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We examine alternative generalized method of moments procedures for estimation of a stochastic
autoregressive volatility model by Monte Carlo methods. We document the existence of a trade-
off between the number of moments, or information, included in estimation and the quality, or
precision, of the objective function used for estimation. Furthermore, an approximation to the
optimal weighting matrix is used to explore the impact of the weighting matrix for estimation,
specification testing, and inference procedures. The results provide guidelines that help achieve
desirable small-sample properties in settings characterized by strong conditional heteroscedasticity

and correlation among the moments.
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In recent years the interest in estimating stochastic
volatility models has been strong. These models are com-
plements as well as alternatives to the autoregressive condi-
tionally heteroscedastic (ARCH) models (Bollerslev 1986;
Engle 1982). The distinction between the two models relies
on whether volatility is observable or not and may formally
be stated in terms of measurability properties of the volatil-
ity process (Andersen 1992). Although ARCH models are
more tractable, at least in the univariate case, there are sev-
eral reasons why some researchers have turned their atten-
tion to a new class of models. First, multivariate ARCH
models induce a proliferation of parameters that must be
handled in an, arguably, ad hoc manner. Second, several the-
oretical models build on the concept of unobservable latent
factors generating asset returns—for example, information-
flow interpretations of the mixture-of-distributions hypoth-
esis (Andersen 1996; Clark 1973; Epps and Epps 1976;
Foster and Viswanathan 1995; Gallant, Hsieh, and Tauchen
1991; Tauchen and Pitts 1983), or low-dimensional factor
structures that govern the joint mean and volatility features
of returns (Diebold and Nerlove 1989; Engle, Ng, and Roth-
schild 1990; Ho, Perraudin, and Sgrensen 1996; King, Sen-
tana, and Wadhwani 1994; Laux and Ng 1993). Third, al-
lowing for time-varying volatility in diffusions, which are
important in modern finance and economics, leads naturally
to stochastic volatility specifications. Fourth, the close as-
sociation between ARCH and diffusion models for high-
frequency data (Nelson 1990, 1992; Nelson and Foster
1991) has generated considerable interest in the properties
of alternative discrete-time specifications for returns and
the interrelations among them.

Discrete-time approximations to diffusion processes have
found frequent use in the option pricing literature in which
lognormal autoregressive specifications for the volatility
process serve as discretized Ornstein—Uhlenbeck processes.
Early applications of the model include those of Taylor
(1986), Johnson and Shanno (1987), Scott (1987), Hull

and White (1987), and Wiggins (1987), and later applica-
tions include those of Melino and Turnbull (1990) and Per-
raudin and Sgrensen (1994). In fact, this particular stochas-
tic volatility model has come to dominate the field to the
extent that it is referred to as the stochastic volatility model
although it hinges on particular functional forms and distri-
butional assumptions. It is interchangeably referred to as the
lognormal stochastic autoregressive volatility model (An-
dersen 1994a), the autoregressive random variance model
(Taylor 1994), or the stochastic variance model (Harvey,
Ruiz, and Shephard 1994). Consequently, most of the ac-
cumulated evidence regarding estimation performance in
stochastic volatility models applies to this specific model.
The lognormal stochastic volatility model has been es-
timated by a variety of means, including simple moment
matching (MM) (Taylor 1986), generalized method of mo-
ments (GMM) (Melino and Turnbull 1990), quasi-maximum
likelihood (QML) (Harvey et al. 1994), various simulated
method of moment (SMM) procedures (Duffie and Sin-
gleton 1989; Gallant and Tauchen in press; Gourieroux,
Monfort, and Renault 1993), Bayesian Markov-chain Monte
Carlo analysis (MCMC) (Jacquier, Polson, and Rossi 1994,
henceforth JPR), and simulation-based maximum likelihood
estimation (SML) (Danielsson 1993, 1994; Danielsson and
Richard 1993). Apart from MM, GMM, and QML, the ap-
proaches are computationally intensive. The Monte Carlo
evidence of JPR, however, suggests that GMM and QML
have poor finite-sample performance, both in terms of bias
and root mean squared error (RMSE) of the estimated pa-
rameters when compared to the likelihood-based MCMC.
Nonetheless, the relatively simple GMM and QML proce-
dures will undoubtedly be used extensively in the foresee-
able future due to the computational demands of the al-
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ternative methods. Moreover, different stochastic volatility
models are surfacing rapidly, and the more computationally
intensive simulation-based strategies (MCMC and SML) ei-
ther have not been designed to perform estimation outside
of the lognormal volatility setting or they remain unproven
in these contexts and may turn out to be infeasible. GMM
and SMM procedures are, however, likely to apply to a wide
set of models (Andersen 1994a).

This article investigates the small-sample properties of
‘GMM estimation of the lognormal stochastic volatility
model. The issue was addressed by JPR and by Ruiz (1994).
Both concluded that the GMM performs relatively poorly—
the former found that GMM weakly dominates QML, but
the latter reached the opposite conclusion. Although one
can demonstrate that the performance of GMM can be im-
proved relative to the results reported in these articles, and
very much so in the latter case (Andersen 1994b; Andersen
and Sgrensen 1996), it is not surprising that conflicting evi-
dence may be obtained given the number of specific choices
that have to be made to implement the procedure. We take
a comprehensive look at the relevant issues in a large-scale
Monte Carlo study. To retain a benchmark, we rely primar-
ily on the parameter and moment design used by JPR, but
we expand on their setup by also exploring larger samples
that are more representative of those used in typical studies
based on high-frequency returns data.

We first address the choice of the number of moments to
include in the estimation procedure. We find that this de-
pends critically on sample size. As the sample expands, one
should exploit additional moment restrictions. In small sam-
ples, however, the inclusion of an excessive number of mo-
ments results in more pronounced biases and larger RMSE.
Thus, the use of additional information can be harmful. We
conjecture that this occurs due to the need to obtain an
estimate of the weighting matrix used in the GMM proce-
dure. When N moments are used, we are implicitly asked
to estimate N(N + 1)/2 separate entries of the weighting
matrix along with the sample moments. Clearly, if this di-
mensionality is large relative to sample size the estimates
of the weighting matrix may be poor which, in turn, dis-
torts the metric by which the GMM procedure operates.
It suggests a fundamental trade-off for GMM: Inclusion of
more information in the form of additional moment restric-
tions improves estimation performance for a given degree
of precision in the estimate of the weighting matrix, but in
small samples this must be balanced against the deteriora-
tion in the estimate of the weighting matrix as the number
of moments expands. In the present model, we are able to
provide a fairly transparent characterization of the trade-
off. Of course, the optimal trade-off will reflect the particu-
lar model under consideration. Nonetheless, the qualitative
conclusions are likely to apply to a general class of mod-

els, characterized by strong conditional heteroscedasticity

and correlation between the sample moments—conditions
that are almost universal in high-frequency financial-returns
series.

Further evidence on the importance of estimation of the
weighting matrix is obtained from Monte Carlo simulations
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of the GMM procedure in which the weighting matrix is
fixed and approximately “true”—that is, estimated sepa-
rately from a very large sample. This removes the main
impact of the estimation error in the weighting matrix and,
in addition, ensures that the sample moments are estimated
independently of the weighting matrix. Our results confirm
the preceding intuition. When the weighting matrix is esti-
mated more precisely and independently of the sample mo-
ments, inclusion of additional moments almost uniformly
improves estimation performance. Hence, the deterioration
of the estimation performance observed in the simulations
is, indeed, partly due to the use of poor weighting matri-
ces. Our observations are in line with the motivation behind
the study by Altonji and Segal (1993). In a very different
setting, they also investigated the bias in GMM procedures
induced by the dependence between the estimated moments
and the weighting matrix.

In practice the “true” weighting matrix is not available
but must be estimated along with the unconditional mo-
ments from the given sample. Although it is standard to rely
on a nonparametric kernel estimate of the spectral density
of the moment vector for this purpose, there is less con-
sensus on the appropriate choice of kernel estimator. The
majority of studies apply the White (1984) or the Bartlett
kernel procedure with a fixed bandwidth that was advo-
cated by Newey and West (1987). The previous discussion
suggests that the choice of weighting-matrix estimator is
potentially important. Andrews (1991) and Andrews and
Monahan (1992) studied the properties of a general class of
heteroscedasticity and autocorrelation consistent (HAC) es-
timators including the White and Bartlett estimators. Three
types of modifications were suggested. First, it is possi-
ble to use an automatic (data-dependent) bandwidth. Sec-
ond, the quadratic spectral (QS) kernel estimator is optimal
in terms of truncated mean squared error within the HAC
class for autocorrelation and heteroscedasticity of unknown
form. Third, note that vector autoregressive prewhitened
HAC estimators display superior finite-sample performance
in several dimensions. We explore the virtues of these pro-
cedures in the present setting. Specifically, we investigate
the consequences of (a) using an automatic rather than a
fixed bandwidth in the Bartlett procedure, (b) combining
the automatic bandwidth with prewhitening, (c) employ-
ing the QS kernel estimator of the weighting matrix rather
than the Bartlett kernel. Finally, we explore the alterna-
tive bandwidth-selection scheme proposed by Newey and
West (1994), both with and without prewhitening. In addi-
tion, some authors have used diagonal weighting matrices
that may be a reasonable choice when estimates of the full
weighting matrix are poorly behaved, so we briefly investi-
gate this methodology as well.

An important issue that we do not pursue at length is
the selection of which—rather than how many—moments
to include in the GMM procedure. As long as we remain
within the confines of the traditional GMM approach that
requires closed-form solutions for the analytical moments,
the choice is both limited and fairly straightforward. In-
tuitively, estimation efficiency is improved by using mo-
ments with low sample variability rather than high sample
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variability. We confirm this intuition through a few experi-
ments that compare our leading choice of moments to the
exclusive use of absolute or squared lagged return moments.
In addition we consider some practical guidelines for the
choice of alternative moments using the large-sample ap-
proximation to the optimal weighting matrix. It is possible,
however, that important efficiency gains can be obtained by
a more ingenious selection of the moments. For example,
Gallant and Tauchen (in press) suggested using an auxil-
iary model as a moment generator based on the scores of a
quasi-likelihood. Analyzing this approach by Monte Carlo
methods requires an additional layer of estimation proce-
dures and simulations and thus falls outside the scope of
the present study. Nonetheless, thorough analysis of this
type of procedures, based on the principles of efficient mo-
ment selection or indirect inference, is a logical next step
and should be high on the agenda for future research in this
area.

In addition, we do not implement the alternative GMM
procedure recently advanced by Hansen, Heaton, and Yaron
(1996). This involves simultaneous optimization of the
GMM criterion function over both the sample and analytical
moments of the model and the weighting matrix. The com-
putational demands of this method were deemed impractical
for inclusion in our simulation design, but the method pro-
vides yet another potential route for improvements of the
small-sample properties of the GMM procedure and should
be investigated in future research.

Our setup provides an ideal setting for an investigation
of the Hansen (1982) x? test of goodness of fit based on the
overidentifying restrictions of the model in the context of
strong conditional heteroscedasticity in the data. The test is
very popular because it may be calculated as a by-product of
the estimation procedure. Although the finite-sample prop-
erties of the x? test statistic have been explored in several
studies, including those of Tauchen (1986), Kocherlakota
(1990), and Ferson and Foerster (1994), there is hardly any
direct evidence on the finite-sample behavior of the test in
a context like this one. We find that the statistic is far from
x? distributed in small samples, but, nonetheless, the 5%-
level test has approximately the correct size when we adhere
to our guidelines regarding the preferred type and number
of moments to include in the estimation procedure. Fur-
thermore, the performance of the test deteriorates sharply
when those prescriptions are ignored. Indeed, a general pat-
tern emerges: When an excessive number of moments is
used we unambiguously find that the test is biased strongly
in favor of accepting the model. Alternatively, if a mini-
mal number of moments is used we invariably find that the
test overrejects. Studies concerned with GMM estimation
in the context of high-frequency return series often include
many moments. These studies may suffer from very sig-
nificant size distortions, and standard hypothesis tests may
lack power. On the other hand, macroeconomic applications
often rely on the just-identified case. To the extent that our
analysis carries over to this environment, we expect poor
small-sample behavior of the parameter estimates and a ten-
dency for overrejection by the standard tests. This appears
consistent with the findings of recent studies in this area—
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for example, those of Christiano and den Haan (1996) and
Burnside and Eichenbaum (1994). Thus, a large portion of
the literature conducts asymptotically motivated inference
and specification testing that is tenuous in light of our find-
ings.

