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Transportation and Energy

Total energy used in the U.S. [1] Annual CO, emission of
buses in the U.S. [2]

19.7 million

metric tons
Transportation

[2] Office of Transportation and Air Quality, “Fast facts:
i U.S. transportation sector greenhouse gas emissions
Energy Review, Table 2.1, May 2020. 1990-2017,” Tech. Rep. EPA-420-F-19-047, June 2019.

[1] U.S. Energy Information Administration, Monthly



Mixed fleets of transit vehicles

Electric Vehicles

Cost of typical transit bus [3] Diesel

b '“Im

How to optimize the operation of a mixed fleet of transit vehicles

(e.g., assign vehicles to transit trips, schedule electric charging)
to minimize energy usage?

Diesel Electric Electric with
charging
infrastructure

[3] A. O’'Donovan, J. F. Analyst, and C. McKerracher,
“Electric buses in cities: Driving towards cleaner air and
lower CO2,” Bloomberg New Energy Finance, March 2018.




HD-EMMA: High-dimensional Data-driven Energy
optimization for Multi-Modal transit Agencies

* Funded by the Department of Energy under Award DE-EE0008467 *
(2019 — 2021)

* Project partners include

HOUSTON VANDERBILT UNIVERSITY South Carolina

Pl: Aron Laszka Pl: Abhishek Dubey Pl: Yuche Chen
https://aronlaszka.com/ https://scopelab.ai/

* Project website: https://smarttransit.ai/

* This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.



@ Chattanooga Area Regional
Transportation Authority

* Project lead, PIl: Philip Pugliese (Transportation System Planner)

« CARTA serves the Chattanooga, TN area, providing over 3 million
passenger trips per year

« CARTA spends more than $1.1 million on fuel annually

« CARTA operates a mixed fleet of
ICEVs, EVs, and hybrid vehicles

e o




Presentation Outline

Data collection, storage, and analytics
Macroscopic energy usage prediction
Transit optimization algorithms
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Supporting results:
microscopic prediction and visualization

5. Related transit projects






Background Approach

High resolution sensor data aggregation from all transit vehicles.
Anomaly detection and data store for supporting high integrity, velocity, and volume
Micro (Vehicle Specific), Macro (Elevation, Weather and Traffic) Energy Prediction for Mixed Fleet
Operational Guidance for Mixed Fleet Operations and City-wide geo-spatial visualization.

Anomaly

detection

and online
learning

Data
aggregation
in Pulsar

This project is building a high-resolution Vehicle
system-level data capture and analysis for mobility data
transit operations to provide CARTA the capability

to identify energy bottlenecks, accurately predict
energy costs of all operations, and to optimize  Tetemetry
vehicle assignments and charging schedules.

Source code and datasets: System architecture

https://smarttransit.ai/energy.html



Data Sources

Static Data

« Data aggregated since August 2019 into
the data store v

o . . JRC Real-ti ‘ Raw Unstructured - Structured
AnaIIySIS requ!res JOInIng dlata frOm egat;me (Distributed Ledgers) “| Views (NoSQL)
multiple real-time and static sources ~

 Future work: integration with Spark for Client | Real-Time Model | Model
real-time data synthesis Application | Inference [ Training

« Example: fuel consumption from ViriCiti +
vehicle location from Clever Devices +
weather from DarkSky + traffic conditions
from HERE

Volume of data was so large that we had to
design a distributed datastore

0 Daricsiy Ml &

Clever «& °
C lTl Devices




Data Store Approach

ViriCiti

Weather

Brokers & Bookies
— 5 Nodes

2 VPUs

8 GB Ram

40 GiB Root
Disk

128 GiB Volume

Pulsar Cluster

L

Zookeeper
—5 Nodes

1 VPUs

8 GB Ram

40 GiB Root
Disk

64 GiB Volume

OpenStack

)
D

LU smeaw

. mong.oDB

MongoDB — Replica Set
« 2 storage nodes
« 8VPUs
« 16 GB RAM
« 150 GiB root disk
« 4 TB volume
* 1 arbitrator
- 1VPU
« 2 GBRAM
* 40 GiB root disk

