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GMM Estimation of a Stochastic Volatility Model: 
A Monte Carlo Study 

Torben G. ANDERSEN 
Department of Finance, J.L. Kellogg Graduate School of Management, Northwestern University, Evanston, II ' 60208 

Bent E. SDRENSEN 
Department of Economics, Brown University, Providence, RI 0291 2 

We examine alternative generalized method of moments procedures for estimation of a stochastic 
autoregressive volatility model by Monte Carlo methods. We document the existence of a trade- 
off between the number of moments, or information, included in estimation and the quality, or 
precision, of the objective function used for estimation. Furthermore, an approximation to the 
optimal weighting matrix is used to explore the impact of the weighting matrix for estimation, 
specification testing, and inference procedures. The results provide guidelines that help achieve 
desirable small-sample properties in settings characterized by strong conditional heteroscedasticity 
and correlation among the moments. 

KEY WORDS: 	 Asymptotic standard errors; Generalized method of moments; Goodness of fit; 
Simulation techniques; Specification tests; Weighting matrix. 

In recent years the interest in estimating stochastic 
volatility models has been strong. These models are com- 
plements as well as alternatives to the autoregressive condi- 
tionally heteroscedastic (ARCH) models (Bollerslev 1986; 
Engle 1982). The distinction between the two models relies 
on whether volatility is observable or not and may formally 
be stated in terms of measurability properties of the volatil- 
ity process (Andersen 1992). Although ARCH models are 
more tractable, at least in the univariate case, there are sev- 
eral reasons why some researchers have turned their atten- 
tion to a new class of models. First, multivariate ARCH 
models induce a proliferation of parameters that must be 
handled in an, arguably, ad hoc manner. Second, several the- 
oretical models build on the concept of unobservable latent 
factors generating asset returns-for example, information- 
flow interpretations of the mixture-of-distributions hypoth- 
esis (Andersen 1996; Clark 1973; Epps and Epps 1976; 
Foster and Viswanathan 1995; Gallant, Hsieh, and Tauchen 
1991; Tauchen and Pitts 1983), or low-dimensional factor 
structures that govern the joint mean and volatility features 
of returns (Diebold and Nerlove 1989; Engle, Ng, and Roth- 
schild 1990; Ho, Perraudin, and Smrensen 1996; King, Sen- 
tana, and Wadhwani 1994; Laux and Ng 1993). Third, al- 
lowing for time-varying volatility in diffusions, which are 
important in modern finance and economics, leads naturally 
to stochastic volatility specifications. Fourth, the close as- 
sociation between ARCH and diffusion models for high- 
frequency data (Nelson 1990, 1992; Nelson and Foster 
1991) has generated considerable interest in the properties 
of alternative discrete-time specifications for returns and 
the interrelations among them. 

Discrete-time approximations to diffusion processes have 
found frequent use in the option pricing literature in which 
lognormal autoregressive specifications for the volatility 
process serve as discretized Ornstein-Uhlenbeck processes. 
Early applications of the model include those of Taylor 
(1986), Johnson and Shanno (1987), Scott (1987), Hull 

and White (1987), and Wiggins (1987), and later applica- 
tions include those of Melino and Turnbull (1990) and Per- 
raudin and Smrensen (1994). In fact, this particular stochas- 
tic volatility model has come to dominate the field to the 
extent that it is referred to as the stochastic volatility model 
although it hinges on particular functional forms and distri- 
butional assumptions. It is interchangeably referred to as the 
lognormal stochastic autoregressive volatility model (An- 
dersen 1994a), the autoregressive random variance model 
(Taylor 1994), or the stochastic variance model (Harvey, 
Ruiz, and Shephard 1994). Consequently, most of the ac- 
cumulated evidence regarding estimation performance in 
stochastic volatility models applies to this specific model. 

The lognormal stochastic volatility model has been es- 
timated by a variety of means, including simple moment 
matching (MM) (Taylor 1986), generalized method of mo- 
ments (GMM) (Melino and Turnbull 1990), quasi-maximum 
likelihood (QML) (Harvey et al. 1994), various simulated 
method of moment (SMM) procedures (Duffie and Sin- 
gleton 1989; Gallant and Tauchen in press; Gourieroux, 
Monfort, and Renault 1993), Bayesian Markov-chain Monte 
Carlo analysis (MCMC) (Jacquier, Polson, and Rossi 1994, 
henceforth JPR), and simulation-based maximum likelihood 
estimation (SML) (Danielsson 1993, 1994; Danielsson and 
Richard 1993). Apart from MM, GMM, and QML, the ap- 
proaches are computationally intensive. The Monte Carlo 
evidence of JPR, however, suggests that GMM and QML 
have poor finite-sample performance, both in terms of bias 
and root mean squared error (RMSE) of the estimated pa- 
rameters when compared to the likelihood-based MCMC. 
Nonetheless, the relatively simple GMM and QML proce- 
dures will undoubtedly be used extensively in the foresee- 
able future due to the computational demands of the al- 
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ternative methods. Moreover, different stochastic volatility 
models are surfacing rapidly, and the more computationally 
intensive simulation-based strategies (MCMC and SML) ei- 
ther have not been designed to perform estimation outside 
of the lognormal volatility setting or they remain unproven 
in these contexts and may turn out to be infeasible. GMM 
and SMM procedures are, however, likely to apply to a wide 
set of models (Andersen 1994a). 

This article investigates the small-sample properties of 
GMM estimation of the lognormal stochastic volatility 
model. The issue was addressed by JPR and by Ruiz (1994). 
Both concluded that the GMM performs relatively poorly- 
the former found that GMM weakly dominates QML, but 
the latter reached the opposite conclusion. Although one 
can demonstrate that the performance of GMM can be im- 
proved relative to the results reported in these articles, and 
very much so in the latter case (Andersen 1994b; Andersen 
and Smrensen 1996), it is not surprising that conflicting evi- 
dence may be obtained given the number of specific choices 
that have to be made to implement the procedure. We take 
a comprehensive look at the relevant issues in a large-scale 
Monte Carlo study. To retain a benchmark, we rely primar- 
ily on the parameter and moment design used by JPR, but 
we expand on their setup by also exploring larger samples 
that are more representative of those used in typical studies 
based on high-frequency returns data. 

We first address the choice of the number of moments to 
include in the estimation procedure. We find that this de- 
pends critically on sample size. As the sample expands, one 
should exploit additional moment restrictions. In small sam- 
ples, however, the inclusion of an excessive number of mo- 
ments results in more pronounced biases and larger RMSE. 
Thus, the use of additional information can be harmful. We 
conjecture that this occurs due to the need to obtain an 
estimate of the weighting matrix used in the GMM proce- 
dure. When N moments are used, we are implicitly asked 
to estimate N(N + 1)/2 separate entries of the weighting 
matrix along with the sample moments. Clearly, if this di- 
mensionality is large relative to sample size the estimates 
of the weighting matrix may be poor which, in turn, dis- 
torts the metric by which the GMM procedure operates. 
It suggests a fundamental trade-off for GMM: Inclusion of 
more information in the form of additional moment restric- 
tions improves estimation performance for a given degree 
of precision in the estimate of the weighting matrix, but in 
small samples this must be balanced against the deteriora- 
tion in the estimate of the weighting matrix as the number 
of moments expands. In the present model, we are able to 
provide a fairly transparent characterization of the trade- 
off. Of course, the optimal trade-off will reflect the particu- 
lar model under consideration. Nonetheless, the qualitative 
conclusions are likely to apply to a general class of mod- 
els, characterized by strong conditional heteroscedasticity 
and correlation between the sample moments--conditions 
that are almost universal in high-frequency financial-returns 
series. 

Further evidence on the importance of estimation of the 
weighting matrix is obtained from Monte Carlo simulations 

of the GMM procedure in which the weighting matrix is 
fixed and approximately "truew-that is, estimated sepa- 
rately from a very large sample. This removes the main 
impact of the estimation error in the weighting matrix and, 
in addition, ensures that the sample moments are estimated 
independently of the weighting matrix. Our results confirm 
the preceding intuition. When the weighting matrix is esti- 
mated more precisely and independently of the sample mo- 
ments, inclusion of additional moments almost uniformly 
improves estimation performance. Hence, the deterioration 
of the estimation performance observed in the simulations 
is, indeed, partly due to the use of poor weighting matri- 
ces. Our observations are in line with the motivation behind 
the study by Altonji and Segal (1993). In a very different 
setting, they also investigated the bias in GMM procedures 
induced by the dependence between the estimated moments 
and the weighting matrix. 

In practice the "true" weighting matrix is not available 
but must be estimated along with the unconditional mo-
ments from the given sample. Although it is standard to rely 
on a nonparametric kernel estimate of the spectral density 
of the moment vector for this purpose, there is less con- 
sensus on the appropriate choice of kernel estimator. The 
majority of studies apply the White (1984) or the Bartlett 
kernel procedure with a fixed bandwidth that was advo- 
cated by Newey and West (1987). The previous discussion 
suggests that the choice of weighting-matrix estimator is 
potentially important. Andrews (1991) and Andrews and 
Monahan (1992) studied the properties of a general class of 
heteroscedasticity and autocorrelation consistent (HAC) es- 
timators including the White and Bartlett estimators. Three 
types of modifications were suggested. First, it is possi- 
ble to use an automatic (data-dependent) bandwidth. Sec- 
ond, the quadratic spectral (QS) kernel estimator is optimal 
in terms of truncated mean squared error within the HAC 
class for autocorrelation and heteroscedasticity of unknown 
form. Third, note that vector autoregressive prewhitened 
HAC estimators display superior finite-sample performance 
in several dimensions. We explore the virtues of these pro- 
cedures in the present setting. Specifically, we investigate 
the consequences of (a) using an automatic rather than a 
fixed bandwidth in the Bartlett procedure, (b) combining 
the automatic bandwidth with prewhitening, (c) employ- 
ing the QS kernel estimator of the weighting matrix rather 
than the Bartlett kernel. Finally, we explore the alterna- 
tive bandwidth-selection scheme proposed by Newey and 
West (1994), both with and without prewhitening. In addi- 
tion, some authors have used diagonal weighting matrices 
that may be a reasonable choice when estimates of the full 
weighting matrix are poorly behaved, so we briefly investi- 
gate this methodology as well. 

An important issue that we do not pursue at length is 
the selection of which-rather than how many-moments 
to include in the GMM procedure. As long as we remain 
within the confines of the traditional GMM approach that 
requires closed-form solutions for the analytical moments, 
the choice is both limited and fairly straightforward. In- 
tuitively, estimation efficiency is improved by using mo- 
ments with low sample variability rather than high sample 



330 

variability. We confirm this intuition through a few experi- 
ments that compare our leading choice of moments to the 
exclusive use of absolute or squared lagged return moments. 
In addition we consider some practical guidelines for the 
choice of alternative moments using the large-sample ap- 
proximation to the optimal weighting matrix. It is possible, 
however, that important efficiency gains can be obtained by 
a more ingenious selection of the moments. For example, 
Gallant and Tauchen (in press) suggested using an auxil- 
iary model as a moment generator based on the scores of a 
quasi-likelihood. Analyzing this approach by Monte Carlo 
methods requires an additional layer of estimation proce- 
dures and simulations and thus falls outside the scope of 
the present study. Nonetheless, thorough analysis of this 
type of procedures, based on the principles of efficient mo- 
ment selection or indirect inference, is a logical next step 
and should be high on the agenda for future research in this 
area. 

In addition, we do not implement the alternative GMM 
procedure recently advanced by Hansen, Heaton, and Yaron 
(1996). This involves simultaneous optimization of the 
GMM criterion function over both the sample and analytical 
moments of the model and the weighting matrix. The com- 
putational demands of this method were deemed impractical 
for inclusion in our simulation design, but the method pro- 
vides yet another potential route for improvements of the 
small-sample properties of the GMM procedure and should 
be investigated in future research. 