The remainder of the article is organized as follows. Sec-
tion 1 introduces the lognormal stochastic volatility model,
discusses the specific choice of parameters we consider,
and outlines the GMM estimation procedure. Section 2 de-
scribes our general Monte Carlo setup with emphasis on
our handling of the simulations that are incompatible with
converging estimates within the parameter space. Section 3
reports on the estimation performance of the GMM proce-
dure in terms of bias and RMSE for each of our simula-
tion designs, whereas Section 4 summarizes the evidence on
the standard specification test based on overidentifying re-
strictions. Section 5 considers some issues of inference by
studying the small-sample distribution of the studentized
parameter estimates, and, finally, Section 6 provides con-
cluding remarks and suggestions for future research.

1. THE STOCHASTIC VOLATILITY MODEL
AND THE GMM PROCEDURE

We investigate the following simple version of the log-
normal stochastic volatility model:

Ys = 01y

Ino? = w+Blnol | + oyus,

where (Z;, u;) is iid N (0, I,); that is, the error terms are mu-
tually independent standard normals. The parameter vector
is 0 = (w,8,0,). For 0 < 8 < 1 and o, > 0, the return
innovation series, y, is strictly stationary and ergodic, and
unconditional moments of any order exist. Throughout, we
work with parameter values that satisfy these inequalities.

In the model, returns display zero serial correlation but
dependency in the higher-order moments is induced through
the stochastic volatility term, o, which follows a first-order
autoregressive [AR(1)] model in logarithms. The volatility
persistence parameter, 3, is estimated to be less than, but
quite close to, unity in most empirical studies. Finally, the
assumption of lognormality of the volatility process is a
convenient parameterization that allows for closed-form so-
lutions for the moments and is consistent with the evidence
of excess kurtosis or “fat tails” in the unconditional return
distribution.

The specification ignores the possibility of a nonzero, po-
tentially time-varying mean return as proposed by, for ex-
ample, Engle, Lilien, and Robins (1987), and it rules out cor-
relation between the two error terms that would allow for
an asymmetric “leverage effect” (e.g., Nelson 1991). This
is done to retain the JPR benchmark and to keep the com-
putational demands manageable. In addition, the simplified
model remains a good first approximation for a variety of
high-frequency financial-return series.

GMM estimation exploits the convergence of selected
sample moments to their unconditionally expected values.
We denote the vector of sample realizations of the mo-
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ments at time ¢ by m;(0) = (mu:(0),...,mqg(0)), where
the number of selected moments, @), exceeds the dimension
of f—that is, the number of parameters to be estimated.
The true parameter vector is denoted 6, and the sam-
ple moments are Mr(0) = (Mir(0),...,Mgr(6)), where

Zt—j+1 mzt(e)/( - .7) for i = 1,. an and
j 1s the maximum lag between the variables deﬁmng the
sample moments. Finally, the corresponding vector of ana-
lytical moments is denoted A(6). The GMM estimator, 07,
minimizes the distance between A(f) and Mr(6) over the
parameter space © in the following quadratic form: br =
arg mingee (Mr(60) — A(0))' A7 (Mr(8) — A(6)), where the
specific matrix is determined by the choice of the positive
definite and possibly random weighting matrix, Ar. Under
suitable regularity conditions, fr is consistent and asymp-
totically normal (Hansen 1982): T'/2(6r — ) ~ N(0, ).
The optimal choice of weighting matrix, A~!, in the sense
of minimizing the asymptotic covariance matrix, €2, is given
by the inverse of the covariance matrix of the appropriately
standardized moment conditions:

T

t,r=1

— A(fo))(m+ — A(60))'/T | -

This matrix may be estimated by a kernel estimator for
the spectral density of the vector of sample moments at
frequency 0. The use of an appropriate weighting matrix
is important. The return sample moments are likely to be
heavily correlated and display strong serial dependence. If
these features are ignored, say by using the identity ma-
trix, there is likely to be a serious loss of efficiency. Indeed,
when we attempt to estimate the present system with an
identity weighting matrix, it becomes extremely ill behaved,
and convergence is hardly ever obtained. Some preliminary
scaling of the moments through the weighting matrix (e.g.,
by simple sample moment estimates) is simply a require-
ment for meaningful inference by GMM in this model.

Thus, to implement the GMM procedure, we face two
basic choices, the selection of sample moments, m,(6), to
use in estimation and the selection of the estimator of the
weighting matrix, f\;l, where A7 is an estimator of A based
on T observations.

The main guide to moment selection is the erratic finite-
sample behavior of higher-order moments, caused by the
presence of fat tails in the return series. Asymptotic normal-
ity of 7 requires finite variances of the moment conditions
and, for practical purposes, good estimates of these quan-
tities in finite samples. This suggests a focus on the lower-
order moments, which is consistent with current practice as
well as the approach taken by JPR. Hence, for simplicity,
we elect to rely on (subsets of) the 24 moments used by the
latter. Letting u = w/(1— ) and 02 = 02/(1— 3?), the ana-
lytic expresswns are as follows: Elyt| = (2/7r)1/2E(at)
E(yf) = E(o}), Ely?| = 2/2/nE(o?), = 3E(d}),
Elyeye—;) = (2/w) (o00e—)(j = 1,. ) o E(y?y2 ;)
= E(of0?_;)(j = 1,...,10), where, for any positive integer
j and positive constants r, s, E(o}) = exp(ru/2 + 7202 /8)

and E(o7o;_;) = E(07)E(0f)exp(rspio?/4). The finite-
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sample properties of the GMM estimator for a variety of
choices of the weighting matrix are explored in the follow-
ing sections. Here, we only provide a few general remarks.
The class of kernel estimators of the spectral density matrix
is of the general form

T-1
> k@)r(),
j=—T+1
where k(j) are weights that may become O for |j| > Lr,
a lag truncation parameter that grows toward infinity at a
slower rate than 7' and I'r(j) is a covariance matrix es-

timator at lag j—that is, for 6, a consistent estimator of
6,

T

Pr()= 7 O (mald) -

t=j+1

A(6))(me—;(6) ~ A@))'-

The most obvious difference between kernel estimators is
the shape of the weighting scheme k(5), but the length (or
bandwidth) of the weighting scheme determined by the pa-
rameter L7, as well as the possibility of prewhitening, is
also an important issue. Finally, it is possible that proce-
dures based on weighting matrices outside of the class of
kernel estimators possess attractive finite-sample proper-
ties. All of these questions are addressed later.

We conclude this section with an account of the param-
eter values that generate our return samples in the Monte
Carlo simulations. We follow JPR and concentrate on an
expected value of o2 of .0009, implying an annual standard
deviation in weekly return data of around 22% and a co-
efficient of variation of o2 of unity. Then the choice of 3
determines the remaining parameters, w and o,. They fo-
cus on 8 = .90 but report results for 5 = .95 and 8 = .98
as well. Accordingly, we use 8 = .90 as our leading case,
but we do also experiment with higher values for the per-
sistence parameters due to the plethora of studies reporting
very high estimates of persistence in the volatility process.
The result is the following three parameter settings:

(w,B,04) = (—.736,.90,.363)
— (—.368,.95,.260)
— (—.147,.98,.166).

2. THE MONTE CARLO SETUP

The simulations were performed using GAUSS version
3.1 on RISC/6000 workstations and on 486 PC’s. We used
the OPTMUM procedure for optimization, predominantly
relying on the BFGS algorithm but also sometimes on the
NEWTON and other algorithms. We found no discrepan-
cies when we repeated identical jobs with different algo-
rithms or on different platforms. Many of the Monte Carlo
experiments were performed using numerical derivatives,
but some jobs were later rerun using analytical derivatives.
This made absolutely no difference to the results.

We display results for the just-identified model (three mo-
ments) and for the number of moments being M = 5,9, 14,
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and 24. Our leading choice of moments consists of the se-
lections denoted “Baseline set” in the Appendix. We rely on
this set in the vast majority of the study. We consider sample
sizes of T = 500 (following JPR), T' = 1,000, 2,000, 4,000
and 10,000. A sample of 1,000-4,000 is not uncommon in
studies using daily or weekly data, and the T' = 10,000 sim-
ulation is relevant given the increasing availability of trans-
actions data. We perform 1,000 Monte Carlo simulations
for each (M,T) combination. For the design T = 10,000
and M = 24 this turns out to be computationally very de-
manding (several days of central processing unit time on
the RISC/6000, model 550).

In each GMM estimation we performed three sets of
iterations. In the first step we used a simple estimate of
the weighting matrix, derived directly from the sample mo-
ments, but in the second and third steps we used the kernel-
weighting matrix under examination. We never detected any
noticeable difference between the second- and third-step es-

" timations, and it is highly unlikely that a higher number of
iterations over the weighting matrix would have made a
noticeable difference.

For the lower sample sizes our estimation algorithm was
frequently unable to locate a minimum for the criterion
function within the parameter space. Inspecting the itera-
tions of the algorithm, we invariably noted a similar pattern
in these situations. During the iterations the estimated value
for the autoregressive parameter for volatility, 8, converged
to 1, and as B became approximately 1, the iterations would
crash as the weighting matrix became singular or the cri-
terion function diverged to infinity. To interpret our results
for the lower sample sizes, it is critical to identify the source
of these nonconvergence problems. The preceding observa-
tions and our analysis presented in Section 3 suggest that
the main issue is the lack of an interior optimum for the
objective function over the open parameter space (G < 1)
rather than a failure of the optimization routines to detect
the optimum.

We dealt with the crashes in the following fashion: If
the weighting matrix was singular, we trapped the error. If
it happened during the third and final estimation step, this
simulation was discarded, but if it happened during one of
the two preliminary steps, we went on to the next estima-
tion step with 3 adjusted to min{g, Bmax}, Where the upper
bound, Bmayx, equals .999999. If 3 went above Bpax during
the iterations, we penalized the criterion function to force
the estimate below SBnax. In almost all of these cases the
algorithm was unable to obtain convergence. We allowed
for a maximum of 50 iterations in the first round, 200 in
the second round, and 500 in the third round. An estimation
was discarded if it reached the maximum number of itera-
tions in the third round. We are convinced that these max-
imum numbers of iterations were sufficiently large, so we
did not eliminate any (or negligibly few) estimation exper-
iments that eventually would have resulted in convergence.
We continued the simulations until we obtained 1,000 sets
of third-round iterations that terminated with convergence.

It is not unproblematic to discard simulations that do not
result in convergence because we systematically eliminate
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samples that appear compatible with high values of 3, and
hence a significant downward bias in our mean 3 estimate
may result when many simulations are discarded. Similar
biases will materialize for the remaining mean parameter
estimates because they are correlated with the estimates of
3. The impact on the RMSE is not predictable, however. If
the discarded 3 estimates were replaced by an estimate near
unity (effectively the strategy chosen by JPR), say .99999,
then the RMSE of 3 is enhanced or reduced depending on
the simulation design. Rather than rely on corrective pro-
cedures of this nature, we conclude that GMM is poorly
equipped to deal with inference problems in cases that cor-
respond to simulation designs for which we find many non-
converging samples.

3. RESULTS

This section reports on our findings for each of the sim-
ulation designs.

3.1 Fixed-Bandwidth Bartlett Kernel

Our first set of results relies on weighting matrices es-
timated by the Bartlett kernel using a fixed lag length of
Ly = 10, and M = 3,5,9,14, and 24. The weighting
scheme takes the form k(j) = 1 — j/Lr and k(j) = 0 for
j > Lr. This is the kernel estimator advocated by Newey
and West (1987), and it is widely used in the literature. The
choices of the lag length and, in particular, the number of
moments included in the procedure are probably slightly
on the low side relative to standard practice, but they are
not unreasonable in light of the findings for the automatic
bandwidth reported on later. Consequently, it serves as a
natural benchmark for the subsequent experiments. More-
over, it generates some interesting qualitative conclusions
that hold up across all the designs.

