left out

function ZXb = orth(guess)

%{

orth.m

This is the orthogonality condition from Hansen and Singleton (1982)

E(z(t)*((beta*((C(t)/C(t-1))^(-gamma))*r(t)) - 1)) = 0.

%}

global c lag n rf T Z

beta = guess(1);

gamma = guess(2);

C = repmat(c(1+lag:T),1,n);
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R = repmat(rf(1+lag:T),1,n);

ZXb = Z.*((beta.*(C.^(-gamma)).*R)-1);

end

function crit = gmm_obj(guess,W)

%{

gmm_obj.m

This is the quadratic GMM objective function for Hansen and Singleton

(1982).

%}

global lag T

mom = ((sum(orth(guess),1))./(T-lag))’;

crit = mom’*W*mom;

end
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