Our setup provides an ideal setting for an investigation 
of the Hansen (1982) X 2  test of goodness of fit based on the 
overidentifying restrictions of the model in the context of 
strong conditional heteroscedasticity in the data. The test is 
very popular because it may be calculated as a by-product of 
the estimation procedure. Although the finite-sample prop- 
erties of the X 2  test statistic have been explored in several 
studies, including those of Tauchen (1986), Kocherlakota 
(1990), and Ferson and Foerster (1994), there is hardly any 
direct evidence on the finite-sample behavior of the test in 
a context like this one. We find that the statistic is far from 
X 2  distributed in small samples, but, nonetheless, the 5%-
level test has approximately the correct size when we adhere 
to our guidelines regarding the preferred type and number 
of moments to include in the estimation procedure. Fur- 
thermore, the performance of the test deteriorates sharply 
when those prescriptions are ignored. Indeed, a general pat- 
tern emerges: When an excessive number of moments is 
used we unambiguously find that the test is biased strongly 
in favor of accepting the model. Alternatively, if a mini- 
mal number of moments is used we invariably find that the 
test overrejects. Studies concerned with GMM estimation 
in the context of high-frequency return series often include 
many moments. These studies may suffer from very sig- 
nificant size distortions, and standard hypothesis tests may 
lack power. On the other hand, macroeconomic applications 
often rely on the just-identified case. To the extent that our 
analysis carries over to this environment, we expect poor 
small-sample behavior of the parameter estimates and a ten- 
dency for overrejection by the standard tests. This appears 
consistent with the findings of recent studies in this area- 
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for example, those of Christian0 and den Haan (1996) and 
Burnside and Eichenbaum (1994). Thus, a large portion of 
the literature conducts asymptotically motivated inference 
and specification testing that is tenuous in light of our find- 
ings. 

The remainder of the article is organized as follows. Sec- 
tion 1 introduces the lognormal stochastic volatility model, 
discusses the specific choice of parameters we consider, 
and outlines the GMM estimation procedure. Section 2 de- 
scribes our general Monte Carlo setup with emphasis on 
our handling of the simulations that are incompatible with 
converging estimates within the parameter space. Section 3 
reports on the estimation performance of the GMM proce- 
dure in terms of bias and RMSE for each of our simula- 
tion designs, whereas Section 4 summarizes the evidence on 
the standard specification test based on overidentifying re- 
strictions. Section 5 considers some issues of inference by 
studying the small-sample distribution of the studentized 
parameter estimates, and, finally, Section 6 provides con- 
cluding remarks and suggestions for future research. 

1. THE STOCHASTIC VOLATILITY MODEL 
AND THE GMM PROCEDURE 

We investigate the following simple version of the log- 
normal stochastic volatility model: 

where (Zt,u t )is iid N(0,12);that is, the error terms are mu- 
tually independent standard normals. The parameter vector 
is 0 = (w,p, a,). For 0 < p < 1 and a, 1 0, the return 
innovation series, yt, is strictly stationary and ergodic, and 
unconditional moments of any order exist. Throughout, we 
work with parameter values that satisfy these inequalities. 

In the model, returns display zero serial correlation but 
dependency in the higher-order moments is induced through 
the stochastic volatility term, at, which follows a first-order 
autoregressive [AR(l)] model in logarithms. The volatility 
persistence parameter, p,  is estimated to be less than, but 
quite close to, unity in most empirical studies. Finally, the 
assumption of lognormality of the volatility process is a 
convenient parameterization that allows for closed-form so- 
lutions for the moments and is consistent with the evidence 
of excess kurtosis or "fat tails" in the unconditional return 
distribution. 

The specification ignores the possibility of a nonzero, po- 
tentially time-varying mean return as proposed by, for ex- 
ample, Engle, Lilien, and Robins (1 987), and it rules out cor- 
relation between the two error terms that would allow for 
an asymmetric "leverage effect" (e.g., Nelson 1991). This 
is done to retain the JPR benchmark and to keep the com- 
putational demands manageable. In addition, the simplified 
model remains a good first approximation for a variety of 
high-frequency financial-return series. 

GMM estimation exploits the convergence of selected 
sample moments to their unconditionally expected values. 
We denote the vector of sample realizations of the mo- 
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ments at time t by mt( 0 )  = (mlt( 0 ) ,. . .,mQt( 0 ) ) ,where 
the number of selected moments, Q, exceeds the dimension 
of 0-that is, the number of parameters to be estimated. 
The true parameter vector is denoted 00, and the sam-
ple moments are MT ( 0 )  = ( M I ,  ( 0 )  ,. . . ,h/r,, ( 0 ) )  , where 
M i r ( 0 )  = x:=j+lmit(O)/(T- j ) ,  for i = 1, . . . ,Q, and 
j is the maximum lag between the variables defining the 
sample moments. Finally, the corresponding vector of ana- 
lytical moments is denoted A ( 0 ) . The GMM estimator, 8 ~ ,  
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sample properties of the GMM estimator for a variety of 
choices of the weighting matrix are explored in the follow- 
ing sections. Here, we only provide a few general remarks. 
The class of kernel estimators of the spectral density matrix 
is of the general form 

minimizes the distance between A ( 0 )  and MT(O) over the 
parameter space O in the following quadratic form: eT = 
arg minet-= (MT(O)-A(o))'A,'(MT(o) -A(O)) ,where the 
specific matrix is determined by the choice of the positive 
definite and possibly random weighting matrix, AT.  Under 
suitable regularity conditions, eT is consistent and asymp- 
totically normal (Hansen 1982): - 00) - N ( 0 ,f l ) .  

The optimal choice of weighting matrix, A- l ,  in the sense 
of minimizing the asymptotic covariance matrix, f l ,  is given 
by the inverse of the covariance matrix of the appropriately 
standardized moment conditions: 

This matrix may be estimated by a kernel estimator for 
the spectral density of the vector of sample moments at 
frequency 0. The use of an appropriate weighting matrix 
is important. The return sample moments are likely to be 
heavily correlated and display strong serial dependence. If 
these features are ignored, say by using the identity ma- 
trix, there is likely to be a serious loss of efficiency. Indeed, 
when we attempt to estimate the present system with an 
identity weighting matrix, it becomes extremely ill behaved, 
and convergence is hardly ever obtained. Some preliminary 
scaling of the moments through the weighting matrix (e.g., 
by simple sample moment estimates) is simply a require- 
ment for meaningful inference by GMM in this model. 

Thus, to implement the GMM procedure, we face two 
basic choices, the selection of sample moments, m t ( 0 ) ,to 
use in estimation and the selection of the estimator of the 
weighting matrix, A;', where AT is an estimator of A based 
on T observations. 

The main guide to moment selection is the erratic finite- 
sample behavior of higher-order moments, caused by the 
presence of fat tails in the return series. Asymptotic normal- 
ity of oT requires finite variances of the moment conditions 
and, for practical purposes, good estimates of these quan- 
tities in finite samples. This suggests a focus on the lower- 
order moments, which is consistent with current practice as 
well as the approach taken by JPR. Hence, for simplicity, 
we elect to rely on (subsets of) the 24 moments used by the 
latter. Letting p = w / ( l - P )  and a2= a i / ( l - p 2 ) ,  the ana- 

where k ( j )  are weights that may become 0 for Jj l  > L T ,  
a lag truncation parameter that grows toward infinity at a 
slower rate than T and P T ( j )  is a covariance matrix es- 
timator at lag j-that is, for 8,  a consistent estimator of 
0 ,  

The most obvious difference between kernel estimators is 
the shape of the weighting scheme k ( j ) ,but the length (or 
bandwidth) of the weighting scheme determined by the pa- 
rameter L T ,  as well as the possibility of prewhitening, is 
also an important issue. Finally, it is possible that proce- 
dures based on weighting matrices outside of the class of 
kernel estimators possess attractive finite-sample proper- 
ties. All of these questions are addressed later. 

We conclude this section with an account of the param- 
eter values that generate our return samples in the Monte 
Carlo simulations. We follow JPR and concentrate on an 
expected value of a: of .0009, implying an annual standard 
deviation in weekly return data of around 22% and a co- 
efficient of variation of a; of unity. Then the choice of p 
determines the remaining parameters, w and a,. They fo- 
cus on p = .90 but report results for p = .95 and p = .98 
as well. Accordingly, we use p = .90 as our leading case, 
but we do also experiment with higher values for the per- 
sistence parameters due to the plethora of studies reporting 
very high estimates of persistence in the volatility process. 
The result is the following three parameter settings: 

(w ,p , a,) = (-.736, .90, .363) 

= (-.368, .95, .260) 

= (-.147, .98, .166). 

2. THE MONTE CARL0 SETUP 

The simulations were performed using GAUSS version 
3.1 on RISC/6000 workstations and on 486 PC's. We used 
the OPTMUM procedure for optimization, predominantly 
relying on the BFGS algorithm but also sometimes on the 
NEWTON and other algorithms. We found no discrepan- 
cies when we repeated identical jobs with different algo- 

lytic expressions are as follows: El yt l = ( 2 / 7 r ) l / ' ~ ( a t ) ,  rithms or on different platforms. Many of the Monte Carlo 
E(Y,2) = E(a,2),Ely,31= ~ @ F E ( ~ , ~ ) , E ( Y ? )experiments were performed using numerical derivatives, = 3 E ( 4  
E l ~ t y t - ~= 1 , . . . , l o ) ,and E ( Y , ~ Y , ~ _ , )but some jobs were later rerun using analytical derivatives. I ( 2 / n ) E ( a t a t - , ) ( j  = 
= E ( a : a E , ) ( j  = 1 , . . . ,l o ) ,where, for any positive integer This made absolutely no difference to the results. 
j and positive constants r ,s,E ( a z )  = e x p ( r p / 2 + r 2 a 2 / 8 )  We display results for the just-identified model (three mo- 
and E(o,'a;-,) = E ( a ; )  E(a,")exp(rs/3Ja2/4).  The finite- ments) and for the number of moments being M = 5,9 ,14,  



and 24. Our leading choice of moments consists of the se- 
lections denoted "Baseline set" in the Appendix. We rely on 
this set in the vast majority of the study. We consider sample 
sizes of T = 500 (following JPR), T = 1,000,2,000,4,000 
and 10,000. A sample of 1,000-4,000 is not uncommon in 
studies using daily or weekly data, and the T = 10,000 sim-
ulation is relevant given the increasing availability of trans- 
actions data. We perform 1,000 Monte Carlo simulations 
for each ( M , T )  combination. For the design T = 10,000 
and M = 24 this turns out to be computationally very de- 
manding (several days of central processing unit time on 
the RISC/6000, model 550). 

In each GMM estimation we performed three sets of 
iterations. In the first step we used a simple estimate of 
the weighting matrix, derived directly from the sample mo- 
ments, but in the second and third steps we used the kernel- 
weighting matrix under examination. We never detected any 
noticeable difference between the second- and third-step es- 
timations, and it is highly unlikely that a higher number of 
iterations over the weighting matrix would have made a 
noticeable difference. 

For the lower sample sizes our estimation algorithm was 
frequently unable to locate a minimum for the criterion 
function within the parameter space. Inspecting the itera- 
tions of the algorithm, we invariably noted a similar pattern 
in these situations. During the iterations the estimated value 
for the autoregressive parameter for volatility, /?,converged 
to 1, and as /? became approximately 1, the iterations would 
crash as the weighting matrix became singular or the cri- 
terion function diverged to infinity. To interpret our results 
for the lower sample sizes, it is critical to identify the source 
of these nonconvergence problems. The preceding observa- 
tions and our analysis presented in Section 3 suggest that 
the main issue is the lack of an interior optimum for the 
objective function over the open parameter space ( p  < 1)  
rather than a failure of the optimization routines to detect 
the optimum. 