Before turning to the interpretation of the tables, we note
that the use of 1,000 replications for each simulation de-
sign results in small Monte Carlo errors for the reported
statistics. Moreover, a direct and simple upper bound on
the Monte Carlo standard error (exact if point estimates
are unbiased) is available as N~'/2 RMSE. This bound is
tight for samples in excess of 500; for example, consider
the M = 14,T = 1,000 entry in Table 1. The upper bound
on the standard error is 1,000~/ (.657, .088, .143) = (.021,
.003, .005), which is small and indistinguishable from the
direct estimates of the standard error.

Our first results are given in Table 1. Consider the first
rows based on sample size T = 500. Some interesting con-
clusions emerge immediately. The first and somewhat dis-
turbing finding is that approximately a third of the esti-
mations fail to converge. We explicitly assess whether this
appears reasonable in a more controlled setting in the fol-
lowing section. A second problem is that both the RMSE
and the biases are substantial. In particular, the RMSE of
the parameter w is about as large as its mean estimate. A
third, and intriguing, observation is that the preferred choice
of the number of moments for this sample size is M = 9.
Although asymptotic theory may suggest that it is optimal
to include as many moments as possible in the estimation
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Table 1. Simulated Mean and Root Mean Squared Error: Bartlett Kernel, Fixed Bandwidth (lag length = 10), (w, 8, 0u) = (—.736, .900, .363)
# moments 3 5 9 14 24

T = 500
@ —1.951 (1.854) —1.636 (1.763) —1.063 (1.063) —1.076 (1.400) —1.176 (1.129)
B .736 (.250) .786 (.209) .858 (.137) .861 (.148) .844 (.149)
Sy .503 (.237) 413 (.197) .307 (.167) .294 (.214) .286 (.168)
No convergence 519 528 398 402 434

T = 1,000 :
@ —1.475 (1.259) —1.135 (.913) —.801 (.571) —.829 (.657) —.946 (.732)
Fe] .800 (.170) .847 (.123) .892 (.077) .888 (.088) .873 (.097)
Sy .458 (.201) .372 (.142) .297 (.135) .287 (.143) .287 (.137)
No convergence 422 298 129 88 72

T = 2,000
@ —1.180 (.889) —.867 (.564) —.730 (.382) —.747 (.388) —.839 (.429)
3 .840 (.120) .883 (.075) .901 (.052) .899 (.053) .887 (.058)
Gy .422 (.163) .343 (.126) .305 (.108) .302 (.108) .309 (.101)
No convergence 301 135 20 11 3

T = 4,000
@ —.984 (.632) —.791 (.397) —.740 (.255) —.745 (.227) —.834 (.288)
3 .867 (.086) .893 (.054) .900 (.035) .899 (.031) .887 (.038)
Gy .392 (.135) .346 (.100) .331 (.072) .325 (.068) .333 (.068)
No convergence 144 38 3 0 0

T = 10,000
@ —.796 (.405) —.763 (.268) —.744 (.157) —.740 (.139) —.795 (.161)
B .892 (.055) .896 (.036) .899 (.021) .900 (.019) .892 (.022)
Sy .360 (.103) .354 (.068) .347 (.043) .344 (.042) .348 (.039)
No convergence 65 0 0 0 0

NOTE: The reported statistics are based on 1,000 simulated samples of sample size equal to the indicated T. For each cell, the first number shows the mean and the second the root mean

squared error (in parentheses).

procedure to maximize the information extracted from the
sample, this is clearly not correct for this sample size. A
fourth noteworthy point is that the exactly identified model
(M = 3) fares extremely poorly. Estimation for this case
consists of solving three equations in three unknowns. A
“nonconvergence” is reported when the solution falls out-
side of the parameter space; that is, 3 > 1. For comparison
with the other entries in the table the results provided for
M = 3 exclude the parameter estimates associated with
such nonconvergence. One might conjecture that the just-
identified approach is attractive if problems in estimating
the weighting matrix are the source of the poor performance
of the GMM procedure. Our findings, however, effectively
eliminate this procedure from the range of desirable op-
tions.

Fortunately, the quality of the inference improves rapidly
as the sample size increases. For estimates of w and §, the
RMSE shrinks faster than is to be expected from standard
root-T" asymptotics, and the RMSE (at least for T' = 1,000
to 10,000) for o, declines roughly in line with root T This
reflects the fact that the biases disappear more quickly for
the first two parameters. It further indicates that the RMSE
for the smaller samples are driven by outliers that tend
to disappear at a rapid rate as the sample size increases.
Harvey and Shephard (1993) reported similar dramatic re-
ductions in RMSE with increasing sample size when they
estimated the model by QML. The extreme number of
crashes reported for the smaller samples further reinforces
this conclusion. In addition, for the larger samples the pa-

rameter bias is all but eliminated except for &, which re-
mains downward biased.

We also find that the results based on a higher number
of moments tend to improve relative to the M = 9 case as
the sample size grows. In fact, for T = 4,000 the RMSE
for the choice of M = 14 uniformly dominates the M = 9
case, but M = 24 generally underperforms relative to both.
Moreover, it is evident that for the design 7' = 2,000 and
M = 14 the problems with lack of convergence are no
longer of much concern. Interestingly, in the case of a very
large sample, T' = 10,000, it often remains preferable to use
14 rather than 24 moments. Nevertheless, even for samples
of this size, the exactly identified model still crashes fairly
often, and its performance in terms of RMSE is clearly
inferior to all other choices of M. It is safe to conclude
that our findings soundly refute the usefulness of the just-
identified approach in this setting.

Our results are roughly in agreement with the corre-
sponding results of JPR, which are based on 500 simula-
tions with T = 500 and T" = 2,000. They deal quite differ-
ently with the problems of nonconvergence because they
“force” the estimate of 5 at .99 rather than discarding the
results. For T = 500, our results based on 24 moments,
but excluding the discarded simulations, are slightly better
in terms of RMSE than those reported by JPR. For the au-
toregressive volatility parameter 3, this is clearly not due to
the elimination of nonconverging estimates. For j, letting
the estimate be less than but approximately equal to unity
when nonconvergence occurs actually reduces the overall
RMSE (1 — .9 =1 is less than the reported RMSE) and
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Table 2. Simulated Mean and Root Mean Squared Error:
Bartlett Kernel, Fixed Bandwidth (1.2 T'%), (w,B,06u)
= (—.736, .900, .363)

# moments 9 14 24

T = 1,000
w —.831 (.603) —.820 (.760) —.995 (.769)
B .888 (.081) .891 (.081) .867 (.102)
Gy .300 (.131) .283 (.149) 294 (.134)
No convergence 105 51 48
Fixed lag 12.00 12.00 12.00

T = 2,000
@ —.787 (.360) —.823 (.366) —.908 (.439)
B .894 (.049) .889 (.049) .878 (.058)
Gy .321 (.093) .320 (.089) .317 (.090)
No convergence 13 5 0
Fixed lag 15.12 15.12 15.12

T = 4,000
@ —.804 (.243) —.800 (.222) —.904 (.295)
B .891 (.033) .892 (.030) .878 (.039)
bu .343 (.060) .335 (.058) .345 (.055)
No convergence 0 0 0
Fixed lag 19.05 19.05 19.05

T = 10,000
@ —.769 (.142) —.790 (.129) —.846 (.176)
B .896 (.019) .893 (.017) .886 (.023)
Gy .353 (.036) .352 (.031) .355 (.032)
No convergence 0 0 0
Fixed lag 25.85 25.85 25.85

NOTE: The reported statistics are based on 1,000 simulated samples of sample size equal to
the indicated T. For each cell, the first number shows the mean and the second the root mean
squared error (in parentheses).
almost eliminates the bias in the mean estimate. Not sur-
prisingly, similar but even stronger conclusions follow from
our M = 9 case. For T = 2,000, our M = 24 case pro-
duces almost identical results to theirs, both with respect to
the mean estimates and to the RMSE. This is particularly
encouraging because the number of nonconverging simula-
tions is negligible for this design (less than half a percent),
and it confirms basic compatibility between the two studies.

An immediate question concerns the robustness of the
findings in Table 1. Thus, we next investigate an alterna-
tive set of GMM estimates based on a different, and prob-
ably more reasonable, interpretation of the concept of a
fixed-bandwidth Bartlett kernel. Andrews (1991) pointed
out that Ar converges to A at the fastest possible rate
when the bandwidth grows with T%/3, This suggests let-
ting Lt = 4T*/3 for a given v. Hence, the bandwidth is
fixed for a given sample, but we allow it to grow with the
size of the sample. We choose v = 1.2 as our leading case,
implying a lag length of 12, 15, 19, and 25 for sample sizes
T = 1,000, 2,000, 4,000, and 10,000, but we also investigate
shorter and longer lags by letting v = .6,.9,2,5, and 10.
The lag lengths for v = .6 and .9 correspond roughly to
the average lag length picked by the automatic bandwidth
procedure for the Bartlett kernel with M = 14 (Table 5,
Sec. 3.5), and straddle Ly = 10 (Table 1), but the longer
lag length picked by the other choices of +y are in line with
those used later in the article. Consequently, comparisons
across tables remain meaningful.

Table 2 collects the results from our leading case among
the alternative fixed-bandwidth GMM estimates. First, we
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notice that the relative performance across the designs in
Table 2 largely mirrors that of Table 1. Second, we find
that the choice of wider bandwidths for the larger samples
generally is beneficial. For example, for the M = 14 design,
which tends to perform well, the RMSE’s are strictly lower
than before for all sample sizes above T' = 1,000—that is,
when the impact of the nonconverging samples is negligible.
The identical observation holds true for M = 9, but the
evidence for the M = 24 design is mixed.

Figures 1 and 2 provide evidence for the performance
across a wider set of bandwidths. For brevity, only results
for the M = 14 design are included, and we only consider a
small (7' = 1,000), large (T' = 4,000), and very large sample
(T = 10,000). Figure 1 displays the RMSE of 3 and Figure
2 the RMSE of ¢, as functions of the bandwidth parameter
~. The RMSE for w is not shown, but it displayed the same
pattern as the RMSE for 3. According to the asymptotic
theory for estimation of the weighting matrix, a fixed value
of ~ is optimal, but this is not borne out by the RMSE of
the estimated parameters. For the parameter (3, it is evi-
dent that a small bandwidth is optimal for the small sample
(although the results for this sample size should be inter-
preted cautiously due to the elimination of nonconverging
samples). For T' = 4,000, a clear U shape emerges, imply-
ing that an intermediate choice of bandwidth is preferable.
This pattern is also discernible for T' = 10,000, but here the
penalty for choosing a very large bandwidth has declined
sharply as the right leg of the U shape has flattened. For
o+, the evidence is somewhat different, with a longer band-
width being optimal in small samples, although the U shape
for the larger samples is quite similar to the pattern found
for 5.

Although the gains obtained from optimizing over the
bandwidths thus are nontrivial, the gains realized by in-
cluding the appropriate number of moments in the estima-
tion procedure appear more substantial. Table 2 reveals that
M = 9 seems to dominate M = 14 and M = 24 for small
samples (subject to the usual caveat), but, as in Table 1,
M = 14 dominates M = 9 for T larger than 2,000, and in
most cases M = 14 also dominates M = 24, except that the
latter occasionally provides the best available estimate of o,
for the larger samples. This may imply that a choice of M
between 14 and 24 might dominate both in some cases.

In summary, we find that the quality of inference is quite
sensitive to the number of moments included in the estima-
tion procedure relative to sample size. In addition, there is
some evidence that a fairly large number of lags should be
incorporated in the kernel estimators for the larger samples.

We conjecture that the eventual deterioration in the per-
formance of GMM, as more moments are incorporated in
the procedure (for a given sample size), is linked to prob-
lems with the estimated weighting matrix used in the ob-
jective function. The sample moments are quite highly cor-
related, which may result in a badly conditioned weighting
matrix. In addition, because this matrix includes, for ex-
ample, 25 x 24/2 = 300 elements for M = 24, the many
implicitly estimated parameters may in part be responsible
for the rather disappointing results.
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Figure 1. Root Mean Squared Error (RMSE) for GMM Estimates of 3. The results are based on 1,000 converging estimates for each combination
of sample size and (fixed) bandwidth. The GMM procedure is implemented using an estimated weighting matrix determined by the Bartlett kernel
with a lag length given by the bandwidth parameter, v, as Lt =« - T3, The figures display findings for sample sizes T = 1,000; 4,000; 10,000. All

estimates are based on M = 14 moments.

