CBM003 ADD/CHANGE FORM

1. Department: CHE ENG College: ENGR
2. Person Submitting Form: Michael P. Harold Telephone: 34307
3. Course Information on New/Revised course:
 - Instructional Area / Course Number / Long Course Title:
 PETR / 3362 / Reservoir Engineering I
 - Instructional Area / Course Number / Short Course Title (30 characters max.)
 PETR / 3362 / RESERVOIR ENGINEERING I
 - SCH: 3.00 Level: JR CIP Code: 14.2501.00 Lect Hrs: 3 Lab Hrs: 0
4. Justification for adding/changing course: To meet core curriculum requirements
5. Was the proposed/revised course previously offered as a special topics course? Yes No
 If Yes, please complete:
 - Instructional Area / Course Number / Long Course Title:
 /
 - Content ID: Start Date (yyy3):
6. Authorized Degree Program(s): B.S. Petroleum Engineering
 - Does this course affect major/minor requirements in the College/Department? Yes No
 - Does this course affect major/minor requirements in other Colleges/Departments? Yes No
 - Are special fees attached to this course? Yes No
 - Can the course be repeated for credit? Yes No
7. Grade Option: Letter (A, B, C...) Instruction Type: lecture ONLY (Note: Lect/Lab info. must match item 3, above.)
8. If this form involves a change to an existing course, please obtain the following information from
 the course inventory: Instructional Area / Course Number / Long Course Title
 PETR / 5362 / Reservoir Engineering I
 - Start Date (yyy3): 2008 Content I.D.: 13077
9. Proposed Catalog Description: (If there are no prerequisites, type in "none").
 Cr: 3. (3-0). Prerequisites: PETR 1111, PETR 2311, PHYS 1321. Description (30 words max.): Rock
 and fluid properties, PVT behavior of crude oil and natural gas, fundamentals of fluid flow through porous
 media, reservoir energy
10. Dean's Signature: Date: 3/6/08
 Print/Type Name: Joseph Tedesco, Dean
Must be attached to CBM003 form

<table>
<thead>
<tr>
<th>Course: PETR</th>
<th>3362</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Prefix</td>
<td></td>
</tr>
<tr>
<td>Course Number</td>
<td></td>
</tr>
</tbody>
</table>

1. Course Title: Pressure Transient Testing
 Print course inventory screen using RARCAS/CATM and attach.

2. Pre-requisite/Co-requisite: PETR 1111, PETR 2311, PHYS 1321.

3. Rational for Course Format: Standard university course structure

4. Rational for Course Content: Continuation of learning related to petroleum engineering

5. ABET Constituents consulted: Petroleum Engineering Advisory Board, Industry focus groups

6. State Course Outcomes: students learn the properties, behaviors, and fundamentals of rock and fluids as they relate to reservoir engineering

7. Course Performance after implementing format and content changes: ___

8. Is course required?
 X Yes
 ☐ No

9. Required course outline attached?
 X Yes
 ☐ No

10. Estimated student demand ___50____ per semester

11. Similar courses in other departments:
 ☐ Yes
 X No

 a. If yes, list course(s) ___

12. Is course part of a sequence?
 ☐ Yes
 X No

 a. If Yes, identify the sequence and comment on the relation to prior and subsequent courses: ___

Note: Special Fees: If special fees requested, Course Related Fee Request Form will be required.

1 Department reports will be requested about the effects of your new course on your curriculum both 12 and 24 months after the effective date for this new course.
Course Description: Rock and fluid properties and interactions, PVT behavior of crude oil and natural gas, fundamentals of fluid flow through subsurface porous media, reservoir energy.

Prerequisites: PETR 1111, PETR 2311, PHYS 1321.

Textbooks:
- Robert O. Hubbell: *Basic & Applied Reservoir Engineering*
- Craft and Hawkins: *Applied Petroleum Reservoir Engineering*

Course Outline:

1. Introduction and Overview of Reservoir Engineering
2. Reservoir Rock Properties
3. Reservoir Fluid Properties
4. Volumetrics
5. Reservoir Flow Mechanics
 - 5.1 Drive Mechanisms
 - 5.2 Flow Regimes
 - 5.3 Darcy's Law
 - 5.4 Flow Geometry
 - 5.5 Incompressible & Compressible Flow
 - 5.6 Diffusivity Equation and the Point Source Solution
 - 5.7 Unsteady State Water Influx
6. Methods of Reserve Estimation
 - 6.1 Material Balance
 - 6.2 Decline Curve Analysis
7. Complete Volumetrics
 - 7.1 Recovery Estimation
 - 7.2 Geologic Mapping
 - 7.3 Bulk Rock Calculation
 - 7.4 Volume in Place
 - 7.5 Reserves
 - 7.6 Production Projection
8. Gas Condensate Reservoirs
 - 8.1 Production Processing
 - 8.2 Reservoir fluid Behavior
 - 8.3 Reserve Estimation
9. Transient Pressure Analysis
10. Reservoir Simulation Overview