We dealt with the crashes in the following fashion: If 
the weighting matrix was singular, we trapped the error. If 
it happened during the third and final estimation step, this 
simulation was discarded, but if it happened during one of 
the two preliminary steps, we went on to the next estima- 
tion step with /? adjusted to min{/?, Dm,,), where the upper 
bound, Dm,,, equals .999999. If /? went above P,,, during 
the iterations, we penalized the criterion function to force 
the estimate below Dm,,. In almost all of these cases the 
algorithm was unable to obtain convergence. We allowed 
for a maximum of 50 iterations in the first round, 200 in 
the second round, and 500 in the third round. An estimation 
was discarded if it reached the maximum number of itera- 
tions in the third round. We are convinced that these max- 
imum numbers of iterations were sufficiently large, so we 
did not eliminate any (or negligibly few) estimation exper- 
iments that eventually would have resulted in convergence. 
We continued the simulations until we obtained 1,000 sets 
of third-round iterations that terminated with convergence. 

It is not unproblematic to discard simulations that do not 
result in convergence because we systematically eliminate 
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samples that appear compatible with high values of P,  and 
hence a significant downward bias in our mean P estimate 
may result when many simulations are discarded. Similar 
biases will materialize for the remaining mean parameter 
estimates because they are correlated with the estimates of 
p. The impact on the RMSE is not predictable, however. If 
the discarded P estimates were replaced by an estimate near 
unity (effectively the strategy chosen by JPR), say .99999, 
then the RMSE of /? is enhanced or reduced depending on 
the simulation design. Rather than rely on corrective pro- 
cedures of this nature, we conclude that GMM is poorly 
equipped to deal with inference problems in cases that cor- 
respond to simulation designs for which we find many non- 
converging samples. 

3. RESULTS 

This section reports on our findings for each of the sim- 
ulation designs. 

3.1 Fixed-Bandwidth Bartlett Kernel 

Our first set of results relies on weighting matrices es- 
timated by the Bartlett kernel using a fixed lag length of 
LT = 10, and M = 3 ,5 ,9 ,14 ,  and 24. The weighting 
scheme takes the form k ( j )  = 1 - j / L T  and k ( j )  = 0 for 
j > LT.  This is the kernel estimator advocated by Newey 
and West (1987), and it is widely used in the literature. The 
choices of the lag length and, in particular, the number of 
moments included in the procedure are probably slightly 
on the low side relative to standard practice, but they are 
not unreasonable in light of the findings for the automatic 
bandwidth reported on later. Consequently, it serves as a 
natural benchmark for the subsequent experiments. More- 
over, it generates some interesting qualitative conclusions 
that hold up across all the designs. 

Before turning to the interpretation of the tables, we note 
that the use of 1,000 replications for each simulation de- 
sign results in small Monte Carlo errors for the reported 
statistics. Moreover, a direct and simple upper bound on 
the Monte Carlo standard error (exact if point estimates 
are unbiased) is available as N - ~ / ~RMSE. This bound is 
tight for samples in excess of 500; for example, consider 
the M = 14,T = 1,000 entry in Table 1. The upper bound 
on the standard error is 1,000- l /~(.657, .088, .143) = (.021, 
.003, .005), which is small and indistinguishable from the 
direct estimates of the standard error. 

Our first results are given in Table 1. Consider the first 
rows based on sample size T = 500. Some interesting con- 
clusions emerge immediately. The first and somewhat dis- 
turbing finding is that approximately a third of the esti- 
mations fail to converge. We explicitly assess whether this 
appears reasonable in a more controlled setting in the fol- 
lowing section. A second problem is that both the RMSE 
and the biases are substantial. In particular, the RMSE of 
the parameter w is about as large as its mean estimate. A 
third, and intriguing, observation is that the preferred choice 
of the number of moments for this sample size is M = 9. 
Although asymptotic theory may suggest that it is optimal 
to include as many moments as possible in the estimation 
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Table 1. Simulated Mean and Root Mean Squared Error: Bartlett Kernel, Fixed Bandwidth (lag length = lo),(w,P, 0,) = (- ,736, ,900, .363) 

# moments 

*u 

No convergence 

T = 1,000 
LJ 

B 
*u 

No convergence 

T = 2,000 
LJ 

B 
*u 

No convergence 

T = 4,000 
LJ 

B 
*u 

No convergence 

T = 10,000 
LJ 

B 
*u 

No convergence 

NOTE The reported statistics are based on 1,000 simulated samples of sample size equal to the indicated T. For each cell, the first number shows the mean and the second the root mean 
squared error (in parentheses) 

procedure to maximize the information extracted from the rameter bias is all but eliminated except for 8, which re- 
sample, this is clearly not correct for this sample size. A mains downward biased. 
fourth noteworthy point is that the exactly identified model We also find that the results based on a higher number 
(M = 3) fares extremely poorly. Estimation for this case of moments tend to improve relative to the M = 9 case as 
consists of solving three equations in three unknowns. A the sample size grows. In fact, for T = 4,000 the RMSE 
"nonconvergence" is reported when the solution falls out- for the choice of M = 14 uniformly dominates the M = 9 
side of the parameter space; that is, p > 1.For comparison case, but M = 24 generally underperforms relative to both. 

with the other entries in the table the results provided for Moreover, it is evident that for the design T = 2,000 and 

M = 3 exclude the parameter estimates associated with M = 14 the problems with lack of convergence are no 

such nonconvergence. One might conjecture that the just- longer of much concern. Interestingly, in the case of a very 

identified approach is attractive if problems in estimating large sample, T = 10,000, it often remains preferable to use 

the weighting matrix are the source of the poor performance 14 rather than 24 moments. Nevertheless, even for samples 

of the GMM procedure. Our findings, however, effectively of this size, the exactly identified model still crashes fairly 

eliminate this procedure from the range of desirable op- often, and its performance in terms of RMSE is clearly 
inferior to all other choices of M. It is safe to conclude tions. 
that our findings soundly refute the usefulness of the just- 

Fortunately, the quality of the inference improves rapidly identified approach in this setting. 
as the sample size increases. For estimates of w and P, the Our results are roughly in agreement with the corre-
RMSE shrinks faster than is to be expected from standard sponding results of JPR, which are based on 500 simula- 
root-T asymptotics, and the RMSE (at least for T = 1,000 tions with T = 500 and T = 2,000. They deal quite differ- 
to 10,000) for a, declines roughly in line with root T. This ently with the problems of nonconvergence because they 
reflects the fact that the biases disappear more quickly for "force" the estimate of p at .99 rather than discarding the 
the first two parameters. It further indicates that the RMSE results. For T = 500, our results based on 24 moments, 
for the smaller samples are driven by outliers that tend but excluding the discarded simulations, are slightly better 
to disappear at a rapid rate as the sample size increases. in terms of RMSE than those reported by JPR. For the au- 
Harvey and Shephard (1993) reported similar dramatic re- toregressive volatility parameter P, this is clearly not due to 
ductions in RMSE with increasing sample size when they the elimination of nonconverging estimates. For P, letting 
estimated the model by QML. The extreme number of the estimate be less than but approximately equal to unity 
crashes reported for the smaller samples further reinforces when nonconvergence occurs actually reduces the overall 
this conclusion. In addition, for the larger samples the pa- RMSE (1 - .9 = 1 is less than the reported RMSE) and 
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Table 2. Simulated Mean and Root Mean Squared Error: 

Bartlett Kernel, Fixed Bandwidth (1.2* T'I3), (w,p, uU)  


= (- ,736,,900,,363) 


# moments 9 14 24 

T = 1,000 
w -.a31 (.603) -.a20 (.760) -.995 (.769) 

P .ass ( .oai)  .a91 ( .os i )  ,667 (.102) 
+u ,300 (.131) ,283 (.149) ,294 (.134) 
No convergence 105 5 1 48 
Fixed lag 12.00 12.00 12.00 

T = 2,000 
w -.787 (.360) -.a23 (.366) -.go8 (.439) 

b .a94 (.049) ,889 (.049) ,878 (.058) 
e u  ,321 (.093) ,320 (.089) ,317 (.090) 
No convergence 13 5 0 
Fixed lag 15.12 15.12 15.12 

T = 4,000 
ij -.a04 (.243) -.a00 (.222) -.go4 (.295) 

b ,891 (.033) ,892 (.030) ,878 (.039) 
+u ,343 (.060) ,335 (.058) ,345 (.055) 
No convergence 0 0 0 
Fixed lag 19.05 19.05 19.05 

T = 10,000 
LJ -.769 (.142) -.790 (.129) -.a46 (.176) 

b ,896 (.019) ,893 (.017) ,886 (.023) 
e u  ,353 (.036) ,352 (.031) ,355 (.032) 
No convergence 0 0 0 
Fixed lag 25.85 25.85 25.85 

NOTE. The reported statistics are based on 1,000 simulated samples of sample size equal to 
the indicated T For each cell, the first number shows the mean and the second the root mean 
squared error (in parentheses). 

almost eliminates the bias in the mean estimate. Not sur- 
prisingly, similar but even stronger conclusions follow from 
our M = 9 case. For T = 2,000, our M = 24 case pro- 
duces almost identical results to theirs, both with respect to 
the mean estimates and to the RMSE. This is particularly 
encouraging because the number of nonconverging simula- 
tions is negligible for this design (less than half a percent), 
and it confirms basic compatibility between the two studies. 

An immediate question concerns the robustness of the 
findings in Table 1. Thus, we next investigate an alterna- 
tive set of GMM estimates based on a different, and prob- 
ably more reasonable, interpretation of the concept of a 
fured-bandwidth Bartlett kernel. Andrews (1991) pointed 
out that converges to A at the fastest possible rate 
when the bandwidth grows with ~ ~ 1 ~ .This suggests let- 
ting LT = y ~ 1 1 3for a given y. Hence, the bandwidth is 
fixed for a given sample, but we allow it to grow with the 
size of the sample. We choose y = 1.2 as our leading case, 
implying a lag length of 12, 15, 19, and 25 for sample sizes 
T = 1,000,2,000,4,000, and 10,000, but we also investigate 
shorter and longer lags by letting y = .6, .9,2,5, and 10. 
The lag lengths for y = .6 and .9 correspond roughly to 
the average lag length picked by the automatic bandwidth 
procedure for the Bartlett kernel with M = 14 (Table 5, 
Sec. 3.5), and straddle LT = 10 (Table I), but the longer 
lag length picked by the other choices of y are in line with 
those used later in the article. Consequently, comparisons 
across tables remain meaningful. 

Table 2 collects the results from our leading case among 
the alternative fixed-bandwidth GMM estimates. First, we 

notice that the relative performance across the designs in 
Table 2 largely mirrors that of Table 1. Second, we find 
that the choice of wider bandwidths for the larger samples 
generally is beneficial. For example, for the M = 14 design, 
which tends to perform well, the RMSE's are strictly lower 
than before for all sample sizes above T = 1,000-that is, 
when the impact of the nonconverging samples is negligible. 
The identical observation holds true for M = 9, but the 
evidence for the M = 24 design is mixed. 

Figures 1 and 2 provide evidence for the performance 
across a wider set of bandwidths. For brevity, only results 
for the M = 14 design are included, and we only consider a 
small (T = 1,000), large (T = 4,000), and very large sample 
( T  = 10,000). Figure 1 displays the RMSE of ,B and Figure 
2 the RMSE of a, as functions of the bandwidth parameter 
y.The RMSE for w is not shown, but it displayed the same 
pattern as the RMSE for ,B. According to the asymptotic 
theory for estimation of the weighting matrix, a fixed value 
of y is optimal, but this is not borne out by the RMSE of 
the estimated parameters. For the parameter ,B, it is evi- 
dent that a small bandwidth is optimal for the small sample 
(although the results for this sample size should be inter- 
preted cautiously due to the elimination of nonconverging 
samples). For T = 4,000, a clear U shape emerges, imply- 
ing that an intermediate choice of bandwidth is preferable. 
This pattern is also discernible for T = 10,000, but here the 
penalty for choosing a very large bandwidth has declined 
sharply as the right leg of the U shape has flattened. For 
a, the evidence is somewhat different, with a longer band- 
width being optimal in small samples, although the U shape 
for the larger samples is quite similar to the pattern found 
for p. 