3.2 GMM Estimation Using the “True” Weighting Matrix

Previously, we conjecture that there is a trade-off between
the amount of information used in estimation (the number
of sample moments included) and the quality of the objec-
tive function (the precision of the estimate of the appropri-
ate weighting matrix). This trade-off changes with sample
size because the weighting matrix—for a given number of
moments—is more precisely estimated as the sample grows.
The empirical results presented in the preceding section
provide indirect support for this interpretation, but a more
direct exploration of this hypothesis is available in the cur-
rent setting. Rather than estimate both the sample moments
and the weighting matrix from the given simulated sam-
ple, we estimate the latter from a separate and very large
simulated sample and exploit this as an approximation to
the “true” optimal weighting matrix in the subsequent sim-
ulations. In this manner the weighting matrix is estimated

with higher precision and the estimate is independent of the
sample moments. If the estimate of the weighting matrix is
critical for the performance of the GMM procedure, this
should lead to an appreciable improvement for the larger
samples.

Table 3 reports on the results from this simulation exper-
iment. We repeat the estimations from Table 1 (except for
the exactly identified model, of course) using a fixed, ex-
ogenous approximation to the true weighting matrix. This
weighting matrix was constructed from simulations for each
choice of M, using 50,000 observations and a lag length of
50. This choice corresponds to 1.36 * T'/3, which belongs
to the suitable range according to our earlier findings.

The findings are revealing. First, notice that the simula-
tions now are much less prone to crash. Second, and even
more to the point, there is an almost uniform improvement
in the RMSE as more moments are included. This supports
our suspicion that a poorly estimated weighting matrix is
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Figure 2. Root Mean Squared Error (RMSE) for GMM Estimates of o,. The results are based on 1,000 converging estimates for each combination
of sample size and (fixed) bandwidth. The GMM procedure is implemented using an estimated weighting matrix determined by the Bartlett kernel
with a lag length given by the bandwidth parameter, vy, as Lt = v - T'3. The figures display findings for sample sizes T = 1,000; 4,000; 10,000.

All estimates are based on M = 14 moments.

the root of many of the problems encountered in Tables
1 and 2. It is, however, clear that, even with this approxi-
mation to the true weighting matrix, the inference is poor
for T = 500, in which the RMSE remains very large. It is
also noteworthy that around 10,000 observations are needed
before most of the bias in 4, is gone.

The procedure underlying the results reported in Table
3 is, of course, not feasible in practice but serves to high-
light the potential gains that may be obtained by including
the various moments in the estimation procedure. We pur-
sue this issue further in Subsection 3.3. Moreover, the re-
sults point to a critical influence from the estimation of the
weighting matrix. Thus, we shall examine several different
strategies for choosing the weighting matrix.

The results allow an informal comparison to the Bayesian
estimator proposed by JPR. The RMSE from the simula-
tions using the “true” weighting matrix provides an approx-

imate lower bound for the RMSE that can be obtained us-
ing the same set of moments and an estimated weighting
matrix, as we substantiate later in the article. It is interest-
ing to observe that—for the present parameter constellation
and moments—GMM cannot be expected to match the ef-
ficiency of the Bayes estimator as reported in their table 5.
On the other hand, it is feasible to improve the efficiency of
their GMM estimator. Specifically, for the three parameters
via the Bayes estimator they reported the RMSE (.15, .02,
.034) and for the GMM estimator (.42, .06, .10). The corre-
sponding RMSE entries (for T' = 2,000, M = 24) in Table 3
are (.275, .037, .070). Whether the relative efficiency gains
associated with the use of the Bayesian estimator are similar
for alternative designs, including more persistent volatility
processes, can be addressed by similar means. The answer
is not obvious because higher volatility persistence appears
to induce an improvement in the efficiency of the GMM
estimator relative to the Bayes estimator.
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Table 3. Simulated Mean and Root Mean Squared Error: Exogenous Approximation
to the “True” Weighting Matrix: (w, 3, oy) = (—.736, .900, .363)

# moments 5 9 14 24

T = 500 i
@ —1.372 (1.265) —1.118 (1.252) —1.237 (1.446) —1.132 (1.146)
B .815 (.166) .852 (.150) .839 (.160) .850 (.136)
Gy 427 (.181) .378 (.148) .393 (.140) .388 (.134)
No convergence 356 77 15 23

T = 1,000
w —1.040 (.803) —.898 (.620) —.930 (.658) —.920 (.499)
B .859 (.108) .879 (.077) .874 (.080) .875 (.067)
Gy .392 (.160) .373 (.109) .381 (.091) .381 (.092)
No convergence 200 12 2 3

T = 2,000
@ —.874 (.548) —.800 (.330) —.824 (.399) —.835 (.275)
B .882 (.074) .891 (.045) .889 (.041) .887 (.037)
Gu 373 (.1132) .369 (.084) .374 (.064) .376 (.070)
No convergence 93 2 1 0

T = 4,000
@ —.768 (.404) —.759 (.217) —.786 (.175) —.792 (.186)
8 .896 (.055) .897 (.029) .893 (.024) .892 (.025)
by .356 (.107) .366 (.057) .373 (.050) .373 (.049)
No convergence 27 1 0 1

T = 10,000
@ —.742 (.270) —.757 (.143) —.761 (117) —.772 (.125)
B .899 (.037) .897 (.019) .897 (.016) .895 (.017)
Gu .359 (.073) .367 (.040) .368 (.031) .371 (.036)
No convergence 2 0 0 0

NOTE: The reported statistics are based on 1,000 simulated samples of sample size equal to the indicated T. For each cell, the first
number shows the mean and the second the root mean squared error (in parentheses).

3.3 Asymptotic Efficiency for Alternative
Moment Selections

We do not address the general question regarding the
optimal choice of moments that has been studied recently
by, for example, Gallant and Tauchen (in press). Instead,
we explore the implications of choosing different sets of
moments among the ones that lead to closed-form, analytic
solutions for the moments. This allows us to stay within the
classical GMM framework.

The approximation to the true weighting matrix, A, al-
lows us to find the asymptotic standard deviations of the
parameters estimates for alternative selections of moment
conditions. These calculations may be useful for a prelimi-
nary selection of moments in the spirit of Ruiz (1994), who
also relied on asymptotic standard deviations as a bench-
mark for finite-sample performance.

From Hansen (1982) we have the following expression
for the asymptotic variance—covariance matrix, 2, of the
parameter estimates, 61 :

DA(8)

Q= a(GO)’Aa(GO), 90

where a(6y) = .
6=6q

Because we have an estimate of A and we, in addition, have
analytic expressions for A(f) and thus a(6), we may esti-
mate the true Q by simply plugging in our estimate of A
and the analytic derivatives evaluated at the true param-
eter vector. Hence, we obtain a tangible approximation to
the asymptotic variance—covariance matrix of the parameter

estimates. The implied asymptotic standard errors for the
individual parameters should provide a natural lower bound
for the RMSE that we can achieve in our finite-sample ex-
periments. The only caveat associated with this interpreta-
tion is that the weighting matrix estimated from even this
very large sample continues to display a fairly large degree
of variability. We investigate this problem further later in
the article. The standard errors obtained from a sample of
50,000 should, nonetheless, serve as a gauge for the effi-
ciency that we can hope to attain in our shorter samples in
the simulation designs, and this seems to be confirmed by
our subsequent results.

Table 4 reports the asymptotic standard errors normal-
ized to correspond to a sample size of 2,000 for alternative
selections of moments. We expect the use of more moments
to improve inference as additional information is exploited
and most of the impact of estimation error in the weight-
ing matrix has been eliminated. This expectation is basi-
cally confirmed, but the pattern is nonetheless striking. The
decline in the standard errors as we move from M = 5
to M = 9 is remarkable. Clearly, the extra four moments
contribute significant additional information regarding the
parameters. The improvement from M =9 to M = 14 is
also substantial, albeit less dramatic. But the move from
M = 14 to M = 24 is barely noticeable. The inclusion
of the final 10 moments apparently adds very little infor-
mation. This suggests that the use of 24 moments may be
excessive in any of our simulation designs. The small gain
in information is likely not sufficient to compensate for the
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loss in efficiency associated with deteriorating estimates of
the weighting matrix.

We further study the impact of introducing a new set of
lagged moments in the estimation procedure. We chose the
following (third order) moments:

Elyyi_ ;| = (2/m) /P E(oo? j),  j=1,...,10.
Including some of these among the 14 moments (and ex-
cluding some lagged absolute or squared moments) always
results in larger RMSE. This occurs irrespective of whether
all lagged moments or only a part of the lagged moments
are of this type. Hence, we conjecture that inclusion of such
lagged moments is unlikely to improve estimation perfor-
mance. We experimented with the composition between the
lagged squared and absolute moments in the designs with
9 and 14 moments. The changes are in all instances minor,
and none provide significant improvements over our lead-
ing choice of moments. We conclude that the difference
in estimation performance across designs with a different
number of included moments is due largely to the increase
in the number of moments rather than the specific identity
of those moments.

To gauge the empirical relevance of the results, we ex-
amined by Monte Carlo simulation whether 14 sample mo-
ments of the form E[y?y?2 ;] (labeled “Quadratic moments”
in the Appendix) or the form Ef|y;y;—:|] (“absolute mo-
ments”) contain more information about the parameters. We
found that the results based on the absolute moments have
the lower RMSE, but the gains were quite minor. These
results were reported by Andersen and Sgrensen (1995).
When we compared to the results for our baseline set of 14
moments in Table 2, we found even less clear-cut evidence.
For T' = 2,000, the RMSE of the absolute-moments-based
procedure dominates, but for 7' = 4,000, the baseline mix
of moments appears better, and again all differences are
minor. This may be compared to the asymptotic standard

Table 4. Asymptotic Std. Deviations Using “True” Kernel—-
Alternative Models: (w, 3, oy) = (—.736, .900, .363)

Parameter w B8 oy
5 moments .5355 .0727 .1316
9 moments
Baseline set of moments (m9a) .3071 .0417 .0767
Alternative set (m9b) .2934 .0398 .0756
14 moments
Baseline set of moments (m14a) .2511 .0341 .0651
Alternative set (m14b) .2529 .0344 .0646
“Absolute” moments (m14c) .2526 .0343 .0651
“Quadratic” moments (m14d) .2641 .0359 .0679
Absolute 3rd moments (m14e) .3089 .0420 .0783
Mix of low abs 1st, 2nd, and 3rd
moments (m14f) .3361 .0456 .0866
Alternative mix of 1st, 2nd, 3rd
moments (m14g) .2670 .0363 .0669
24 moments
Baseline set .2414 .0328 .0629
34 moments
All moments included .1987 .0270 .0523

NOTE: Standard deviations are normalized to correspond to T = 2,000. The exact selection of
moments for each model is listed in the Appendix.
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in Table 4 (m14a, ml4c, and m14d). Again, the differences
between the three sets are minor, but it is noteworthy that
this semianalytic approach ranks the designs in the same
way that our simulations do; that is, the uses of mixed and
absolute lagged moments are close, but with a minor edge to
the mixed moments, whereas relying exclusively on lagged
squared moments is inferior to both. This suggests that the
semianalytic efficiency bounds may be relevant for econo-
metric practice. The issue appears, however, not to be of
first-order importance, and from this evidence it seems that
our prior selection of a mix of absolute and quadratic lagged
moments performs reasonably well.

In conclusion, we note that this analytic procedure may
be useful for preliminary assessment of the appropriate es-
timation design whenever closed-form expressions for the
moments can be obtained. Such calculations can potentially
eliminate the need for large-scale simulation experiments
over various moment designs by providing a reasonable
guide to the relative importance of different moments for
estimation performance. This insight may be relevant for
quite general GMM estimation problems.

