Origining Department/College: Physics/NSM
Person making request: James R. Benbrook
Telephone: 713-743-3520
Dean's signature: 

Date: 20 Nov '06

I. General Information:

Course number and title: Phys 1302 Introductory General Physics II

Complete catalog description (NOT required if attached to CBM 003 form):

CBM003 form attached

Category of Core for which course is being proposed (mark only one):

Communication
Communication: Writing Intensive Experiences in the Disciplines
Mathematics
Mathematics/Reasoning (IDO)
Natural Sciences
Humanities
Visual/Performing Arts Critical
Visual/Performing Arts Experiential
Social/Behavioral Sciences
U.S. History
American Government

II. Objectives and Evaluation (respond on one or more separate sheets):

Call 3-0919 for a copy of "Guidelines for Requesting and Evaluating Core Courses"
or visit the website at www.uh.edu/academics/corecurriculum

A. How does the proposed course meet the appropriate Exemplary Educational Objectives
(see Guidelines). Attach a syllabus and supporting materials for the objectives the
syllabus does not make clear.

B. Specify the processes and procedures for evaluating course effectiveness in regard to its
goals.

C. Delineate how these evaluation results will be used to improve the course?

SVP. Effective 9/20/05. Replaces all previous forms, which may no longer be used.
CBM003 ADD/CHANGE FORM

☐ Undergraduate Council  ☐ Graduate/Professional Studies Council
☐ New Course  ☑ Course Change  ☐ New Course  ☐ Course Change
Core Category: Nat Sci  Effective Fall 2007  Effective Fall ___

1. Department: Physics  College: NSM
2. Person Submitting Form: James R. Benbrook  Telephone: 3-3520
3. Course Information on New/Revised course:
   - Instructional Area / Course Number / Long Course Title:
     PHYS / 1302 / Introductory General Physics II
   - Instructional Area / Course Number / Short Course Title (30 characters max.):
     PHYS / 1302 / INTRODUCTORY GENERAL PHYSICS II
   - SCH: 3.00  Level: FR  CIP Code: 40.0801.00  Lect Hrs: 3  Lab Hrs: 0
4. Justification for adding/changing course: To provide appropriate foundation for course
5. Was the proposed/revised course previously offered as a special topics course? ☐ Yes  ☑ No
   If Yes, please complete:
   • Instructional Area / Course Number / Long Course Title:
     _____ / _____ / _____
   • Content ID: _____  Start Date (yyyy3): _______
6. Is this course offered for undergraduate credit only? ☑ Yes  ☐ No
7. Authorized Degree Program(s): _______
   • Does this course affect major/minor requirements in the College/Department?  ☑ Yes  ☐ No
   • Does this course affect major/minor requirements in other Colleges/Departments?  ☑ Yes  ☐ No
   • Are special fees attached to this course?  ☐ Yes  ☑ No
   • Can the course be repeated for credit?  ☐ Yes  ☑ No
8. Grade Option: Letter (A, B, C, ...)
   Instruction Type: lecture
9. If this form involves a change to an existing course, please obtain the following information from
   the course inventory:
   Instructional Area / Course Number / Long Course Title
   PHYS / 1321 / Introductory General Physics II
   • Start Date (yyyy3): _______  Content I.D.: 288068
10. Proposed Catalog Description: (If there are no prerequisites, type in "none".)
    Cr. 3. (3-0). Prerequisites: PHYS1301. Description (30 words max.): Primarily for majors other than physics and engineering. Credit may not be applied toward a degree for Phys1302 and either Phys1312, 1322, or 2412. Electromagnetism and modern physics.
11. Dean's Signature: _______  6 Oct 06  Date: _______
    Print/Type Name: _______
A. See attached syllabus

B. The outcome of this course is to provide knowledge of physical science, mathematics, and statistics required to support an understanding of Physics. Upon completion of this course, the student will have the ability to communicate orally and in writing in a clear concise manner, evidence of their scientific knowledge. To evaluate the courses contribution to the core curriculum, an evaluation of the students’ achievements is attained through samples of students’ work. Students’ communication of solutions to both conceptual questions and word problems on final examinations must be logical and organized and must be understandable to a trained physicist. They must also demonstrate the ability to properly use mathematics to obtain solutions.

Also, to evaluate the courses contribution to the core curriculum, an end of the semester course evaluation form designed for lecture based classes is administered. The forms consist of 20 questions which cover quality of the information covered in the course, course organization, examination fairness and textbook quality. The questions also emphasize the quality of the instructor, including instructor-student interaction, instructor’s overall knowledge of the material covered and the instructor’s effectiveness for the course. The form also includes a comment section in which students can write in any additional comments regarding the course, which were not covered by the questions on the evaluation.