Although the gains obtained from optimizing over the 
bandwidths thus are nontrivial, the gains realized by in- 
cluding the appropriate number of moments in the estima- 
tion procedure appear more substantial. Table 2 reveals that 
M = 9 seems to dominate M = 14 and M = 24 for small 
samples (subject to the usual caveat), but, as in Table 1, 
M = 14 dominates M = 9 for T larger than 2,000, and in 
most cases M = 14 also dominates M = 24, except that the 
latter occasionally provides the best available estimate of a,  
for the larger samples. This may imply that a choice of M 
between 14 and 24 might dominate both in some cases. 

In summary, we find that the quality of inference is quite 
sensitive to the number of moments included in the estima- 
tion procedure relative to sample size. In addition, there is 
some evidence that a fairly large number of lags should be 
incorporated in the kernel estimators for the larger samples. 

We conjecture that the eventual deterioration in the per- 
formance of GMM, as more moments are incorporated in 
the procedure (for a given sample size), is linked to prob- 
lems with the estimated weighting matrix used in the ob- 
jective function. The sample moments are quite highly cor- 
related, which may result in a badly conditioned weighting 
matrix. In addition, because this matrix includes, for ex- 
ample, 25 a 2412 = 300 elements for M = 24, the many 
implicitly estimated parameters may in part be responsible 
for the rather disappointing results. 
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Bandwidth: 0.6; 0.9; 1.2; 2; 5; 10; Bandwidth: 0.6; 0.9; 1.2; 2; 5; 10; 

Bandwidth: 0.6; 0.9; 1.2; 2; 5; 10; 

Figure 1. Root Mean Squared Emr  (RMSE) for GMM Estimates of p. The results are based on 1.000 converging estimates for each combination 
of sample size and (fixed) bandwidth. The GMM procedure is implemented using an estimated weighting matrix determined by the Bartlett kernel 
with a lag length given by the bandwidth parameter, 7, as LT = 7 . T ' ~ .  The figures display findings for sample sizes T = 1,000; 4,000; 10,000. All 
estimates are based on M = 14 moments. 

3.2 GMM Estimation Using the 'True" Weighting Matrix 

Previously, we conjecture that there is a trade-off between 
the amount of information used in estimation (the number 
of sample moments included) and the quality of the objec- 
tive function (the precision of the estimate of the appropri- 
ate weighting matrix). This trade-off changes with sample 
size because the weighting matrix-for a given number of 
moments-is more precisely estimated as the sample grows. 
The empirical results presented in the preceding section 
provide indirect support for this interpretation, but a more 
direct exploration of this hypothesis is available in the cur- 
rent setting. Rather than estimate both the sample moments 
and the weighting matrix from the given simulated sam- 
ple, we estimate the latter from a separate and very large 
simulated sample and exploit this as an approximation to 
the "true" optimal weighting matrix in the subsequent sim- 
ulations. In this manner the weighting matrix is estimated 

with higher precision and the estimate is independent of the 
sample moments. If the estimate of the weighting matrix is 
critical for the performance of the GMM procedure, this 
should lead to an appreciable improvement for the larger 
samples. 

Table 3 reports on the results from this simulation exper- 
iment. We repeat the estimations from Table 1 (except for 
the exactly identified model, of course) using a fixed, ex- 
ogenous approximation to the true weighting matrix. This 
weighting matrix was constructed from simulations for each 
choice of M, using 50,000 observations and a lag length of 
50. This choice corresponds to 1.36 * T ' / ~ ,  which belongs 
to the suitable range according to our earlier findings. 

The findings are revealing. First, notice that the simula- 
tions now are much less prone to crash. Second, and even 
more to the point, there is an almost uniform improvement 
in the RMSE as more moments are included. This supports 
our suspicion that a poorly estimated weighting matrix is 
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Bandwidth: 0.6; 0.9: 1.2: 2: 5: 10; Bandwidth: 0.6; 0.9; 1.2; 2; 5; 10; 

Bandwidth: 0.6; 0.9; 1.2; 2: 5; 10; 

Figure 2. Root Mean Squared Error (RMSE) for GMM Estimates of 0". The results are based on 1,000 converging estimates for each combination 
of sample size and (fixed) bandwidth. The GMM procedure is implemented using an estimated weighting matrix determined by the B d e t l  kernel 
with a lag length given by the bandwidth parameter, 7 ,  as LT = 7 - Tim. The figures display findings for sample sizes T = 1,000: 4,000; 10,000. 
All estimates are based on M = 14 moments. 

the root of many of the problems encountered in Tables 
1 and 2. It is, however, clear that, even with this approxi- 
mation to the true weighting matrix, the inference is poor 
for T = 500, in which the RMSE remains very large. It is 
also noteworthy that around 10,000 observations are needed 
before most of the bias in eU is gone. 

The procedure underlying the results reported in Table 
3 is, of course, not feasible in practice but serves to high- 
light the potential gains that may be obtained by including 
the various moments in the estimation procedure. We pur- 
sue this issue further in Subsection 3.3. Moreover, the re- 
sults point to a critical influence from the estimation of the 
weighting matrix. Thus, we shall examine several different 
strategies for choosing the weighting matrix. 

The results allow an informal comparison to the Bayesian 
estimator proposed by JPR. The RMSE from the simula- 
tions using the "true" weighting matrix provides an approx- 

imate lower bound for the RMSE that can be obtained us- 
ing the same set of moments and an estimated weighting 
matrix, as we substantiate later in the article. It is interest- 
ing to observe that-for the present parameter constellation 
and moments--GMM cannot be expected to match the ef- 
ficiency of the Bayes estimator as reported in their table 5. 
On the other hand, it is feasible to improve the efficiency of 
their GMM estimator. Specifically, for the three parameters 
via the Bayes estimator they reported the RMSE (15, .02, 
.034) and for the GMM estimator (42, .06, .lo). The corre- 
sponding RMSE entries (for T = 2,000, M = 24) in Table 3 
are (.275, .037, .070). Whether the relative efficiency gains 
associated with the use of the Bayesian estimator are similar 
for alternative designs, including more persistent volatility 
processes, can be addressed by similar means. The answer 
is not obvious because higher volatility persistence appears 
to induce an improvement in the efficiency of the GMM 
estimator relative to the Bayes estimator. 
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Table 3. Simulated Mean and Root Mean Squared Error: Exogenous Approximation 
to the "True" Weighting Matrix: (w, P, 0,) = (-,736, ,900,,363) 

# moments 5 9 14 

T = 500 
2 
B 
6u 

No convergence 


T = 1,000 
2 
a 

6u 

No convergence 


T = 2,000 
2 
B 

6u 

No convergence 


T = 4,000 
LJ 

P 
su 

No convergence 


T = 10,000 
2 
B 
ku 

No convergence 


NOTE: The reported statistics are based on 1,000 simulated samples of sample size equal to the indicated T. For each cell, the first 
number shows the mean and the second the root mean squared error (in parentheses). 

3.3 	 Asymptotic Efficiency for Alternative 
Moment Selections 

We do not address the general question regarding the 
optimal choice of moments that has been studied recently 
by, for example, Gallant and Tauchen (in press). Instead, 
we explore the implications of choosing different sets of 
moments among the ones that lead to closed-form, analytic 
solutions for the moments. This allows us to stay within the 
classical GMM framework. 

The approximation to the true weighting matrix, A, al-
lows us to find the asymptotic standard deviations of the 
parameters estimates for alternative selections of moment 
conditions. These calculations may be useful for a prelimi- 
nary selection of moments in the spirit of Ruiz (1994), who 
also relied on asymptotic standard deviations as a bench- 
mark for finite-sample performance. 

From Hansen (1982) we have the following expression 
for the asymptotic variance-covariance matrix, R,  of the 
parameter estimates, eT : 

R = a(80)'Aa(80), where a(Bo)= -

Because we have an estimate of A and we, in addition, have 
analytic expressions for A($ )  and thus a($) ,we may esti- 
mate the true R by simply plugging in our estimate of A 
and the analytic derivatives evaluated at the true param- 
eter vector. Hence, we obtain a tangible approximation to 
the asymptotic variance-ovariance matrix of the parameter 

estimates. The implied asymptotic standard errors for the 
individual parameters should provide a natural lower bound 
for the RMSE that we can achieve in our finite-sample ex- 
periments. The only caveat associated with this interpreta- 
tion is that the weighting matrix estimated from even this 
very large sample continues to display a fairly large degree 
of variability. We investigate this problem further later in 
the article. The standard errors obtained from a sample of 
50,000 should, nonetheless, serve as a gauge for the effi- 
ciency that we can hope to attain in our shorter samples in 
the simulation designs, and this seems to be confirmed by 
our subsequent results. 

Table 4 reports the asymptotic standard errors normal- 
ized to correspond to a sample size of 2,000 for alternative 
selections of moments. We expect the use of more moments 
to improve inference as additional information is exploited 
and most of the impact of estimation error in the weight- 
ing matrix has been eliminated. This expectation is basi- 
cally confirmed, but the pattern is nonetheless striking. The 
decline in the standard errors as we move from M = 5 
to M = 9 is remarkable. Clearly, the extra four moments 
contribute significant additional information regarding the 
parameters. The improvement from M = 9 to M = 14 is 
also substantial, albeit less dramatic. But the move from 
hi1 = 14 to M = 24 is barely noticeable. The inclusion 
of the final 10 moments apparently adds very little infor- 
mation. This suggests that the use of 24 moments may be 
excessive in any of our simulation designs. The small gain 
in information is likely not sufficient to compensate for the 



loss in efficiency associated with deteriorating estimates of 
the weighting matrix. 

We further study the impact of introducing a new set of 
lagged moments in the estimation procedure. We chose the 
following (third order) moments: 

Including some of these among the 14 moments (and ex- 
cluding some lagged absolute or squared moments) always 
results in larger RMSE. This occurs irrespective of whether 
all lagged moments or only a part of the lagged moments 
are of this type. Hence, we conjecture that inclusion of such 
lagged moments is unlikely to improve estimation perfor- 
mance. We experimented with the composition between the 
lagged squared and absolute moments in the designs with 
9 and 14 moments. The changes are in all instances minor, 
and none provide significant improvements over our lead- 
ing choice of moments. We conclude that the difference 
in estimation performance across designs with a different 
number of included moments is due largely to the increase 
in the number of moments rather than the specific identity 
of those moments. 