3.4 Analysis of Nonconvergence

The present setting is ideal for an assessment of the re-
ported number of “crashes.” If the asymptotic normal ap-
proximation remains good within the neighborhood of the
true parameter vector, then the standard error of 8 provides
an estimate of the probability with which the § estimate
will exceed unity and thus potentially induce a crash. For
example, the reported standard error for M = 5 of .0727 in
Table 4 implies that for T = 2,000 (3 will exceed unity with
probability 1 — ®([1 — .9]/.0727) = .084, where ®(-) de-
notes the cumulate density function of the standard normal
distribution. We should thus expect that 8.4% of the esti-
mations crash due to an estimate of 3 that falls outside of
the parameter space. The actual number of crashes for this
cell in Table 3 is 93 or 8.5% [= 93/(1,000 +93)]. A similar
analysis suggests 5, 1, and 1 crashes for M = 9, 14, and 24,
respectively, whereas the realized number of crashes were
2, 1, and 0. It appears that this analysis is able to rationalize
the propensity of the estimations to crash. For the smaller
samples, in which the asymptotic standard errors can be
obtained by simple transformations of the ones given for
T = 2,000, we expect the corresponding calculations based
on the normal approximation to be less precise, which, in-
deed, is what we find. The orders of magnitude remain cor-
rect, however. For T' = 500 the asymptotic standard errors
predict 24.6% , 10.1% , 5.8% , and 5.3% crashes, whereas
the actual occurrences numbered 356, 77, 15, and 23, or
262% ,7.1% , 1.5% , and 2.2% . When the weighting ma-
trix is estimated from much smaller simulated samples, the
parameter estimates become more erratic, and we should
expect to find an even higher proportion of crashes, as
we do.

The interpretation provided previously suggests that es-
timates of, for example, (3 in the right tail of the empirical
distribution have been eliminated due to the boundary of
the parameter space. This feature is, indeed, quite appar-



Andersen and Serensen: GMM Estimation of a Stochastic Volatility Model

T=1,000; M=14

339
T=4,000, M=14

0.25 0.25
0.2 0.2
|
3 . & i
2 | 3 |
o g ‘
w014 - 0.14E -
I
0.054— e o MR
0 0 i s
0 .50
M=14
0.25
| R
P RS NRS SRR it
S e e
Q
[
a
=]
o
Q
SE LT pe
0.05
0 :

Figure 3. The Distribution of GMM Estimates of 3. The figure shows the fraction of estimates that fall within the different 5% fractiles. The
results are based on 1,000 converging estimates for each sample size. The GMM procedure is implemented using an estimated weighting matrix
determined by the Bartlett kernel using a lag length of 1.2 - T'. Figures are displayed for sample sizes T = 1,000; 4,000; 10,000. All estimates

are obtained with M = 14 moments.

ent in plots of the distribution of the 3 estimates. Figure 3
shows the distribution for M = 14 and T = 1,000, 4,000,
and 10,000 when using the simulation design in Table 2. It
seems apparent for the small sample that the right tail has
been truncated at 3 = 1, and furthermore the distribution
displays a long left tail. For the larger sample sizes, in which
we do not encounter convergence problems, the right tail is
bounded away from 3 = 1, and the tails become closer
to being symmetric as the sample size increases, although
there is still some evidence of left skewness in the distri-
bution even for T = 10,000. Andersen and Sgrensen (1995)
displayed similar results for alternative moment selections.

The preceding is at best indirect evidence for the hy-
pothesis that the crashes are associated with instances in
which the objective function does not attain a minimum
within the parameter space. We therefore explored the is-
sue further. Specifically, we collected samples that did not

converge in the (M,T) = (5,500) design when using the
BFGS algorithm. We then subjected these samples to a va-
riety of alternative optimization algorithms. Although the
procedures differ in their ability to accommodate estimates
very close to the boundary of the parameter space, they all
eventually fail for the nonconverging samples as numeri-
cal problems terminate the routine. Andersen and Sgrensen
(1995) reported the value of the objective function as the
estimated parameter vector approaches the boundary for a
few arbitrarily selected nonconverging samples. The values
were obtained by fixing the 3 grid and optimizing over the
other parameters using the NEWTON algorithm in GAUSS,
which generally was the best algorithm in terms of accom-
modating (3 estimates close to unity (we found that the
number of crashes was not sensitive to the choice of al-
gorithm but that the BFGS algorithm sometimes crashed
sooner along the increasing 3 sequence). Nonetheless, in all
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Table 5. Simulated Mean and Root Mean Squared Error: Bartlett Kernel,
Automatic Bandwidth, (w, 8, ou) = (—.736, .900, .363)

# moments 9 (non-pw) 14 (non-pw) 14 (pw) 24 (pw)
T = 500
@ —.958 (.998) —.876 (1.200) —.622 (.588) —.703 (.650)
I¢] .871 (.132) .887 (.121) .915 (.080) .905 (.087)
6u .295 (.167) .265 (.201) .235 (.170) .224 (.178)
No convergence 567 365 342 422
Average lag (std. dev.) 6.09 (7.72) 7.73 (7.85) 1.07 (1.70) 1.46 (2.32)
T = 1,000 )
@ —.691 (.515) —.726 (.541) —.567 (.414) —.585 (.452)
B .906 (.070) .902 (.073) .923 (.056) .920 (.061)
Gu .279 (.143) .273 (.138) .251 (.148) .234 (.161)
No convergence 176 66 77 87
Average lag (std. dev.) 7.67 (9.00) 9.35 (8.64) 1.36 (1.78) 1.80 (2.01)
T = 2,000
w —.685 (.368) —.726 (.352) —.592 (.311) —.627 (.315)
B .907 (.050) .902 (.048) .920 (.042) .915 (.043)
Gy .300 (.111) .301 (.104) .279 (.115) .272 (.118)
No convergence 29 3 10 10
Average lag (std. dev.) 9.06 (9.63) 11.06 (9.43) 1.82 (2.37) 2.26 (2.62)
T = 4,000
@ —.736 (.253) —.760 (.227) —.645 (.217) —.662 (.225)
8 .900 (.034) .897 (.031) .912 (.029) .910 (.031)
Gu .330 (.071) .328 (.066) .309 (.078) .302 (.083)
No convergence 1 0 0 0 .
Average lag (std. dev.) 10.68 (10.15) 13.37 (10.03) 2.03 (1.95) 2.62 (2.34)
T = 10,000
@ —.749 (.154) —.777 (131) —.696 (.132) —.708 (.140)
8 .898 (.021) .895 (.018) .905 (.018) .904 (.019)
Gy .348 (.041) .349 (.034) .336 (.045) .331 (.049)
No convergence 0 0 0 0
Average lag (std. dev.) 12.78 (9.31) 16.54 (11.12) 2.52 (2.00) 3.34 (2.45)

NOTE: The reported statistics are based on 1,000 simulated samples of sample size equal to the indicated 7. For each cell, the first
number shows the mean and the second the root mean squared error (in parentheses). (pw): The prewhitening technique is applied

using univariate AR(1) approximations to each sample moment.

cases the objective function improves monotonically until it
eventually explodes. The P values obtained for these non-
converging samples did not correspond to bad fits of the
model but seemed evenly distributed over the unit interval.

In addition, we picked 100 nonconverging samples from
the preceding design and estimated the parameters in the
just-identified case, M = 3, using a genuine subset of the
five moments (m1,m2, and m6) as the identifying mo-
ments. In 98 of the 100 cases, the implied estimate of 3
was above unity and (by construction) that of o, was nega-
tive. For one of the remaining two samples, the alternative
subset of moments (m1,m2, and m15) resulted in a sim-
ilar “crash.” The remaining sample was characterized by
an exceptionally high fourth moment relative to the second
moment, but no further exploration was undertaken.

Our findings support the interpretation that the crashes
are associated with the lack of interior optima within the
parameter space. This provides a rationale for discarding
the nonconverging samples and interpreting the reported
results as representative of the subset of GMM results that
succeed in achieving convergence. On the other hand, one
may suspect that practitioners may experiment with alter-
native choices of moments for a given sample before aban-

doning their GMM estimation strategy. An informal inves-
tigation of this possibility revealed that such procedures
usually will detect a collection of moments that achieves
convergence. Such exploratory search over alternative se-
lections of moments will induce a type of bias in reported
results that is virtually impossible to quantify within our
simulation setting. Consequently, there are numerous rea-
sons to emphasize the difficulty of interpreting the results
for the smaller samples. Fortunately, the results for the in-
termediate and larger samples are basically unaffected by
these nonconvergence problems.

3.5 Bartlett Kernel With Endogenous Bandwidth

Table 5 reports on GMM estimation using the Bartlett
weighting matrix but with lag length chosen according
to the suggestions of Andrews (1991). In this subsection
we discuss the results when the weighting matrix is not
prewhitened, displayed in the columns labeled “non-pw.”
We report the results for M = 9 and M = 14, because
these moment selections clearly dominated the results for
5 and 24 moments. Specifically, we chose an AR(1) ap-
proximation to the sample moments for the purpose of de-
termining a suitable bandwidth, and we therefore rely on
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the appropriate part of formula (6.4) of Andrews (1991).
The exact formulas are as follows: Let (pp,,52),m =
., M, denote the estimates of the autoregressive and
innovation variance parameter for each of the moments,
and let K = M 54 /(1 — p,,)*. Then the Bartlett
lag length is chosen as Ly = 1.1447(&(1)T)Y/3, where
&(1) = Yoiey (462,65)/[K(1 = pm)o(1 + pm)?].
- The impact of the endogenous choice of lag length is
apparent. The average number of included lags grows not
only with sample size but also, rather significantly, with
the number of included moments [this is particularly strik-
ing from the full set of simulations reported by Andersen
and Sgrensen (1995), in which results were also feported
for 5 and 24 moments]. The latter is ignored by the fixed-
bandwidth procedures. The difficulty of accounting for this
factor in an appropriate fashion prior to estimation pro-
vides a strong argument in favor of the automatic, or data-
dependent, bandwidth choice.

Most of the conclusions from Table 1 still hold up. It re-
mains preferable to use 9 moments for the lower values of
T and 14 moments for the higher values of T. For T' = 500
and M = 9, the estimations appear more prone to crash.
Moreover, the upward bias in the mean estimates of w now
is less pronounced and in some cases (M = 9,T = 1,000, or
T = 2,000) it has changed sign. It is also clear from a com-
parison of Tables 1 and 5 that it is almost always preferable,
in terms of RMSE and bias, to use the automatic, or plug-
in, bandwidth relative to the rather conservative choice of
Lz = 10. Note also that the bias in the important 3 parame-
ter is sharply reduced for the empirically relevant estimation
with 14 moments and 1,000-2,000 observations.

Interestingly, comparisons to the fixed bandwidth in Ta-
ble 2 and Figures 1 and 2 provide a more mixed picture. The
automatic bandwidth procedure again performs uniformly
well for the small samples (7" = 1,000). For T' = 2,000 the
automatic bandwidth also stands up well against the pre-
vious procedures, but the evidence is mixed whenever the
fixed-bandwidth choices are longer than the average ones
chosen by the data-dependent procedure. Finally, for the
larger sample sizes (I' = 4,000 and 7' = 10,000) the pro-
cedures relying on the longest (average) lag length seem
to dominate in terms of RMSE. This confirms our earlier
findings regarding lag length for the large sample sizes, in
which a fixed « between 1.2 and 2 may be a sensible choice.

Encouraged by the significant improvements form this
procedure, we turn to the prewhitening method suggested
by Andrews and Monahan (1992).

3.6 Bartlett Kernel With Prewhitening

Prewhitening consists of a preliminary transformation
that flattens (prewhitens) the spectral density of the sample
moment vector prior to applying the kernel estimator, thus
improving the properties of the estimator, and then invert-
ing the transformation to obtain an estimate of the original
spectral density at frequency 0. If V;(6) is the orthogonality
condition, m; — A(f), evaluated at a consistent parameter
vector § obtained from a preliminary estimation step, then
the suggestion of Andrews and Monahan (1992) is to (a) fit
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a first-order vector autoregressive [VAR(1)] (or higher-order
VAR) to V;: V; = BV, 1+ V;*, (b) determine the weighting
matrix At using the prewhitened residual V;* according to
the method of Andrews (1991), and then (c) find an estimate
A by “recoloring”™ A = (I — B)"1F'p(1 — B)~1.

We performed a few experiments using the VAR(1)
prewhitening procedure. Andrews and Monahan suggested
that the singular values of B be restricted to force the B
matrix to be stable. We follow them by letting singular val-
ues in excess of .97 equal .97. The method did not, however,
perform well. This is most likely due to imprecision in the
estimates of the B matrix. For some designs, the estima-
tions did not converge in many cases. In others, the number
of lags selected after prewhitening was often larger than
the number selected before prewhitening, and even though
the RMSE for o, declined slightly, the RMSE of the other
parameters deteriorated sharply.

