
ECONOMETRICS II, Fall 2022.

Bent E. Sørensen

Binary Choice (follows Bruce Hansen’s econometrics book).

Consider a variable Y with support {0, 1}. In econometrics, we typically call this class

of models binary choice. Examples of binary dependent variables include: Purchase of

a single item; Market entry; Participation; Approval of an application/patent/loan. The

dependent variable maybe recorded as Yes/No, True/False, or 1/–1, but can always be

written as 1/0. The goal in binary choice analysis is estimation of the conditional or

response probability P [Y = 1|X] given a set of regressors X. We may be interested in

the response probability or some transformation such as its derivative—the marginal ef-

fect. A traditional approach to binary choice modeling (and limited dependent variable

models in general) is parametric with estimation by maximum likelihood. There is also

a substantial literature on semi-parametric estimation. In recent years, applied practice

has tilted towards linear probability models estimated by least squares.

Let (Y,X) be random with Y ∈ (0, 1) and X ∈ Rk. The response probability of Y
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with respect to X is

P (x) = P [Y = 1|X = x] = E[Y |X = x].

The response probability completely describes the conditional distribution. The marginal

effect, which is often the main object of interest, is

∂

∂x
P (x) =

∂

∂x
P [Y = 1|X = x] =

∂

∂x
E[Y |X = x].

Models for the Response Probability

The most common models for the response probability P (x) is the linear model, the Pro-

bit model, and the Logit model.

. Linear Probability Model : P (x) = x′β, where β is a coefficient vector. In this model,

the response probability is a linear function of the regressors (although notice that you

can have, say, a non-linear effect in age by including squared age as a regressor). The

linear probability model has the advantage that it is simple to interpret because in the

regression

Y = X ′β + e ,

the coefficient vector β captures the impact on predicted Y (that is, the probability of

observing Y = 1) of a one unit increase in elements of X; i.e., the marginal effect.
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Linear regression is consistent because

Y = P (X) + e ,

with E[e|X] = 0, so it satisfies the conditions for OLS to be unbiased and BLUE (but

here we are in a situation where we may not want to restrict ourself to linear estimators).

Of course, the error e has the conditional distribution

e =


{1− P (X)}, with probability P (X)

−P (X), with probability 1− P (X) .

(1)

The coefficients β measures the marginal effects (when X does not include nonlinear trans-

formations, if you have a square term in X for example, you take the derivative w.r.t.

X and report that for, say, the mean value of X). A disadvantage of the linear proba-

bility model is that it does not respect the [0, 1] boundary. Fitted and predicted values

from estimated linear probability models frequently violate these boundaries producing

nonsense results in that dimension. Often, a researcher main focus is on the marginal

effects, in particular whether a regressor affects the probabilities, in which case the linear

model is fine. If you need the actual predicted probabilities, it is more problematic. The

main reason that many (including me) uses the linear model is that the non-linear models
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are inconsistent in panels when fixed effects (a dummy for each person, for example) is

included (but we do not demonstrate that in this note).

Index Models : P (x) = G(x′β) where G(u) is a “link function” and β is a coefficient

vector. This framework is also called a single index model where x′β is a linear index

function. In binary choice models, G(u) is a distribution function which respects the

probability bounds 0 ≤ G(u) ≤ 1. In economic applications G(u) is typically the normal

or logistic distribution function, both of which are symmetric about zero so that G(−u) =

1−G(u) (it may be more convenient to realize that this implies that for a random variable e

with distribution function G(e) the random variable −e has the same distribution function

G(e)—the main example here is the normal). We assume throughout this note that this

symmetry condition holds.

Let g(u) denote the density function of G(u). In an index model,the marginal effect

function is

∂

∂x
P (x) = βg(x′β) .

Index models are only slightly more complicated than the linear probability model but

have the advantage of respecting the [0, 1] boundary. The two most common index models

are the probit and logit.
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Probit Model : P (x) = Φ(x′β), where Φ(u) is the standard normal distribution func-

tion. This is a traditional workhorse model for binary choice analysis. It is simple, easy

to use, easy to interpret, and is based on the classical normal distribution.