To gauge the empirical relevance of the results, we ex- 
amined by Monte Carlo simulation whether 14 sample mo- 
ments of the form E [y: y;,] (labeled "Quadratic moments" 
in the Appendix) or the form E[lytyt- ,(]  ("absolute mo- 
ments") contain more information about the parameters. We 
found that the results based on the absolute moments have 
the lower RMSE, but the gains were quite minor. These 
results were reported by Andersen and Smrensen (1995). 
When we compared to the results for our baseline set of 14 
moments in Table 2, we found even less clear-cut evidence. 
For T = 2,000, the RMSE of the absolute-moments-based 
procedure dominates, but for T = 4,000, the baseline mix 
of moments appears better, and again all differences are 
minor. This may be compared to the asymptotic standard 

Table 	4. Asymptotic Std. Deviations Using "True" Kernel- 
Alternative Models: (w,P,a,) = (-. 736,,900,.363) 

Parameter w P uu 

5 moments 

9 moments 
Baseline set of moments (m9a) 
Alternative set (m9b) 

14 moments 
Baseline set of moments (m14a) 
Alternative set (m14b) 
"Absolute" moments (m14c) 
"Quadratic" moments (m14d) 
Absolute 3rd moments (m14e) 
Mix of low abs lst, 2nd, and 3rd 

moments (m14f) 
Alternative mix of lst, 2nd, 3rd 

moments (m14g) 

24 moments 
Baseline set 

34 moments 
All moments included 

NOTE: Standard deviations are normalized to correspond to T = 2.000. The exact selection of 
moments for each model is listed in the Appendix. 
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in Table 4 (m14a, m14c, and m14d).  Again, the differences 
between the three sets are minor, but it is noteworthy that 
this semianalytic approach ranks the designs in the same 
way that our simulations do; that is, the uses of mixed and 
absolute lagged moments are close, but with a minor edge to 
the mixed moments, whereas relying exclusively on lagged 
squared moments is inferior to both. This suggests that the 
semianalytic efficiency bounds may be relevant for econo- 
metric practice. The issue appears, however, not to be of 
first-order importance, and from this evidence it seems that 
our prior selection of a mix of absolute and quadratic lagged 
moments performs reasonably well. 

In conclusion, we note that this analytic procedure may 
be useful for preliminary assessment of the appropriate es- 
timation design whenever closed-form expressions for the 
moments can be obtained. Such calculations can potentially 
eliminate the need for large-scale simulation experiments 
over various moment designs by providing a reasonable 
guide to the relative importance of different moments for 
estimation performance. This insight may be relevant for 
quite general GMM estimation problems. 

3.4 	 Analysis of Nonconvergence 

The present setting is ideal for an assessment of the re- 
ported number of "crashes." If the asymptotic normal ap- 
proximation remains good within the neighborhood of the 
true parameter vector, then the standard error of ,8 provides 
an estimate of the probability with which the ,8 estimate 
will exceed unity and thus potentially induce a crash. For 
example, the reported standard error for M = 5 of .0727 in 
Table 4 implies that for T = 2,000 ,8 will exceed unity with 
probability 1 - Q ( [ 1- .9]/.0727) = .084, where a(.)de-
notes the cumulate density function of the standard normal 
distribution. We should thus expect that 8.4% of the esti- 
mations crash due to an estimate of ,B that falls outside of 
the parameter space. The actual number of crashes for this 
cell in Table 3 is 93 or 8.5% [= 93/(1.000 + 93)] .A similar 
analysis suggests 5, 1, and 1 crashes for M = 9,14, and 24, 
respectively, whereas the realized number of crashes were 
2, 1, and 0. It appears that this analysis is able to rationalize 
the propensity of the estimations to crash. For the smaller 
samples, in which the asymptotic standard errors can be 
obtained by simple transformations of the ones given for 
T = 2,000, we expect the corresponding calculations based 
on the normal approximation to be less precise, which, in- 
deed, is what we find. The orders of magnitude remain cor- 
rect, however. For T = 500 the asymptotic standard errors 
predict 24.6% , 10.1% ,5.8% ,and 5.3% crashes, whereas 
the actual occurrences numbered 356, 77, 15, and 23, or 
26.2% , 7.1% , 1.5% ,and 2.2% . When the weighting ma- 
trix is estimated from much smaller simulated samples, the 
parameter estimates become more erratic, and we should 
expect to find an even higher proportion of crashes, as 
we do. 

The interpretation provided previously suggests that es- 
timates of, for example, P in the right tail of the empirical 
distribution have been eliminated due to the boundary of 
the parameter space. This feature is, indeed, quite appar- 
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T=1,000; M=14 T=4,000; M=14 

Beta Beta 

Beta 

Figure 3. The Distribution of GMM Estimates of P. The figure shows the frachbn of estimates that fall within the different 5% frachles. The 
results are based on 1,000 converging estimates for each sample size. The GMM procedure is implemented using an estimated weighting matrix 
determined by the Bartletl kernel using a lag length of 1.2 . PB. Figures are displayed for sample sizes T = 1,000; 4,000; 10,000. All estimates 
are obtained with M = 14 moments. 

ent in plots of the distribution of the P estimates. Figure 3 
shows the distribution for M = 14 and T = 1,000,4,000, 
and 10,000 when using the simulation design in Table 2. It 
seems apparent for the small sample that the right tail has 
been truncated at p = 1, and furthermore the distribution 
displays a long left tail. For the larger sample sizes, in which 
we do not encounter convergence problems, the right tail is 
bounded away from P = 1, and the tails become closer 
to being symmetric as the sample size increases, although 
there is still some evidence of left skewness in the distri- 
bution even for T = 10,000. Andersen and S~rensen (1995) 
displayed similar results for alternative moment selections. 

The preceding is at best indirect evidence for the hy- 
pothesis that the crashes are associated with instances in 
which the objective function does not attain a minimum 
within the parameter space. We therefore explored the is- 
sue further. Specifically, we collected samples that did not 

converge in the (M,T) = (5,500) design when using the 
BFGS algorithm. We then subjected these samples to a va- 
riety of alternative optimization algorithms. Although the 
procedures differ in their ability to accommodate estimates 
very close to the boundary of the parameter space, they all 
eventually fail for the nonconverging samples as numeri- 
cal problems terminate the routine. Andersen and S~rensen 
(1995) reported the value of the objective function as the 
estimated parameter vector approaches the boundary for a 
few arbitrarily selected nonconverging samples. The values 
were obtained by fixing the P grid and optimizing over the 
other parameters using the NEWTON algorithm in GAUSS, 
which generally was the best algorithm in terms of accom- 
modating P estimates close to unity (we found that the 
number of crashes was not sensitive to the choice of al- 
gorithm but that the BFGS algorithm sometimes crashed 
sooner along the increasing P sequence). Nonetheless, in all 
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Table 5. Simulated Mean and Root Mean Squared Error: Bartlett Kernel, 

Automatic Bandwidth, (w, P, a,) = (-.736, ,900,,363) 


# moments 9 (non-pw) 14 (non-pw) 14 (Pw) 24 (PW) 

T = 500 
LJ 

6 

e u  
No convergence 

Average lag (std. dev.) 


T = 1,000 
ij 


6 

e u  
No convergence 

Average lag (std. dev.) 


T = 2,000 
ij 


6 

e u  
No convergence 

Average lag (std. dev.) 


T = 4,000 
ij 


6 

eu  
No convergence 

Average lag (std. dev.) 


T = 10,000 
G 

6 

s u  
No convergence 

Average lag (std, dev.) 


NOTE: The reported statistics are based on 1.000 simulated samples of sample size equal to the indicated T For each cell, the first 
number shows the mean and the second the root mean squared error (in parentheses). (pw): The prewhitening technique is applied 
using univariate AR(1) approximations to each sample moment. 

cases the objective function improves monotonically until it 
eventually explodes. The P values obtained for these non- 
converging samples did not correspond to bad fits of the 
model but seemed evenly distributed over the unit interval. 

In addition, we picked 100 nonconverging samples from 
the preceding design and estimated the parameters in the 
just-identified case, M = 3, using a genuine subset of the 
five moments (ml,  m2, and m6) as the identifying mo- 
ments. In 98 of the 100 cases, the implied estimate of /3 
was above unity and (by construction) that of a, was nega- 
tive. For one of the remaining two samples, the alternative 
subset of moments (ml,m2,and m15) resulted in a sim- 
ilar "crash." The remaining sample was characterized by 
an exceptionally high fourth moment relative to the second 
moment, but no further exploration was undertaken. 

Our findings support the interpretation that the crashes 
are associated with the lack of interior optima within the 
parameter space. This provides a rationale for discarding 
the nonconverging samples and interpreting the reported 
results as representative of the subset of GMM results that 
succeed in achieving convergence. On the other hand, one 
may suspect that practitioners may experiment with alter- 
native choices of moments for a given sample before aban- 

doning their GMM estimation strategy. An informal inves- 
tigation of this possibility revealed that such procedures 
usually will detect a collection of moments that achieves 
convergence. Such exploratory search over alternative se- 
lections of moments will induce a type of bias in reported 
results that is virtually impossible to quantify within our 
simulation setting. Consequently, there are numerous rea- 
sons to emphasize the difficulty of interpreting the results 
for the smaller samples. Fortunately, the results for the in- 
termediate and larger samples are basically unaffected by 
these nonconvergence problems. 

3.5 Bartlett Kernel With Endogenous Bandwidth 

Table 5 reports on GMM estimation using the Bartlett 
weighting matrix but with lag length chosen according 
to the suggestions of Andrews (1991). In this subsection 
we discuss the results when the weighting matrix is not 
prewhitened, displayed in the columns labeled "non-pw." 
We report the results for M = 9 and M = 14, because 
these moment selections clearly dominated the results for 
5 and 24 moments. Specifically, we chose an AR(1) ap- 
proximation to the sample moments for the purpose of de- 
termining a suitable bandwidth, and we therefore rely on 
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the appropriate part of formula (6.4) of Andrews (1991). 
The exact formulas are as follows: Let (b,, &&),m= 
1, .  . . ,M ,  denote the estimates of the autoregressive and 
innovation variance parameter for each of the moments, 

Mand let K = Ern=, & $ / ( I  - f i r n ) 4 .  Then the Bartlett 
lag length is chosen as LT = where1 . 1 4 4 7 ( & ( 1 ) ~ ) ' / ~ ,  

M
& ( I )= Ern=, ( 4 j h j $ ) / [ K ( 1 -  jrn)'j(l+ 

The impact of the endogenous choice of lag length is 
apparent. The average number of included lags grows not 
only with sample size but also, rather significantly, with 
the number of included moments [this is particularly strik- 
ing from the full set of simulations reported by Andersen 
and Serrensen (1995), in which results were also reported 
for 5 and 24 moments]. The latter is ignored by the fixed- 
bandwidth procedures. The difficulty of accounting for this 
factor in an appropriate fashion prior to estimation pro- 
vides a strong argument in favor of the automatic, or data- 
dependent, bandwidth choice. 

Most of the conclusions from Table 1 still hold up. It re- 
mains preferable to use 9 moments for the lower values of 
T and 14 moments for the higher values of T .  For T = 500 
and hl = 9, the estimations appear more prone to crash. 
Moreover, the upward bias in the mean estimates of w now 
is less pronounced and in some cases ( M  = 9, T = 1,000, or 
T = 2,000) it has changed sign. It is also clear from a com- 
parison of Tables 1 and 5 that it is almost always preferable, 
in terms of RMSE and bias, to use the automatic, or plug- 
in, bandwidth relative to the rather conservative choice of 
LT = 10. Note also that the bias in the important p parame-
ter is sharply reduced for the empirically relevant estimation 
with 14 moments and 1,000-2,000 observations. 

Interestingly, comparisons to the fixed bandwidth in Ta- 
ble 2 and Figures 1 and 2 provide a more mixed picture. The 
automatic bandwidth procedure again performs uniformly 
well for the small samples ( T  = 1,000). For T = 2,000 the 
automatic bandwidth also stands up well against the pre- 
vious procedures, but the evidence is mixed whenever the 
fixed-bandwidth choices are longer than the average ones 
chosen by the data-dependent procedure. Finally, for the 
larger sample sizes ( T  = 4,000 and T = 10,000) the pro- 
cedures relying on the longest (average) lag length seem 
to dominate in terms of RMSE. This confirms our earlier 
findings regarding lag length for the large sample sizes, in 
which a fixed y between 1.2 and 2 may be a sensible choice. 

Encouraged by the significant improvements form this 
procedure, we turn to the prewhitening method suggested 
by Andrews and Monahan (1992). 