We chose instead to use the simpler expedient of fitting a
univariate AR(1) model to each series and then using as our
B a diagonal matrix with the univariate AR(1) coefficients
along the diagonal. This approach remains true to the spirit
of Andrews and Monahan because they did not suggest the
VAR as the true model but rather as a convenient ad hoc
way of flattening the spectrum.

The results from these experiments are reported in Ta-
ble 5 in the columns labeled “pw.” For the prewhitened
weighting matrix, M = 14 and M = 24 were uniformly
better than the results for 5 and 9 moments [available from
Andersen and Sgrensen (1995)]. First, notice the dramatic
drop in average lag length relative to that of the preceding
section. For the smaller sample sizes the results represent
a remarkable improvement in RMSE for w and 3, but the
estimate of o, is severely biased, and the RMSE’s on this

- parameter generally increase relative to those in Table 2.

For the higher sample sizes and 14 or 24 moments, there
is generally a trade-off between more precise estimates of
w and g relative to o, because the downward bias on the
latter remains clearly discernible. Finally, note that the use
of 14 moments is almost uniformly the preferred choice for
this procedure.

In conclusion, the results for this approach are somewhat
mixed. It may appear to improve inference for some param-
eters in small samples, but this finding should be weighted
against the very significant increase in the instances of non-
convergence for these samples. In addition, it improves the
RMSE significantly for a subset of the parameters in the
designs with large samples and many moments, so the ap-
proach may be attractive in certain instances.

3.7 The Quadratic Spectral Kernel

Andrews (1991) showed that the QS kernel dominates the
Bartlett kernel according to an asymptotic truncated mean
squared error criterion when the system is characterized
by heteroscedasticity and autocorrelation of unknown form.
The weighting scheme takes the form
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Table 6. Simulated Mean and Root Mean Squared Error: Quadratic Spectral,
Automatic Banawidth, (w, B, ou) = (—.736, .900, .363)

# moments 9 (non-pw) 14 (non-pw) 14 (pw) 24 (pw)
T = 2,000
@ —.716 (.386) —.711 (.376) —.585 (.318) —.600 (.338)
8 .903 (.052) .904 (.051) .920 (.043) .918 (.046)
6u .306 (.112) .295 (.1111) 277 (117) .264 (.125)
No convergence 56 0 15 15
Average lag (std. dev.) 5.20 (3.82) 6.02 (3.81) 1.53 (.97) 1.81 (1.08)
T = 4,000
@ —.719 (.266) —.726 (.251) —.640 (.219) —.641 (.237)
B .902 (.036) .901 (.034) .913 (.030) .913 (.032)
Su .324 (.080) .320 (.076) .308 (.079) .296 (.090)
No convergence 3 1 0 0
Average lag (std. dev.) 5.73 (3.28) 6.80 (3.60) 1.69 (.96) 2.05 (1.16)
T = 10,000
@ —.746 (.162) —.756 (.143) —.687 (.141) —.700 (.137)
8 .899 (.022) .897 (.019) .907 (.019) .905 (.019)
6y .348 (.043) .346 (.041) .334 (.047) .330 (.049)
No convergence 0 0 0 0
Average lag (std. dev.) 6.72 (3.47) 7.76 (3.83) 2.00 (.93) 2.41 (1.36)

NOTE:

The reported statistics are based on 1,000 simulated samples of size equal to the indicated 7. For each cell, the first number

shows the mean and the second the root mean squared error (in parentheses). (pw): The prewhitening technique is applied using

univariate AR(1) approximations to each sample moment.

. 25
)= oG Lo

sin(67(j/Lr)/5)

6r(/L7)/5 cos(6m(j/Lr)/5)| -

We examined the performance of the QS kernel in some
detail, using both fixed and automatic bandwidths plus
prewhitening. From Andrews (1991), the automatic band-
width takes the form Lr = 1.3221(&(2)T)Y/%, where
&(2) = Yoy (49%5%)/[K(1 = pm)?] and K, G, and ppm
are defined in Section 3.5.

The findings were quite similar, but overall slightly infe-
rior as measured by RMSE, to the results reported previ-
ously for the Bartlett kernel. An indication of the findings
is provided in Table 6, which reports on a subset of the au-
tomatic bandwidth designs. Again, prewhitening is clearly
beneficial for the smaller sample sizes, but the same trade-
off between the precision in the estimates of the parameters
w and 3 versus o, that we noted previously shows up for
the larger samples. Thus, given the particular nature of the
positive second-order moment dependency in our series, it
appears that the QS estimator does not improve on the per-
formance of the Bartlett kernel.

3.8 The Newey-West Lag-Selection Scheme

Finally, we implemented the procedure advocated
by Newey and West (1994) that is based on the
Bartlett kernel but uses a different lag-selection crite-
rion. Specifically, the bandwidth is chosen as follows:
If z; is the @ x 1 residual vector from the AR(1)
prewhitened moment series, n 4(T/100)%/9, w; =
ZqQ=1 T, &j = (T— 1)—12$=j+2 WtWe—j, j= 0,...,
n, 80 = 237 . j&;,30 6o + 237, &;, and

4 = 1.1447(51) /5(0))2/3 | then the lag-selection parameter
is chosen as Ly = 4T"/3,

We implemented the procedure both with and without
prewhitening. The results are provided in Table 7. The
most striking aspect of this selection scheme is the long
lag length they choose and the fact that the lag lengths
barely diminish for the prewhitened series. Given our prior
findings, we may expect the long but variable lag length to
improve estimation performance for the large sample sizes.
This is what happens. In fact, for T = 4,000, and in par-
ticular for T = 10,000, this method produces close to the
best RMSE of any method. It reflects the fact that from
T = 4,000 to T = 10,000 the RMSE continues to drop at
a rate faster than root 7, which in part is due to rapidly
shrinking biases in the parameter estimates. In some sense
the results for 7' = 10,000 are about as good as we may
hope for because they are only slightly worse than those
obtained for the “true” weighting matrix in Table 3, indi-
cating that the imprecision in the estimate of the weighting
matrix may no longer be much of a concern for estimation.
Finally, notice that the choice of prewhitening appears to
be of second-order importance, especially when the sample
size is large. Indeed, for T = 10,000 the procedure without
prewhitening provides marginally better inference.

We conclude that, although this procedure is not partic-
ularly attractive for the smaller sample sizes, it is our pre-
ferred method among the ones investigated when the sam-
ple size reaches 4,000. It dominates all prior methods by
the RMSE criterion for 7" = 10,000, and given the results
obtained with the “true” weighting matrix we do not expect
any alternative procedure to offer much additional improve-
ment for samples of this size (given the choice of moments).

3.9 Diagonal Weighting Matrix

In some cases researchers find it necessary to use a high
number of moments to match different aspects of their
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Table 7. Simulated Mean and Root Mean Squared Error: Bartlett Kernel,

Newey—West Bandwidth, (w,

B, ouy) = (—.736, .900, .363)

# moments 9 (non-pw) 14 (non-pw) 14 (pw) 24 (pw)
T = 1,000
@ —.888 (.646) —.855 (.637) —.901 (.669) —.931 (.646)
B .881 (.087) .886 (.083) .879 (.089) .876 (.085)
Gy .309 (.127) .290 (.131) .300 (.131) .291 (.130)
No convergence 70 39 53 41
Average lag (std. dev.) 15.24 (3.28) 16.92 (3.00) 16.10 (3.25) 18.38 (3.57)
T = 2,000
@ —.824 (.393) —.847 (.379) —.831 (.351) —.876 (.398)
8 .889 (.053) .886 (.051) .888 (.047) .883 (.052)
6u .327 (.093) .321 (.085) .319 (.085) .313 (.089)
No convergence 3 1 2 0
Average lag (std. dev.) 20.85 (4.07) 23.95 (3.57) 23.17 (3.86) 25.72 (3.00)
T = 4,000
@ —.803 (.243) —.821 (.222) —.835 (.219) —.891 (.269)
B .891 (.033) .889 (.030) .887 (.029) .880 (.035)
6u .343 (.059) .337 (.053) .342 (.051) .342 (.052)
No convergence 0 0 0 0
Average lag (std. dev.) 29.31 (5.49) 35.14 (4.84) 34.75 (4.73) 37.73 (3.92)
T = 10,000
@ —.775 (.138) —.795 (.122) —.791 (.126) —.836 (.160)
B .895 (.019) .892 (.016) .893 (.017) .887 (.021)
6y .353 (.034) .353 (.028) .352 (.030) .352 (.031)
No convergence 0 0 0 0
Average lag (std. dev.) 43.51 (7.51) 51.61 (6.24) 50.76 (6.75) 56.06 (5.39)

NOTE: The reported statistics are based on 1,000 simulated samples of size equal to the indicated T. For each cell, the first number
shows the mean and the second the root mean squared error (in parentheses). (pw): The prewhitening technique is applied using

univariate AR(1) approximations to each sample moment.

model (e.g., Ho et al. 1996). In these cases it is tempting to
avoid the documented estimation problems associated with
the asymptotically optimal GMM procedure by restricting
the weighting matrix to be diagonal. We examine how the
results for our model are affected by this choice. The esti-
mations were all performed with the weighting matrix set
equal to the diagonal of the prewhitened Bartlett kernel that
seems to perform reasonably well for the model.

The results, presented in Table 8, are interesting. It is
clear that using a low number of moments (M = 9) and a
diagonal weight matrix is inferior to our prior procedures.
There seems, however, to be a trade-off between the simpler
weighting matrix and the number of moments included. A
surprising finding is that for 7" in excess of 1,000 it seems
as good (judged by RMSE) to use the diagonal weighting
matrix as to use the standard Bartlett kernel with prewhiten-
ing or, for that matter, most other methods we have inves-
tigated. The one exception is the Newey—West selection of
bandwidth in Table 7, and even here the evidence is not
unanimously in favor of the alternative. One key to the im-
proved RMSE is that the bias in o, has been all but elim-
inated for the larger samples. Furthermore, note that for
T = 10,000 it is preferable to exploit all 24 moments rather
than just 14. Thus, it seems that it may be useful to exploit
additional information as long as some of the estimation
problems associated with the weighting matrix are appro-
priately handled or circumvented. An additional benefit of
the approach is that the estimations tend to crash a lot less
for low values of T, but this seems to be caused by the

downward bias in the estimate of 3. The latter observation
probably constitutes the largest drawback of the method:
The smaller bias in o, comes at the expense of a signifi-
cant downward bias in the important autoregressive volatil-
ity parameter § for the smaller samples. Moreover, asso-
ciated inference and specification test procedures are now
less convenient because a consistent estimate of the optimal
weighting matrix is not obtained as a by-product of the es-
timation. Nonetheless, the advantages of this rather simple
procedure appear enticing, and this type of approach may
provide a fruitful starting point for further progress on the
development of well-functioning finite-sample GMM pro-
cedures in this context.