C. Samples of student exams are evaluated by the faculty to determine if the expected outcomes of the course are met. In addition, statistics from the course evaluation forms are collected at the end of the semester. Statistics from all sections of the course are compared and inferences about the quality of the course, textbook and the instructors’ teaching skills are determined. These results are disseminated to the undergraduate studies committee of the department, as well as to the all instructors in the department, so that the necessary course adjustments can be made.
Course: Physics 1302 - Introductory General Physics II

A. Catalog Description: Electromagnetism and modern physics.

B. Prerequisites: Phys 1301. Primarily for majors other than physics and engineering. Credit may not be applied toward a degree for Phys1302 and either Phys1312, 1322, or 2412.

II. Course Objectives: The objective of this course is to learn the principles of electromagnetism and modern physics.

Upon completion of this course, students will be able to:

1. clearly understand and apply laws such as Gauss' law, Coulomb's laws and Kirchoff's law;
2. be able to apply basic physics laws to solve real life problems;
3. to develop the processes of logical thinking and reasoning.

Other learning outcomes include:

1. Students completing this course will be able to convey knowledge of the basics principles of physics and be able to use these principles to solve elementary problems.
2. Students will be able to take a real life problem and use physical principles and basic mathematical tools to describe the problem.
3. Student will have the ability to communicate orally and in writing in a clear concise manner the concepts of Physics.

III. Course Content: This course will include the following topical areas:

1. Electric Charge, Forces and Fields
2. Electric Potential and Potential Energy
3. Electric current and DC Circuits
4. Momentum and Collisions
5. Noninertial Reference Systems
6. Magnetism and faraday's law
7. AC Currents
8. Electromagnetic Waves
9. Geometric Optics

IV. Course Structure:
The web address for the class is http://beta.phys.uh.edu/~rforrest.

V. Textbooks


VI. Course Requirements

A. Warm up Assignments: Reading assignments will be given 3-4 times during the semester. Reading quizzes covering the material from the reading assignment, consisting of 2-3 questions/problems, will be assigned over WebCt. The quizzes will be available at least 24 hours before they are due and they will be due by the beginning of the lecture time. There will be a time limit for taking the quiz and you will be allowed 2 attempts for each quiz. Solutions for the quizzes will be discussed during the lecture and will be posted on the class website.

B. Written Assignments: 3-7 homework problems will be assigned at the beginning of each chapter and will be due approximately one week from that date at the beginning of class.

C. Exams: There will be four regular exams and a final exam for a total of five exams for the class.

The regular exams will be given during the Friday examination period and the date of each exam will be announced one week in advance. They will cover 2-4 chapters and will consist of 2 to 5 problems. Partial credit will be given.

The final exam will be comprehensive covering all chapters covered for the course. The format of the final exam will be similar to that of a regular exam. This exam will be given during the University scheduled time.

VII. Evaluation and Grading

5% Reading Quizzes
15% Homework  
14% Regular Exam I  
14% Regular Exam II  
14% Regular Exam III  
14% Regular Exam IV  
24% Final Exam

Policy on grades of I (Incomplete): The grade of "I" (Incomplete) is a conditional and temporary grade given when a student, for reasons beyond his or her control, has not completed a relatively small portion of all requirements. Sufficiently serious, documented situations include illness, death in the family, etc.

VIII. Consultation

My office is located in room 501-B of Science and Research #1. My mailbox is located in the Physic office, room 617 in Science and Research #1. My office hours will be from 1 - 2 pm on Mondays, Wednesdays and Fridays. If you can not see me during those times, you may schedule an appointment with me by calling me at (713) 743-3507 or e-mailing me at rforrest@uh.edu.

IX. Bibliography

References: Physics, Algebra/Trig, Eugene Hecht; Fundamentals of Physics, Halliday, Resnick, and Walker; The Feynman Lectures on Physics, R. Feynman, R.B. Leighton, and M. Sands

Addendum: Whenever possible, and in accordance with 504/ADA guidelines, the University of Houston will attempt to provide reasonable academic accommodations to students who request and require them. Please call 713-743-5400 for more assistance.

It is each student's responsibility to read and understand the Academic Honesty Policy found in the Student Handbook, which can be found at http://www.uh.edu/dos/hdbk/acad/achonpol.html.

Standard Disclaimer: This syllabus is subject to change at the discretion of the instructor.