3.6 Bartlett Kernel With Prewhitening 

Prewhitening consists of a preliminary transformation 
that flattens (prewhitens) the spectral density of the sample 
moment vector prior to applying the kernel estimator, thus 
improving the properties of the estimator, and then invert- 
ing the transformation to obtain an estimate of the original 
spectral density at frequency 0. If ~ ( 6 )is the orthogonality 
condition, mt - A(@,evaluated at a consistent parameter 
vector 6 obtained from a preliminary estimation step, then 
the suggestion of Andrews and Monahan (1992) is to (a) fit 

a first-order vector autoregressive [VAR(l)] (or higher-order 
VAR) to S/t : G = B S / ~ - ~+T/,*, (b) determine the weighting 
matrix AT using the prewhitened residual rJ,* according to 
the method of Andrews (1991), and then (c) find an estimate 
iiTby "recoloringw: iiT= (I- B ) - l F T ( l  -B1)-1. 

We performed a few experiments using the VAR(1) 
prewhitening procedure. Andrews and Monahan suggested 
that the singular values of B be restricted to force the B 
matrix to be stable. We follow them by letting singular val- 
ues in excess of .97 equal .97. The method did not, however, 
perform well. This is most likely due to imprecision in the 
estimates of the B matrix. For some designs, the estima- 
tions did not converge in many cases. In others, the number 
of lags selected after prewhitening was often larger than 
the number selected before prewhitening, and even though 
the RMSE for a, declined slightly, the RMSE of the other 
parameters deteriorated sharply. 

We chose instead to use the simpler expedient of fitting a 
univariate AR(1) model to each series and then using as our 
B a diagonal matrix with the univariate AR(1) coefficients 
along the diagonal. This approach remains true to the spirit 
of Andrews and Monahan because they did not suggest the 
VAR as the true model but rather as a convenient ad hoc 
way of flattening the spectrum. 

The results from these experiments are reported in Ta- 
ble 5 in the columns labeled "pw." For the prewhitened 
weighting matrix, M = 14 and M = 24 were uniformly 
better than the results for 5 and 9 moments [available from 
Andersen and Serrensen (1995)l. First, notice the dramatic 
drop in average lag length relative to that of the preceding 
section. For the smaller sample sizes the results represent 
a remarkable improvement in RMSE for w and p,  but the 
estimate of a, is severely biased, and the RMSE's on this 
parameter generally increase relative to those in Table 2. 
For the higher sample sizes and 14 or 24 moments, there 
is generally a trade-off between more precise estimates of 
w and O relative to a, because the downward bias on the 
latter remains clearly discernible. Finally, note that the use 
of 14 moments is almost uniformly the preferred choice for 
this procedure. 

In conclusion, the results for this approach are somewhat 
mixed. It may appear to improve inference for some param- 
eters in small samples, but this finding should be weighted 
against the very significant increase in the instances of non- 
convergence for these samples. In addition, it improves the 
RMSE significantly for a subset of the parameters in the 
designs with large samples and many moments, so the ap- 
proach may be attractive in certain instances. 

3.7 The Quadratic Spectral Kernel 

Andrews (1991) showed that the QS kernel dominates the 
Bartlett kernel according to an asymptotic truncated mean 
squared error criterion when the system is characterized 
by heteroscedasticity and autocorrelation of unknown form. 
The weighting scheme takes the form 
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Table 6. Simulated Mean and Root Mean Squared Error: Quadratic Spectral, 

Automatic Bandwidth, (w, P, a,) = (-,736, ,900,,363) 


# moments 9 (non-pw) 14 (non-pw) 14 (PW) 24 (Pw) 

T = 2,000 
LJ 

P 
e u  
No convergence 

Average lag (std. dev.) 


T = 4,000 
LJ 

P 
du 
No convergence 

Average lag (std. dev.) 


T = 10,000 
LJ 

P 
6" 
No convergence 

Average lag (std. dev.) 


NOTE: The reported statistics are based on 1.000 simulated samples of size equal to the indicated T. For each cell, the first number 
shows the mean and the second the root mean squared error (in parentheses). (pw): The prewhitening technique is applied using 
univariate AR(1) approximations to each sample moment. 

We examined the performance of the QS kernel in some 
detail, using both fixed and automatic bandwidths plus 
prewhitening. From Andrews (1991), the automatic band- 
width takes the form LT = 1 . 3 2 2 1 ( & ( 2 ) ~ ) ~ / ~ ,where 

M&(2)= Ern=, ( 4 & d $ ) / [ K ( l  - brn)8]and K ,  d m ,  and jrn 
are defined in Section 3.5. 

The findings were quite similar, but overall slightly infe- 
rior as measured by RMSE, to the results reported previ- 
ously for the Bartlett kernel. An indication of the findings 
is provided in Table 6, which reports on a subset of the au- 
tomatic bandwidth designs. Again, prewhitening is clearly 
beneficial for the smaller sample sizes, but the same trade- 
off between the precision in the estimates of the parameters 
w and versus a, that we noted previously shows up for 
the larger samples. Thus, given the particular nature of the 
positive second-order moment dependency in our series, it 
appears that the QS estimator does not improve on the per- 
formance of the Bartlett kernel. 

3.8 The Newey-West Lag-Selection Scheme 

Finally, we implemented the procedure advocated 
by Newey and West (1994) that is based on the 
Bartlett kernel but uses a different lag-selection crite-
rion. Specifically, the bandwidth is chosen as follows: 
If x t  is the Q x 1 residual vector from the AR(1) 
prewhitened moment series, n = 4 ( ~ / 1 0 0 ) ~ / ~ ,=wt 

QE 4 = 1  x t ,  6 = (T - I)-' c T = ~ + ~w t w t - j l  j = 0 , .  . . , 
n, = 2 Cj",,jej, do)  = do + 2 Cj"_, 8J ,  and 

-j. = 1.1447(8(1)/8(0))2/3,then the lag-selection parameter 
is chosen as LT = ST'/^. 

We implemented the procedure both with and without 
prewhitening. The results are provided in Table 7. The 
most striking aspect of this selection scheme is the long 
lag length they choose and the fact that the lag lengths 
barely diminish for the prewhitened series. Given our prior 
findings, we may expect the long but variable lag length to 
improve estimation performance for the large sample sizes. 
This is what happens. In fact, for T = 4,000, and in par- 
ticular for T = 10,000, this method produces close to the 
best RMSE of any method. It reflects the fact that from 
T = 4,000 to T = 10,000 the RMSE continues to drop at 
a rate faster than root T ,  which in part is due to rapidly 
shrinking biases in the parameter estimates. In some sense 
the results for T = 10,000 are about as good as we may 
hope for because they are only slightly worse than those 
obtained for the "true" weighting matrix in Table 3, indi-
cating that the imprecision in the estimate of the weighting 
matrix may no longer be much of a concern for estimation. 
Finally, notice that the choice of prewhitening appears to 
be of second-order importance, especially when the sample 
size is large. Indeed, for T = 10,000 the procedure without 
prewhitening provides marginally better inference. 

We conclude that, although this procedure is not partic- 
ularly attractive for the smaller sample sizes, it is our pre- 
ferred method among the ones investigated when the sam- 
ple size reaches 4,000. It dominates all prior methods by 
the RMSE criterion for T = 10,000, and given the results 
obtained with the "true" weighting matrix we do not expect 
any alternative procedure to offer much additional improve- 
ment for samples of this size (given the choice of moments). 

3.9 Diagonal Weighting Matrix 

In some cases researchers find it necessary to use a high 
number of moments to match different aspects of their 
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Table 7. Simulated Mean and Root Mean Squared Error: Bartlett Kernel, 

Newey-West Bandwidth, (u,P, oU)= (-,736, ,900, ,363) 


# moments 9 (non-pw) 14 (non-pw) 14 (Pw) 24 (PW) 

T = 1,000 
LJ 

P 
e u  
No convergence 

Average lag (std. dev.) 


T = 2,000 
ir 


P 
8, 
No convergence 

Average lag (std. dev.) 


T = 4,000 
LJ 

P 
e u  
No convergence 

Average lag (std. dev.) 


T = 10,000 
LJ 

P 
8, 
No convergence 

Average lag (std. dev.) 


NOTE: The reported statistics are based on 1.000 simulated samples of size equal to the indicated T For each cell, the first number 
shows the mean and the second the root mean squared error (in parentheses). (pw): The prewhitening technique is applied using 
univariate AR(1) approximations to each sample moment. 

model (e.g., Ho et al. 1996). In these cases it is tempting to 
avoid the documented estimation problems associated with 
the asymptotically optimal GMM procedure by restricting 
the weighting matrix to be diagonal. We examine how the 
results for our model are affected by this choice. The esti- 
mations were all performed with the weighting matrix set 
equal to the diagonal of the prewhitened Bartlett kernel that 
seems to perform reasonably well for the model. 

The results, presented in Table 8, are interesting. It is 
clear that using a low number of moments (M = 9) and a 
diagonal weight matrix is inferior to our prior procedures. 
There seems, however, to be a trade-off between the simpler 
weighting matrix and the number of moments included. A 
surprising finding is that for T in excess of 1,000 it seems 
as good (judged by RMSE) to use the diagonal weighting 
matrix as to use the standard Bartlett kernel with prewhiten- 
ing or, for that matter, most other methods we have inves- 
tigated. The one exception is the Newey-West selection of 
bandwidth in Table 7, and even here the evidence is not 
unanimously in favor of the alternative. One key to the im- 
proved RMSE is that the bias in a, has been all but elim- 
inated for the larger samples. Furthermore, note that for 
T = 10,000 it is preferable to exploit all 24 moments rather 
than just 14. Thus, it seems that it may be useful to exploit 
additional information as long as some of the estimation 
problems associated with the weighting matrix are appro- 
priately handled or circumvented. An additional benefit of 
the approach is that the estimations tend to crash a lot less 
for low values of T ,  but this seems to be caused by the 

downward bias in the estimate of P. The latter observation 
probably constitutes the largest drawback of the method: 
The smaller bias in a, comes at the expense of a signifi- 
cant downward bias in the important autoregressive volatil- 
ity parameter p for the smaller samples. Moreover, asso- 
ciated inference and specification test procedures are now 
less convenient because a consistent estimate of the optimal 
weighting matrix is not obtained as a by-product of the es- 
timation. Nonetheless, the advantages of this rather simple 
procedure appear enticing, and this type of approach may 
provide a fruitful starting point for further progress on the 
development of well-functioning finite-sample GMM pro- 
cedures in this context. 

3.10 Higher Volatility Persistence 

Empirical studies of stochastic volatility models often 
obtain parameter estimates of p near unity. In Table 9 we 
examine a few experiments with p = .95 and P = .98. The 
pattern is qualitatively similar to what we found earlier, so 
we only report a subset of our results, relying exclusively 
on M = 14, which seems reasonable in most cases. No- 
tice that the signal-to-noise ratio for the volatility process 
has improved, so not unexpectedly we obtain lower RMSE 
for the larger samples. This is consistent with the observa- 
tions of JPR and Harvey and Shephard (1993). Moreover, 
not surprisingly, the problem with nonconverging estimates 
has grown as we push p closer to the bound of the parame- 
ter space, although the use of automatic bandwidth appears 
to alleviate the problem somewhat. In fact, for T = 4,000 
and M = 14, it no longer appears to constitute a practical 
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Table 8. Simulated Mean and Root Mean Squared Error: Diagonal Bartlett Matrix, 

Automatic Bandwidth and Prewhitening; (w, P, a,) = (-,736,.900,.363) 


# moments 

T = 500 
LJ 

b 
8, 

No convergence 

Average lag (std. dev.) 


T = 1,000 
LJ 

P 
8, 

No convergene 

Average lag (std. dev.) 


T = 2,000 
LJ 

b 
8, 

No convergence 

Average lag (std, dev.) 