3.10 Higher Volatility Persistence

Empirical studies of stochastic volatility models often
obtain parameter estimates of 3 near unity. In Table 9 we
examine a few experiments with 3 = .95 and 8 = .98. The
pattern is qualitatively similar to what we found earlier, so
we only report a subset of our results, relying exclusively
on M = 14, which seems reasonable in most cases. No-
tice that the signal-to-noise ratio for the volatility process
has improved, so not unexpectedly we obtain lower RMSE
for the larger samples. This is consistent with the observa-
tions of JPR and Harvey and Shephard (1993). Moreover,
not surprisingly, the problem with nonconverging estimates
has grown as we push g closer to the bound of the parame-
ter space, although the use of automatic bandwidth appears
to alleviate the problem somewhat. In fact, for 7' = 4,000
and M = 14, it no longer appears to constitute a practical
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Table 8. Simulated Mean and Root Mean Squared Error: Diagonal Bartlett Matrix,

Automatic Bandwidth and Prewhitening; (w, 3, ou) = (—.736, .900, .363)

# moments 9 14 24
T = 500
@ —1.342 (1.379) —1.364 (1.274) —1.270 (1.088)
B .818 (.185) .814 (.1172) .827 (.143)
6y .393 (.164) .387 (.150) .377 (.134)
No convergence 89 16 12
Average lag (std. dev.) .85 (1.35) 1.15 (1.85) 1.56 (1.92)
T = 1,000
@ —.980 (.746) —1.014 (.661) —1.037 (.656)
B .866 (.102) .862 (.090) .859 (.090)
Gy .363 (.126) .373 (.109) .375 (.106)
No convergene 29 0 1
Average lag (std. dev.) 1.11 (1.39) 1.47 (2.17) 1.82 (2.00)
T = 2,000
@ —.855 (.420) —.886 (.373) —.872 (.357)
B .884 (.057) .879 (.051) .881 (.049)
Gy .362 (.093) .372 (.075) .365 (.074)
No convergence 4 0 0
Average lag (std. dev.) 1.37 (1.54) 1.65 (1.88) 2.17 (2.42)
T = 4,000
w —.801 (.273) —.803 (.219) —.802 (.208)
B .891 (.037) .891 (.030) .891 (.028)
Gy .363 (.067) .364 (.049) .362 (.050)
No convergence 0 0 0
Average lag (std, dev.) 1.57 (1.40) 2.01 (2.17) 2.51 (2.35)
T = 10,000
w —.767 (.166) —.769 (.125) —.765 (.117)
B .896 (.023) .895 (.017) .896 (.016)
Gy .363 (.042) .364 (.032) .363 (.030)
No convergence 0 0 0
Average lag (std. dev.) 2.07 (1.64) 2.64 (2.42) 3.25 (2.56)

NOTE: The reported statistics are based on 1,000 simulated samples of size equal to the indicated T. For each cell, the first number
shows the mean and the second the root mean squared error (in parentheses). The prewhitening technique is applied using univariate

AR(1) approximations to each sample moment.

problem. For g = .98, we find the trend continuing: The
RMSE’s are now dramatically reduced, but the problem of
crashes is prevalent, even for large samples. In this setting
some strategy of forcing estimates at the bounds of the pa-
rameter space may be required for practical implementation
of GMM estimation.

4. THE SIZE OF THE x2 TEST FOR
GOODNESS OF FIT

Our simulation setting is ideal for an investigation of the
standard x? test for goodness of fit of the overidentifying
restrictions. For each of the simulations that produce a con-
vergent set of parameter estimates in an overidentified sys-
tem (M > 3), we calculate the x? test statistic and evaluate
the associated P value in the appropriate x2(q) distribu-
tion with ¢ = M — 3. The findings are qualitatively similar
across our alternative procedures so, for the sake of brevity,
we focus on the relatively successful method based on the
Bartlett kernel and an automatic choice of bandwidth.

Figures 4-6 (pp. 346-348) display the fraction of P val-
ues that fall within the indicated 5% fractiles for different
sample sizes. Asymptotically, the P values are, of course,
uniformly distributed over the fractiles. The question is
how well the finite-sample x?(q) statistics conform to their

asymptotic distribution. In particular, the 0-5% and 5-10%
fractiles shed light on the size of these goodness-of-fit tests
at the (asymptotic) 5% and 10% level.

The figures are revealing. There are systematic patterns
in the small-sample distribution for the P values both across
sample sizes and across the number of moments included
in the estimation. For each sample size, increasing the num-
ber of moments leads to a very significant rightward shift in
the entire distribution. Similarly, for a given choice of mo-
ments, an increase in sample size leads to a very significant
leftward shift in the entire distribution. Moreover, there is
no sense in which the distribution appears to approach its
asymptotic counterpart as the sample size grows. Indeed,
the leftward shift in the distribution appears to continue,
suggesting that the size distortion of the x? test statistic
is growing increasingly severe as the sample becomes very
large. The same phenomenon is observed for all the other
designs. Table 10 (p. 349) provides the extreme 5% and 10%
fractiles for a representative set of procedures using 14 mo-
ments. In all instances the mass located in the 0-5% fractile
increases dramatically with sample size. In the process we
move from a scenario in which the test statistics are severely
downward biased—the maximum frequency observed for
the 0-5% fractile with T" = 1,000 is .022 for the quadratic
bandwidth kernels—to one in which they are badly inflated;
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Table 9. Simulated Mean and Root Mean Squared Error: Bartlett Kernel,
Automatic Bandwidth, 14 Moments, (w, 3, ou) = (—.368, .950, .260) or (—.147, .980, .166)

# moments B = 95 (non-pw) B = .95 (pw) B = .98 (pw)
T = 2,000
@ —.363 (.215) —.286 (.197) —.140 (.112)
B .951 (.029) .961 (.027) .981 (.015)
Sy .208 (.087) .190 (.099) .125 (.068)
No convergence 62 131 810
Average lag (std. dev.) 12.25 (10.50) 1.83 (1.97) 1.72 (2.20)
T = 4,000
w —.374 (.148) —.294 (.152) —.121 (.089)
B .949 (.020) .960 (.021) .984 (.012)
Gy .228 (.059) .206 (.076) .126 (.063)
No convergence 10 22 - 399
Average lag (std. dev.) 14.03 (10.65) 2.45 (2.39) 2.33 (2.00)
T = 10,000
w —.389 (.091) —.336 (.094) —.121 (.066)
B .947 (.012) .954 (.013) .983 (.009)
Gu .247 (.033) .234 (.043) .137 (.048)
No convergence 0 0 49
Average lag (std. dev.) 17.81 (10.99) 3.09 (2.39) 3.42 (2.58)

NOTE: The reported statistics are based on 1,000 simulated samples of size equal to the indicated T. For each cell, the first number
shows the mean and the second the root mean squared error (in parentheses). (pw): The prewhitening technique is applied using

univariate AR(1) approxi to each le moment.

that is, the minimum frequency for the 0-5% fractile with
T = 10,000 is .121 for the Bartlett kernel with prewhiten-
ing and automatic bandwidth choice. Similarly, the mass
located in the right tail decreases almost uniformly as the
sample size expands. This confirms the robustness of the
systematic leftward shift in the P-value distribution that is
captured in the figures.

On the other hand, notice that the guidelines for selec-
tion of the number of moments to include in estimation,
which were developed in Section 3 on the basis of estima-
tion performance, generally also lead to reasonably sized
specification tests. For the lower sample sizes, M 9
clearly produces the most appropriately sized tests, but as
the sample size grows, the required number of moments
expands as well; for example, M = 14 appears appropriate
for T = 2,000 and M = 24 seems preferable for T = 4,000.
Two caveats are in order. First, for the smaller samples the
results may be somewhat misleading because they fail to
account for the discarded simulations that are numerous.
Although it may seem appropriate to interpret a noncon-
verging sample as evidence of a poor fit, recall that we
frequently found that the x? statistic was consistent with
an acceptable goodness of fit prior to the termination of
nonconvergent iterations. Thus, the direction of the poten-
tial bias is indeterminate. Second, to obtain the optimal test
size, it appears that we should expand the number of mo-
ments somewhat more aggressively than our evaluation of
estimation performance in Section 3 indicated. Nonetheless,
both considerations imply that we should let the number of
moments grow quite rapidly with the sample size.

The increased size distortions associated with the larger
samples may appear puzzling because they defy predictions
based on asymptotic theory. The explanation is again related

to the imprecision of the estimated weighting matrices and
the extremely high degree of variability and dependency in
the sample moments.

First, even for sample. sizes as large as 7' = 10,000, the
bias and dispersion of the weighting matrices are profound.
This was demonstrated through an in-depth analysis of the
design with M = 5. We calculated the average weight-
ing matrix from 1,000 simulations using three different
kernel estimation procedures—namely, the fixed bandwidth
Bartlett kernel with lag length yT''/3 for ~ equal to 2 and
10 and for the QS kernel with lag length 2 * T'/5. They all
provide similar results. The estimate of the dominant en-
try on the diagonal of the weighting matrix, corresponding
to the absolute return moment, element (1, 1), varies from
1.93 to 2.02 with standard errors between .42 and .50 (the
other diagonal elements of the weighting matrix display
variation similar to the first, but we focus on one element
for brevity). Thus, the estimates of the weighting matrix
fluctuate very substantially across the 7" = 10,000 samples,
but, perhaps even more significantly, they are strongly bi-
ased. The latter was confirmed through the construction of a
more precise approximation to the “true” weighting matrix
based on 16 samples of 500,000 observations and the Monte
Carlo variance-reduction technique of antithetic variables.
Thus, the series consist of eight “antithetic” samples that
pairwise have negatively correlated volatility processes due
to the use of the identical draws for the underlying inno-
vations but with a sign change for the volatility innova-
tion. The negative correlation reduces the sample variabil-
ity of the estimated sample moments (e.g., see Davidson
and MacKinnon 1993). The resulting estimate of element
(1, 1) of the weighting matrix is 1.25. Consequently, this el-
ement displays a very strong upward small-sample bias (for
T = 10,000). This bias will tend to inflate the test statistics
and push the P-value distribution leftward.
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Figure 4. The Distribution of p Values for the Test of Overidentifying Restrictions Based on the GMM Objective Function. The figure shows the
fraction of values that fall within the different 5% fractiles. The results are based on 1,000 converging estimates for each sample size. The GMM
procedure is implemented using an estimated weighting matrix determined by the Bartlett kernel with an automatic choice of bandwidth. Figures
are displayed for sample sizes T = 1,000; 4,000; 10,000. All estimates are obtained with M = 9 moments.

Second, samples of T' = 10,000 remain small in yet an-
other sense. Using the preceding precise estimate of the
“true” 5 x 5 weighting matrix, we find that the P-value
distribution is biased to the right. For sample sizes of
T = 50,000, the test statistic finally seems to obey an ap-
proximate x? distribution when the “true” weighting matrix
is used.

It is important to realize that these rather discourag-
ing findings regarding the finite-sample distribution of the
estimated weighting matrices have no direct implications
for the performance of the GMM estimation and infer-
ence procedures. If the results predominantly reflect a prob-
lem in determining the scale of the weighting matrix—
which clearly is strongly upward biased, even for very large
samples—then the estimation procedure may be relatively
immune to this deficiency of the GMM criterion function.
In fact, the finite-sample estimation performance reported

in Section 3 is quite satisfactory, at least for the larger sam-
ples. Section 5 reports on the finite-sample performance
for asymptotically motivated inference procedures regard-
ing the model parameters.

In summary, the investigation in this section tends to re-
inforce our earlier conclusions. The GMM procedure is not
well equipped to deal with small samples, and it is essential
to increase the included number of moments rather sharply
with sample size to avoid serious size distortions for the test
of goodness of fit. The extent of the problem is striking. For
500 observations and 24 moments, the P value of the test
statistic (given the GMM estimates converge) will exceed
80% seven times out of ten. Without a size correction, the
power of the test is therefore likely to be extremely poor.
Equally troublesome is the tendency to overreject when an
insufficient number of moments is included: For T' = 10,000
and M =9, the test will reject at the 5% level about one
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Figure 5. The Distribution of p values for the Test of Overidentifying Restrictions Based on the GMM Objective Function. The figure shows the
fraction of values that fall within the different 5% fractiles. The results are based on 1,000 converging estimates for each sample size. The GMM
procedure is implemented using an estimated weighting matrix determined by the Bartlett kernel with an automatic choice of bandwidth. Figures
are displayed for sample sizes T = 1,000; 4,000; 10,000. All estimates are obtained with M = 14 moments.

quarter of the time. These findings underscore the impor-
tance of paying careful attention to the trade-offs between
information and precision involved in the choice of mo-
ments for the GMM procedure.

5. HYPOTHESIS TESTS

This section takes a look at some popular inference pro-
cedures regarding the parameters of the model. Again, the
conclusions are qualitatively similar across the designs, and
we present results only for the Bartlett kernel with fixed-
bandwidth procedure that corresponds to Table 2. The ex-
treme left and right fractiles for the distribution of the stu-
dentized parameters are provided in Table 11 (p. 350). The
top panel concerns the difference between the estimated
parameters and the true parameters normalized by the esti-
mated standard error. This panel thus reflects both the dis-

persion and the bias of the normalized parameter estimates.
The bottom panel displays the fractiles for the identical stu-
dentized parameters, except that the estimated parameters
now are centered on the (biased) mean estimate.