Logit Model : P (x) = Λ(x′β), where Λ(u) = 1
1+exp(−u)

is the logistic distribution func-

tion. This is an alternative workhorse model for binary choice analysis. The logistic and

normal distribution functions (appropriately scaled) have similar shapes so the probit

and logit models typically produce similar estimates for the response probabilities and

marginal effects. One advantage of the logit model is that the distribution function is

available in closed form which speeds computation.

Linear Series Model : P (x) = xKβK where xK = xK(x) is a vector of transformations

(typically a low-order polynomial) of x and βK is a coefficient vector. A series expansion

has the ability to approximate any continuous function including the response probability

P (x). The advantage of a linear series model is that its linear form allows the application

of linear econometric methods. It is not guaranteed, however, to be boundary-respecting.
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Latent Variable Interpretation

An index model can be interpreted as a latent variable model. Consider

Y ∗ = X ′β + e

e ∼ G(e)

Y = 1{Y ∗ > 0} =


1 if Y ∗ > 0

0 if Y ∗ ≤ 0 .

In this model the observables are (Y,X) (but not Y ∗). The variable Y ∗ is latent, linear in

X and an error e, with the latter drawn from a symmetric distribution G. The observed

binary variable Y equals 1 if the latent variable Y ∗ exceeds zero and equals 0 otherwise.

The event Y = 1 is the same as Y ∗ > 0, which is the same as Xβ + e > 0. This means

that the response probability is

P (x) = P [e > −x′β] = P [−e < x′β] = G(x′β) .

The final equality uses the assumption that G(u) is symmetric about zero. This shows

that the response probability is P (x) = G(x′β), which is an index model with link function

G(u).

This latent variable model corresponds to a choice model, where Y ∗ is an individual’s

relative utility (or profit) of the options Y = 1 and Y = 0, and the individual selects the
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option with the higher utility. We see that this structural choice model is identical to

an index model with link function equalling the distribution of the error. It is a probit

model if the error e is standard normal,and a logit model if e is logistically distributed.

The error e is either standard normal or standard logistic, because the scale of the error

distribution is not identifed. To see this, suppose that e = σu where u has a distribution

G(u) with unit variance. Then the response probability is

P [Y = 1|X = x] = P [σu > −x′β] = P [u > −x′β∗] ,

where β∗ = β/σ. Here β and σ are not separately identified—for example, if you double

β, you could double σ and still have the same fit.

Likelihood

Probit and logit models are typically estimated by maximum likelihood. To construct

the likelihood, we need the distribution of an individual observation. Recall that if Y is

Bernoulli, such that P [Y = 1] = p and P [Y = 0] = 1−p, then Y has the probability mass

function p(y) = py (1− p)(1−y), y = 0, 1.

In the index model, P [Y = 1|X] = G(Xβ), Y is conditionally Bernoulli, so its condi-
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tional probability mass function is

π(Y |X) = G(X ′β)Y (1−G(X ′β)(1−Y ) = G(X ′β)YG(−X ′β)(1−Y ) = G(Z ′β) ,

where

Z =


X if Y = 1

−X if Y = 0 .

.

(Note, that many people would not define this Z variable, but instead have an “if” state-

ment for whether Y is 0 or 1 in the summation below.) Taking logs and summing across

observations, we obtain the log-likelihood function:

ℓn(β) = Σn
i=1 log[G(Z ′

iβ)] .

For the probit and logit models this is

ℓprobitn (β) = Σn
i=1 log[Φ(Z

′
iβ)]

ℓlogitn (β) = Σn
i=1 log[Λ(Z

′
iβ)] .

Define the first and (negative) second derivatives of the log distributionfunction: h(x) =

d
dx

logG(x) and H(x) = − d2

dx2 logG(x). For the logit model, these equal

hlogit(x) = 1− Λ(x)
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H logit(x) = Λ(x)(1− Λ(x)) ,

and for the probit model

hprobit(x) =
ϕ(x)

Φ(x)

Hprobit(x) = λ(x)[x+ λ(x)] ,

where the function λ(x) = ϕ(x)
Φ(x)

is known as the inverse Mills ratio. (Verify these claims

yourself.)
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