T = 4,000 
& 

b 
6 ,  
No convergence 

Average lag (std, dev.) 


T = 10,000 
LJ 

b 
8, 

No convergence 

Average lag (std. dev.) 


NOTE: The reported statistics are based on 1,000 simulated samples of size equal to the indicated T. For each cell, the first number 
shows the mean and the second the root mean squared error (in parentheses). The prewhitening technique is applied using univariate 
AR(1) approximations to each sample moment. 

problem. For ,B = .98, we find the trend continuing: The 
RMSE's are now dramatically reduced, but the problem of 
crashes is prevalent, even for large samples. In this setting 
some strategy of forcing estimates at the bounds of the pa- 
rameter space may be required for practical implementation 
of GMM estimation. 

4. THE SIZE OF THE x2 TEST FOR 
GOODNESS OF FIT 

Our simulation setting is ideal for an investigation of the 
standard X 2  test for goodness of fit of the overidentifying 
restrictions. For each of the simulations that produce a con- 
vergent set of parameter estimates in an overidentified sys- 
tem (M > 3), we calculate the x2 test statistic and evaluate 
the associated P value in the appropriate X 2 ( q )  distribu-
tion with q = M - 3. The findings are qualitatively similar 
across our alternative procedures so, for the sake of brevity, 
we focus on the relatively successful method based on the 
Bartlett kernel and an automatic choice of bandwidth. 

Figures 4-6 (pp. 346-348) display the fraction of P val-
ues that fall within the indicated 5% fractiles for different 
sample sizes. Asymptotically, the P values are, of course, 
uniformly distributed over the fractiles. The question is 
how well the finite-sample x 2 ( q )  statistics conform to their 

asymptotic distribution. In particular, the 0-5% and 5-10% 
fractiles shed light on the size of these goodness-of-fit tests 
at the (asymptotic) 5% and 10% level. 

The figures are revealing. There are systematic patterns 
in the small-sample distribution for the P values both across 
sample sizes and across the number of moments included 
in the estimation. For each sample size, increasing the num- 
ber of moments leads to a very significant rightward shift in 
the entire distribution. Similarly, for a given choice of mo- 
ments, an increase in sample size leads to a very significant 
leftward shift in the entire distribution. Moreover, there is 
no sense in which the distribution appears to approach its 
asymptotic counterpart as the sample size grows. Indeed, 
the leftward shift in the distribution appears to continue, 
suggesting that the size distortion of the X 2  test statistic 
is growing increasingly severe as the sample becomes very 
large. The same phenomenon is observed for all the other 
designs. Table 10 (p. 349) provides the extreme 5% and 10% 
fractiles for a representative set of procedures using 14 mo-
ments. In all instances the mass located in the 0-5% fractile 
increases dramatically with sample size. In the process we 
move from a scenario in which the test statistics are severely 
downward biased-the maximum frequency observed for 
the 0-5% fractile with T = 1,000 is .022 for the quadratic 
bandwidth kernels-to one in which they are badly inflated; 
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Table 9. Simulated Mean and Root Mean Squared Error: Bartlett Kernel, 

Automatic Bandwidth, 74 Moments, (w, p, a,) = (-,368, ,950, ,260) or (-. 147, ,980, ,766) 


# moments 

T = 2,000 
LJ 

b 
c u  
No convergence 
Average lag (std. dev.) 

T = 4,000 
LJ 

b 
8, 
No convergence 
Average lag (std. dev.) 

T = 10,000 
LJ 

b 
c u  
No convergence 
Average lag (std. dev.) 

p = 95 (non-pw) ,8 = .95 (pw) p = .98 (pw) 

-.363 (.215) -,286 (.1 97) -.I40 (.112) 
,951 (.029) ,961 (.027) ,981 (.015) 
,208 (.087) ,190 (.099) ,125 (.068) 

62 131 81 0 
12.25 (1 0.50) 1.83 (1.97) 1.72 (2.20) 

-.374 (.148) -.294 (.152) -.I21 (.089) 

.949 (.020) ,960 (.021) ,984 (.012) 

.228 (.059) ,206 (.076) ,126 (.063) 
10 22 399 

14.03 (1 0.65) 2.45 (2.39) 2.33 (2.00) 

-.389 (.091) -.336 (.094) -.I21 (.066) 
,947 (.012) ,954 (.013) ,983 (.009) 
,247 (.033) ,234 (.043) ,137 (.048) 

0 0 49 
17.81 (1 0.99) 3.09 (2.39) 3.42 (2.58) 

NOTE: The reported statistics are based on 1,000 simulated samples of size equal to the indicated T. For each cell, the lirst number 
shows the mean and the second the root mean squared error (in parentheses). (pw): The prewhitening technique is applied using 
univariate AR(1) approximations to each sample moment. 

that is, the minimum frequency for the 0-5% fractile with 
T = 10,000 is .I21 for the Bartlett kernel with prewhiten- 
ing and automatic bandwidth choice. Similarly, the mass 
located in the right tail decreases almost uniformly as the 
samDle size exDan&, This confirms the robustness of the 
systematic leftward shift in the P-value distribution that is 
captured in the figures. 

On the other hand, notice that the guidelines for selec- 
tion of the number of moments to include in estimation, 
which were developed in Section 3 on the basis of estima- 
tion performance, generally also lead to reasonably sized 
specification tests. For the lower sample sizes, M = 9 
clearly produces the most appropriately sized tests, but as 
the sample size grows, the required number of moments 
expands as well; for example, M = 14 appears appropriate 
for T = 2,000 and M = 24 seems preferable for T = 4,000. 
Two caveats are in order. First, for the smaller samples the 
results may be somewhat misleading because they fail to 
account for the discarded simulations that are numerous. 
Although it may seem appropriate to interpret a noncon- 
verging sample as evidence of a poor fit, recall that we 
frequently found that the X 2  statistic was consistent with 
an acceptable goodness of fit prior to the termination of 
nonconvergent iterations. Thus, the direction of the poten- 
tial bias is indeterminate. Second, to obtain the optimal test 
size, it appears that we should expand the number of mo- 
ments somewhat more aggressively than our evaluation of 
estimation performance in Section 3 indicated. Nonetheless, 
both considerations imply that we should let the number of 
moments grow quite rapidly with the sample size. 

The increased size distortions associated with the larger 
samples may appear puzzling because they defy predictions 
based on asymptotic theory. The explanation is again related 

to the imprecision of the estimated weighting matrices and 
the extremely high degree of variability and dependency in 
the sample moments. 

First, even for sample sizes as large as T = 10,000, the 
bias and dispersion of the weighting matrices are profound. 
This was demonstrated through an in-depth analysis of the 
design with M = 5 .  We calculated the average weight- 
ing matrix from 1,000 simulations using three different 
kernel estimation procedures-namely, the fixed bandwidth 
Bartlett kernel with lag length y ~ 1 / 3for 7 equal to 2 and 
10 and for the QS kernel with lag length 2 * ~ ~They all ~1 . 
provide similar results. The estimate of the dominant en- 
try on the diagonal of the weighting matrix, corresponding 
to the absolute return moment. element (1. 1). varies from . , ., 
1.93 to 2.02 with standard errors between .42 and .50 (the 
other diagonal elements of the weighting matrix display 
variation similar to the first, but we focus on one element 
for brevity). Thus, the estimates of the weighting matrix 
fluctuate very substantially across the T = 10,000 samples, 
but, perhaps even more significantly, they are strongly bi- 
ased. The latter was confirmed through the construction of a 
more precise approximation to the "true" weighting matrix 
based on 16 samples of 500,000 observations and the Monte 
Carlo variance-reduction technique of antithetic variables. 
Thus, the series consist of eight "antithetic" samples that 
pairwise have negatively correlated volatility processes due 
to the use of the identical draws for the underlying inno- 
vations but with a sign change for the volatility innova- 
tion. The negative correlation reduces the sample variabil- 
ity of the estimated sample moments (e.g., see Davidson 
and MacKinnon 1993). The resulting estimate of element 
(1, 1) of the weighting matrix is 1.25. Consequently, this el- 
ement displays a very strong upward small-sample bias (for 
T = 10,000). This bias will tend to inflate the test statistics 
and push the P-value distribution leftward. 
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Fractiles: From [o,,051to 1.95,I] Fractiles: From [O,,051to 1.95,I] 

T=10,000; M = 9  

Fractiles: Frwn [0, ,051 to [.95,11 

Figure 4. The Distributionof p Values for the Test of OveridentifyingRestrictions Based on the GMM Objective Function. The figure shows the 
fraction of values that fall within the different 5% fractiles. The results are based on 1,000 convergng estimates for each sample size. The GMM 
procedure is implemented using an estimated weighting matrix determined by the Bartlett kernel with an automatic choice of bandwidth. Figures 
are displayed for sample sizes T = 1,000;4,000; 10,000. All estimates are obtained with M = 9 moments. 

Second, samples of T = 10,000 remain small in yet an-
other sense. Using the preceding precise estimate of the 
"true" 5 x 5 weighting matrix, we find that the P-value 
distribution is biased to the right. For sample sizes of 
T = 50,000, the test statistic finally seems to obey an ap-
proximate x2distribution when the "true" weighting matrix 
is used. 

It is important to realize that these rather discourag-
ing findings regarding the finite-sample distribution of the 
estimated weighting matrices have no direct implications 
for the performance of the GMM estimation and infer-
ence procedures. If the results predominantly reflect a prob-
lem in determining the scale of the weighting matrix-
which clearly is strongly upward biased, even for very large 
samples-then the estimation procedure may be relatively 
immune to this deficiency of the GMM criterion function. 
In fact, the finite-sample estimation performance reported 

in Section 3 is quite satisfactory,at least for the larger sam-
ples. Section 5 reports on the finite-sample performance 
for asymptotically motivated inference procedures regard-
ing the model parameters. 

In summary, the investigation in this section tends to re-
inforce our earlier conclusions. The GMM procedure is not 
well equipped to deal with small samples, and it is essential 
to increase the included number of moments rather sharply 
with sample size to avoid serious size distortions for the test 
of goodness of fit. The extent of the problem is striking. For 
500 observations and 24 moments, the P value of the test 
statistic (given the GMM estimates converge) will exceed 
80% seven times out of ten. Without a size correction, the 
power of the test is therefore likely to be extremely poor. 
Equally troublesome is the tendency to overreject when an 
insufficientnumber of moments is included: For T = 10,000 
and M = 9, the test will reject at the 5% level about one 
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Fractiles: F r m  [O, ,051 to [.95, I] Fractiles: From [0, .05] to [.95, I] 

Fractiles: F r m  [0, ,051 to [.95, I] 

Figure 5. The Distribution of p values for the Test of Overident@ing Restrictions Based on the GMM Wectiv8 Function. The figure shows the 
fracbon of values that fall within the different 5% fract17es. The results are based on 1,000 comrging estimates for each sample size. The GMM 
procedure is implemented using an estimated weighting matrix determined by the Bartlett kernel with an automatic choice of bandwidth. Figures 
are displayed for sample sizes T = 1,000; 4,000; 10.000. All estimates are obtained with M = 14 moments. 

quarter of the time. These findings underscore the impor- persion and the bias of the normalized parameter estimates. 
tance of paying careful attention to the trade-offs between The bottom panel displays the fractiles for the identical stu- 
information and precision involved in the choice of mo- dentized parameters, except that the estimated parameters 
ments for the GMM procedure. now are centered on the (biased) mean estimate. 