The top panel is relevant for assessment of the standard
t tests for individual parameters. Asymptotically, the stu-
dentized parameters are distributed as standard normals, so
the mass located in the tail fractiles approximates the size
of one-sided tests for equality of the estimated parameters
and their true value. '

A few general observations regarding our estimation re-
sults are important for the interpretation of Table 11. First,
basically all of our GMM estimation procedures, including
the one used for Table 2, result in a downward finite-sample
bias in all three parameter estimates. Second, we found a
large negative correlation between the estimated parameters
and the associated standard errors. Finally, the estimates of
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Figure 6. The Distribution of p Values for the Test of Overidentifying Restrictions Based on the GMM Objective Function. The figure shows the
fraction of values that fall within the different 5% fractiles. The results are based on 1,000 converging estimates for each sample size. The GMM
procedure is implemented using an estimated weighting matrix determined by the Bartlett kernel with an automatic choice of bandwidth. Figures
are displayed for sample sizes T = 1,000; 4,000; 10,000. All estimates are obtained with M = 24 moments.

w and B were extremely highly correlated. This last fact
immediately explains the near identical studentized distri-
butions of those two parameters. For the smaller samples,
the substantial downward biases are negated by the associ-
ated large standard errors. Indeed, for the first two param-
eters the left tails in the top panel are too thin rather than
too thick, but for o, the left tail is mostly fat-tailed. This
reflects the fact that o, has a particularly large bias rela-
tive to RMSE compared to the other parameters in Table 2.
This also explains the relatively thin right tails in the distri-
bution of this parameter estimate. Notice that for the right
tails the downward bias is mitigated by the negative correla-
tion between the estimated parameters and standard errors.
This is also clear from the bottom panel where asymmetric
distribution of the standard error estimates induces a right-
ward shift in the studentized distribution. As the sample

size grows the bottom panel further shows—quite clearly
in the case of M = 24—that the (mean corrected) studen-
tized distribution approaches the standard normal.

This suggests that the distribution for the studentized pa-
rameters in the top panel will be highly sensitive to biases in
the parameter estimates for the larger sample sizes. This is
exactly what happens. The distributions acquire heavy left
tails, in particular for the designs involving the higher num-
ber of moments. This reflects the more significant down-
ward biases for the designs relying on the higher number
of moments. .

In summary, the evidence on the quality of inference is
mixed. For T in excess of 1,000 and a number of moments
that is consistent with our prior recommendations, the size
distortions are not bad, but there is a clear tendency to un-
derestimate o,, throughout and a tendency to underestimate
the other parameters as well when many moments are used
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Table 10. P Values for Selected Models (14 moments): (w, 3, ou) = (—.736, .900, .363)

T
Model Fractile 1,000 2,000 4,000 10,000
Bartlett 0-5% .005 .042 105 .156
Bandwidth 5-10% .023 .059 .067 .084
1.2x10'3 90-100% 109 .093 .076 .049
Bartlett 0-5% .012 .054 116 .186
Automatic 5-10% .027 .050 .057 .086
Bandwidth 90-100% 113 .093 .070 .079
Bartlett 0-5% .012 .042 .079 21
Automatic 5-10% .010 .037 .028 .021
Bandwidth w. pw 90-100% 313 .285 .287 .276
Quad spectral 0-5% .022 .078 .150 .187
Automatic 5-10% .053 .062 .090 .076
Bandwidth 90-100% 110 .073 .067 .072
Quad spectral 0-5% .022 .051 .097 149
Automatic 5-10% .015 .040 .048 .049
Bandwidth w. pw 90-100% .281 .254 244 .248
Bartlett 0-5% .006 .024 .079 144
Newey-West 5-10% .018 .036 .056 .096
Bandwidth 90-100% 101 .066 .038 .047
Bartlett 0-5% .004 .015 .074 .162
Newey—West 5-10% .006 .037 .063 .083
Bandwidth w. pw 90-100% .156 .094 .047 .053

NOTE: The reported statistics are based on 1,000 simulated samples of size equal to the indicated T. pw: prewhitening applied using

univariate AR(1) approximations to each sample moment.

for estimation. The latter is somewhat troublesome because
size considerations for the x? test in Section 4 favor the use
of many moments for the large samples.

6. CONCLUSION

"~ This article examines the properties of alternative
GMM procedures for estimation of the so-called lognor-
mal stochastic autoregressive volatility model. The results
are numerous: First, it is generally not optimal to include
many moments in the estimation procedure if the sample
size is limited. In fact, the preferred number of moments
(as measured by RMSE) is typically lower than the standard
choice in the literature concerned with estimation on the ba-
sis of high-frequency financial data. On the other hand, it is
virtually never advisable to rely on the alternative extreme
of a just-identified model that underperformed relative to
all other models investigated. We document that these re-
sults arise because of a fundamental trade-off between the
information (number of moments) used in estimation and
the quality of the objective function (precision of the es-
timated weighting matrix) underlying the procedure. Esti-
mation on the basis of a large-sample approximation to the
optimal weighting matrix confirms this intuition and pro-
vides further insights into the feasible efficiency bounds for
this class of GMM estimators. The results suggest that the
inclusion of the full 24 moments provides very little addi-
tional information regarding the parameters relative to what
is contained in the initial 14 moments. Hence, the incorpo-

ration of 24 moments is not likely to be beneficial unless
the sample is very large.

Second, we find that estimation using a fixed number of
lags in the weighting matrix generally is inferior to using
the plug-in estimator of lag length suggested by Andrews
(1991), although it seems that experimentation with longer
lags than indicated by this data-dependent procedure may
prove useful.

Third, we find that the prewhitening method for the
weighting matrix suggested by Andrews and Monahan
(1992) can be helpful in several settings. In particular, the
RMSE on the parameters can be substantially reduced via
prewhitening when the sample size is relatively small.

Fourth, we find that the QS estimator suggested by An-
drews (1991) appears to fare slightly worse than the stan-
dard Bartlett kernel estimator for this model.

Fifth, we find that the automatic bandwidth choice pro-
posed by Newey and West (1994) is appropriate for large
samples in which the GMM Bartlett-kernel procedure com-
bined with this automatic bandwidth choice provides infer-
ence of a quality that other practical methods, arguably, will
be hard pressed to improve on. _

Sixth, we find indications that a diagonal weighting ma-
trix may be an excellent alternative when many moments
are required for estimation.

- Seventh, there is some evidence that the choice of less
volatile and lower-order moments dominate the choice of
more volatile and higher-order moments.

Eight, the popular x? statistic for goodness of fit of
the overidentifying restrictions appears fairly well behaved
when the general prescriptions regarding choice of mo-
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Table 11.  Distribution of Studentized Parameter Estimates
Parameter
w B Ou
Fractile 0-5 5-10 90-95 95-100 0-5 510 90-95 95-100 0-5 510 90-95 95-100
T = 1,000
M=9 2.1 2.8 1.6 7 2.0 2.9 1.7 7 2 .3 2.1 21
M=14 2.2 2.2 4.8 45 2.1 2.3 4.9 47 2.4 9.2 1.5 2.2
M=24 3.3 3.9 4.6 4.6 3.3 3.8 4.5 5.1 8.3 12.4 1.6 25
T = 2,000
M=9 2.3 3.2 29 1.1 2.2 3.2 2.9 14 .0 44 1.7 1.3
M= 14 2.3 49 3.3 25 2.3 48 3.4 2.7 6.2 1.7 1.7 1.1
M=24 4.0 5.8 3.2 35 3.9 5.6 3.2 4.0 11.0 8.9 1.8
T = 4,000
M=29 3.6 4.8 2.0 8 3.5 4.6 1.9 9 2.1 6.6 2.9 1.3
M= 14 3.1 4.2 1.9 1.9 3.1 4.0 1.9 1.9 6.9 11.1 2.1 .8
M=24 9.2 11.1 1.5 1.3 8.6 111 1.5 1.3 6.5 7.6 2.2 2.8
T = 10,000
M=9 3.8 6.0 2.7 1.6 3.4 6.1 3.1 1.5 4.4 6.5 3.0 1.3
M= 14 4.8 6.7 1.2 6 4.6 6.5 1.1 7 6.0 6.7 2.3 1.1
M=24 13.8 11.7 .6 6 12.9 11.7 6 .8 6.5 6.3 3.0 1.7
Mean corrected
T = 1,000
M=9 1.6 2.8 2.4 1.2 1.6 2.7 2.3 1.2 .0 A 3.1 5.4
M= 14 1.8 1.8 5.2 7.3 1.8 1.8 4.7 71 A .5 3.7 5.3
M=24 2.1 2.2 6.8 13.5 2.1 2.3 6.3 13.8 .6 3.5 3.4 6.2
T = 2,000
M=9 1.8 25 3.8 2.1 1.7 2.7 3.3 2.2 .0 A 3.0 43
M=14 1.7 1.8 5.4 5.0 1.7 2.0 5.5 4.9 1.6 2.3 4.5 4.5
M=24 1.5 2.8 4.8 8.6 1.6 2.6 4.6 8.6 2.4 5.6 4.5 4.1
T = 4,000
M=29 1.5 3.6 4.0 24 1.4 35 3.6 2.4 3 2.8 4.5 3.9
M=14 2.0 2.7 3.6 3.7 21 2.3 3.5 3.7 2.3 3.1 4.4 4.1
M=24 2.0 3.5 4.9 4.7 2.0 1.8 4.9 4.6 3.5 3.2 3.8 45
T = 10,000
M=9 2.2 34 4.8 2.6 2.3 3.3 4.5 2.6 2.8 34 4.8 3.6
M= 14 1.9 3.0 4.5 2.1 2.0 2.9 4.3 2.0 2.3 4.4 3.4 3.1
M=24 3.4 4.0 6.0 4.3 3.2 4.1 5.8 4.4 45 3.8 5.0 3.5
NOTE: Top panel: (p true p ) d standard deviation). Bottom panel: (p mean p M( d standard deviation). Based on same simulations as

Table 2.

ments relative to sample size are obeyed. If too few mo-
ments are included, there is a strong tendency for overre-
jections, and, even more importantly, when too many mo-
ments are included, the P values associated with the test
statistics are seriously inflated, and the test underrejects. It
is, moreover, evident that the satisfactory performance of
the test in certain parts of the design matrix is somewhat
coincidental. Even for very large samples, the estimates of
the elements along the diagonal of the optimal weighting
matrix display a very substantial upward bias. In these cir-
cumstances, size corrections may generally be necessary to
obtain meaningful specification tests and reasonable power
properties.

Strictly speaking, the findings are specific to the particu-
lar model being studied. The conclusions, nonetheless, are
likely to apply to a wide range of economic systems charac-
terized by strongly conditionally heteroscedastic series and
highly correlated moment conditions.

Several issues remain of interest in this context. How
do we further improve the finite-sample properties of the
GMM procedure, especially when sample size is small? Are
the conclusions robust across different volatility specifica-
tions? What are the efficiency bounds for alternative pa-

rameter constellations? What are the power properties of
the specification test against some relevant alternatives?
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APPENDIX: CHOICE OF MOMENTS

Our moments are chosen from among the following 34
moments, denoted m1-m24 :

ml = Elly|]
m2 = Ely)
m3 = Ely|’]
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m4 = E[y;)
md+1i = Elyyi—il], i=1,...,10
mld+i = E[y2yl,], i=1,...,10
m24+i = El|ylyt,], i=1,...,10.

3 moments: m1,m2, m5
5 moments: m1, m2, m4, m6, m15
9 moments: ‘
Baseline set (m9a): m1-m4, m5,m7, m9, m16,m18
Alternative set (m9b): m1-m4, m6, m8, m10, m15,m17
14 moments:
Baseline set: (m14a): ml-m4, m6, m8, m10, m12, m14,
ml15,ml17,m19, m21, m23
Alternative set: (m14b): m1-m4, m5, m7, m9, m11, m13,
ml6,ml18, m20, m22, m24
Absolute moments (ml4c): ml-ml4
Quadratic moments (m14d): ml1-m4, m15-m24
Absolute 3rd moments (ml4e): ml-m4, m25-m34
Mix of low abs 1st, 2nd and 3rd moments (m14f): ml-
md, mb—-m7, m15—m17, m25-m28
Alternative mix of 1st, 2nd, 3rd moments (m14g): m1-
m4, mb, m8, mll, ml4, ml6, m19, m22, m27, m30,
m33
24 moments: m1-m24
34 moments: m1-m34.

[Received February 1994. Revised November 1995.]
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