The top panel is relevant for assessment of the standard 
t tests for individual parameters. Asymptotically, the stu- 

5. HYPOTHESIS TESTS dentized parameters are distributed as standard normals, so 

This section takes a look at some popular inference pro- 
cedures regarding the parameters of the model. Again, the 
conclusions are qualitatively similar across the designs, and 
we present results only for the Bartlett kernel with fixed- 
bandwidth procedure that corresponds to Table 2. The ex- 
treme left and right fractiles for the distribution of the stu- 
dentized parameters are provided in Table 11 (p. 350). The 
top panel concerns the difference between the estimated 
parameters and the true parameters normalized by the esti- 
mated standard error. This panel thus reflects both the dis- 

the mass located in the tail fractiles approximates the size 
of one-sided tests for equality of the estimated parameters 
and their true value. 

A few general observations regarding our estimation re- 
sults are important for the interpretation of Table 11. First, 
basically all of our GMM estimation procedures, including 
the one used for Table 2, result in a downward finite-sample 
bias in all three parameter estimates. Second, we found a 
large negative correlation between the estimated parameters 
and the associated standard errors. Finally, the estimates of 
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T=4,000; M = 2 4  

Fractiles: From [0, ,051 to [.95, I] Fractiles: From [0, ,051 to [.95, 11 

Figure 6. The Distribution of p Values for the Test of Overidenwng Restrictions Based on the GMM Objective Function. The figure shows the 
fraction of values that fall within the different 5% fractiles. The results are based on 1,000 conwrging estimates for each sample size. The GMM 
procedure is implemented using an estimated weighting matrix determined by the Bartlett kernel with an automatic choice of bandwidth. Figures 
are displayed for sample sizes T = 1,000; 4,000; 10,000. All estimates are obtained with M = 24 moments. 

w and p were extremely highly correlated. This last fact size grows the bottom panel further shows-quite clearly 
immediately explains the near identical studentized distri- in the case of M = 24--that the (mean corrected) studen- 
butions of those two parameters. For the smaller samples, tized distribution approaches the standard normal. 
the substantial downward biases are negated by the associ- This suggests that the distribution for the studentized pa- 

ated large errors. Indeed for the first t~~ rameters in the top panel will be highly sensitive to biases in 

eters the left tails in the top panel are tm thin rather than the parameter estimates for the larger sample sizes. This is 

too thick, but for a, the left tail is mostly fat-tailed. This exactly what happens. The distributions acquire heavy left 

reflects the fact that o, has a particularly large bias rela- 
tails, in particular for the designs involving the higher num- 
ber of moments. This reflects the more significant down- 

tive to RMSE compared to the other parameters in Table 2. ward biases for the designs relying on the higher number 
This also explains the relatively thin right tails in the distri- of moments. 
bution of this parameter estimate. Notice that for the right I, summary, the evidence on the quality of inference is 
tails the downward bias is mitigated by the negative correla- -4. F~~ T in excess of 1,000 and a number of moments 
tion between the estimated parameters and standard errors. that is consistent with our prior recommendations, the size 
This is also clear from the bottom panel where asymmetric distortions are not bad, but there is a clear tendency to un- 
distribution of the standard error estimates induces a right- derestimate a, throughout and a tendency to underestimate 
ward shift in the studentized distribution. As the sample the other parameters as well when many moments are used 
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Table 7 0. 

Model 

Bartlett 
Bandwidth 
1.2*1 o1I3 

Bartlett 
Automatic 
Bandwidth 

Bartlett 
Automatic 

P Values for Selected Models (14 moments): (w, P, a")= (-. 736, ,900, .363) 

Fractile 7,000 2,000 4,000 70,000 

Bandwidth w. pw 

Quad spectral 
Automatic 
Bandwidth 

Quad spectral 
Automatic 
Bandwidth w. pw 

Bartlett 
Newey-West 
Bandwidth 

Bartlett 
Newey-West 
Bandwidth w. pw 

NOTE: The reported statistics are based on 1,000 simulated samples of size equal to the indicated T pw: prewhitening applied using 
univariate AR(1) approximations to each sample moment. 

for estimation. The latter is somewhat troublesome because 
size considerations for the X 2  test in Section 4 favor the use 
of many moments for the large samples. 

6. CONCLUSION 

This article examines the properties of alternative 
GMM procedures for estimation of the so-called lognor- 
mal stochastic autoregressive volatility model. The results 
are numerous: First, it is generally not optimal to include 
many moments in the estimation procedure if the sample 
size is limited. In fact, the preferred number of moments 
(as measured by RMSE) is typically lower than the standard 
choice in the literature concerned with estimation on the ba- 
sis of high-frequency financial data. On the other hand, it is 
virtually never advisable to rely on the alternative extreme 
of a just-identified model that underperformed relative to 
all other models investigated. We document that these re- 
sults arise because of a fundamental trade-off between the 
information (number of moments) used in estimation and 
the quality of the objective function (precision of the es- 
timated weighting matrix) underlying the procedure. Esti- 
mation on the basis of a large-sample approximation to the 
optimal weighting matrix confirms this intuition and pro- 
vides further insights into the feasible efficiency bounds for 
this class of GMM estimators. The results suggest that the 
inclusion of the full 24 moments provides very little addi- 
tional information regarding the parameters relative to what 
is contained in the initial 14 moments. Hence, the incorpo- 

ration of 24 moments is not likely to be beneficial unless 
the sample is very large. 

Second, we find that estimation using a fixed number of 
lags in the weighting matrix generally is inferior to using 
the plug-in estimator of lag length suggested by Andrews 
(1991), although it seems that experimentation with longer 
lags than indicated by this data-dependent procedure may 
prove useful. 

Third, we find that the prewhitening method for the 
weighting matrix suggested by Andrews and Monahan 
(1992) can be helpful in several settings. In particular, the 
RMSE on the parameters can be substantially reduced via 
prewhitening when the sample size is relatively small. 

Fourth, we find that the QS estimator suggested by An- 
drews (1991) appears to fare slightly worse than the stan- 
dard Bartlett kernel estimator for this model. 

Fifth, we find that the automatic bandwidth choice pro- 
posed by Newey and West (1994) is appropriate for large 
samples in which the GMM Bartlett-kernel procedure com- 
bined with this automatic bandwidth choice provides infer- 
ence of a quality that other practical methods, arguably, will 
be hard vressed to im~rove on. 

Sixth, we find indications that a diagonal weighting ma- 
trix may be an excellent alternative when many moments 
are required for estimation. 

Seventh, there is some evidence that the choice of less 
volatile and lower-order moments dominate the choice of 
more volatile and higher-order moments. 

Eight, the popular X 2  statistic for goodness of fit of 
the overidentifying restrictions appears fairly well behaved 
when the general prescriptions regarding choice of mo-
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Table 1 1. Distribution of Studentized Parameter Estimates 

Parameter 

W P flu 

Fractile e 5  5-10 9(F95 95100 (F5 5 1 0  9e95 95-100 f35 510 9e95 95100 

T =  1,000 
M = 9  
M =  14 
M = 2 4  

T = 2,000 
M = 9  
M =  14 
M = 2 4  

T = 4,000 
M = 9  
M =  14 
M = 2 4  

T = 10,000 
M = 9  
M =  14 
M = 2 4  

2.1 
2.2 
3.3 

2.3 
2.3 
4.0 

3.6 
3.1 
9.2 

3.8 
4.8 

13.8 

2.8 
2.2 
3.9 

3.2 
4.9 
5.8 

4.8 
4.2 

11.1 

6.0 
6.7 

11.7 

1.6 
4.8 
4.6 

2.9 
3.3 
3.2 

2.0 
1.9 
1.5 

2.7 
1.2 
.6 

.7 
4.5 
4.6 

1.1 
2.5 
3.5 

.8 
1.9 
1.3 

1.6 
.6 
.6 

2.0 
2.1 
3.3 

2.2 
2.3 
3.9 

3.5 
3.1 
8.6 

3.4 
4.6 

12.9 

2.9 
2.3 
3.8 

3.2 
4.8 
5.6 

4.6 
4.0 

11.1 

6.1 
6.5 

11.7 

1.7 
4.9 
4.5 

2.9 
3.4 
3.2 

1.9 
1.9 
1.5 

3.1 
1.1 
.6 

.7 
4.7 
5.1 

1.4 
2.7 
4.0 

.9 
1.9 
1.3 

1.5 
.7 
.8 

.2 
2.4 
8.3 

.O 
6.2 

11.0 

2.1 
6.9 
6.5 

4.4 
6.0 
6.5 

.3 
9.2 

12.4 

4.4 
1.7 
8.9 

6.6 
11.1 
7.6 

6.5 
6.7 
6.3 

2.1 
1.5 
1.6 

1.7 
1.7 
1.8 

2.9 
2.1 
2.2 

3.0 
2.3 
3.0 

2.1 
2.2 
2.5 

1.3 
1.1 

.7 

1.3 
.8 

2.8 

1.3 
1.1 
1.7 

Mean corrected 

NOTE: Top panel: (parameter-true parameler)/(estimated standard deviation). Bottom panel: (parameter-mean parameter)/(estimated standard deviation). Based on same simulations as 
Table 2. 

ments relative to sample size are obeyed. If too few mo- rameter constellations? What are the power properties of 
ments are included, there is a strong tendency for overre- the specification test against some relevant alternatives? 
jections, and, even more importantly, when too many mo- 
ments are included, the P values associated with the test ACKNOWLEDGMENTS 
statistics are seriously inflated, and the test underrejects. It 
is, moreover, evident that the satisfactory performance of Thanks are due to Tim Bollerslev, Robin Lumsdaine, An- 

g e l ~Melino, Adrian Pagan, Mark Watson, the editors Larry the test in certain parts of the design matrix is somewhat 
Christian0 and George Tauchen, three anonymous referees, coincidental. Even for very large samples, the estimates of 
and seminar participants at Boston College, the University 

the elements along the diagonal of the optimal weighting 
matrix display a very substantial upward bias. In these cir- of Aarhus, the CIRANO Stochastic Volatility Conference 

in Montreal, the Midwest Econometrics Group Meeting in 
cumstances, size corrections may generally be necessary to 

Iowa City, and the Econometric Society Meetings, Wash- 
obtain meaningful specification tests and reasonable power 

ington, D.C., for helpful comments, Mike Sherman for re- properties. 
search assistance, and colleagues at Brown University for 

Strictly speaking, the findings are specific to the particu- sharing their computers with us. 
lar model being studied. The conclusions, nonetheless, are 
likely to apply to a wide range of economic systems charac- APPENDIX: CHOICE OF MOMENTS 
terized by strongly conditionally heteroscedastic series and 
highly correlated moment conditions. Our moments are chosen from among the following 34 

Several issues remain of interest in this context. How moments, denoted ml-m24 : 

do we further improve the finite-sample properties of the 
GMM procedure, especially when sample size is small? Are ml = E[lytH 

the conclusions robust across different volatility specifica- m2 = ~[y; ]  
tions? What are the efficiency bounds for alternative pa- m3 = E[lytI3] 
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3 moments: ml ,  m2, m5 
5 moments: ml ,  m2, m4, m6, m15 
9 moments: 

Baseline set (m9a): m l m 4 ,  m5, m7, m9, m16, m18 
Alternative set (m9b): m l m 4 ,  m6, m8, m10, m15, m17 

14 moments: 
Baseline set: (m14a): m l m 4 ,  m6, m8, m10, m12, m14, 

m15, m17, m19, m21, m23 
Alternative set: (m14b): m l m 4 ,  m5, m7, m9, ml l ,  m13, 

m16, m18, m20, m22, m24 
Absolute moments (m14c): mlm14 
Quadratic moments (m14d): m l m 4 ,  m15m24 
Absolute 3rd moments (m14e): m l m 4 ,  m25m34 
Mix of low abs lst, 2nd and 3rd moments (m14f): ml- 

m4, m5m7, m15m17, m25-28 
Alternative mix of lst, 2nd, 3rd moments (m14g): ml- 

m4, m5, m8, ml l ,  m14, m16, m19, m22, m27, m30, 
m33 

24 moments: mlm24 
34 moments: mlm34. 
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