Features of the architecture
« Distributed storage

* Replicated data

 Real-time stream
processing

« Spatial queries
 Integrated visualization
« Temporal queries

» Integrated joins for
analysis across different
data features

« weather
 traffic
* vehicle telemetry



Energy Consumption Distribution by Fleet
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Online visualization dash
https://smarttransit.ai/energydashboard/
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KWh/mile

Analysis and Insights

Energy KWh/mile — BYD Electric Energy KWh/mile — Gillig Diesel

14 14

12

-
N

’ e H i
6 §6H”HHHHHHHHHH T H
: B, 2L Sk *8 4; D ¥ L é% ’

Bus Rout: ’ ” - WINBOUND Trips BxusNRoxute

] OUTBOUND Trips

* Boxplots show the KWh per mile for all trips on each route, data range from December 20, 2019 to April 15, 2020

* KWh per mile is higher for diesel vehicles compared to electric vehicles

* There is some variation between routes, which implies electric vehicles (agencies have limited numbers) can be
deployed strategically to lower overall energy consumption

* Future work: we are analyzing the differences between vehicle models and years



Time of day

Analysis and Insights

Energy (kWh/mile) per route for BYD electric vehicles
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Route

Route 21 — has more stops and hilly terrain

Time of day

Energy (kWh/mile) per route for Gillig diesel vehicles
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Route

Route 21 — consumption is ~ 4 times more than electric

® Diesel vehicles are more affected by time of day than electric vehicles, which supports our hypothesis that electric

vehicles perform better in dense traffic

® Scales of the heatmaps are different because of the difference in energy consumption magnitude between electric and

diesel vehicles



Analysis and Insights

Weather — Energy Cost Correlation Matrix Weather — Energy Cost Correlation Matrix
for BYD Electric Vehicles (Route 4 Inbound) for Gillig Diesel Vehicles (Route 4 Inbound)

wind speed
wind speed
visibility
visibility
precipitation intensity TR .
precipitation intensity
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e Temperature has a negative correlation with energy cost for electric vehicles (as temperature goes up, energy cost
goes down)

o \Weather affects electric and diesel vehicles very differently and hence it is important identify correlation between
features for each fleet separately

e Similarly, elevation affects the vehicles differently

o \We utilize this sensitivity in planning the assignment problem






Macroscopic Energy Prediction

o Motivation: minimize the energy use of transit services through routing,

scheduling, and vehicle assignment.
e Prerequisite: predict how much energy a transit vehicle will use on a route
at a time.

/™=, Route (series of locations) Predictor Energy use
'* % _ (gallons or
Day of week, time of day Watt-seconds)

Expected Weather, Expected Traffic

Contrast to micro prediction: we can rely only on features that are vehicle agnostic.



» Clean GPS data

4 4 )

Generate Samples

4 Data from ViriCiti

Calculate Energy Map Locations to Roads
Consumption

electric, diesel, and

segment time series
hybrid vehicles &

map noisy GPS location . .
into disjoint

(timestamps, GPS consumption time series traces to road segments .
. . . . S contiguous samples
location traces, fuel from using battery current using intelligent filtering
based on road
levels / battery voltage and voltage or fuel levels and OSM segments
and current
N ) N Y N Y N Y
C ) 4 I 4 I 4 I
MaChl:;lde:lzmmg Create Training and Augment Samples with
Training, Test Sets Additional Data
Evaluation, ap?'y Ilrglear _ for ejclh vehifle for each sample, add
- regression, decision model, create _ )
Prediction tree, deep neural randomized training elevation change, traffic, and
networks and test sets weather features

- ) o J - J - J




Error in MSE

Macroscopic Energy Prediction Results #1

Which data features are the most useful for prediction?

Diesel (2014 Gillig Phantom)

l l i

i |
Weather Traffic Elevation Traffic+Elevation All

Features used for prediction
Both elevation and traffic data are significant for diesel vehicles

Electric (2016 BYD K9S)

1072
3.3 ................. o .................. ..................
L . . . . .
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>
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Weather Traffic Elevation Traffic+Elevation All

Features used for prediction
Elevation is by far the most significant feature for electric vehicles




Macroscopic Energy Prediction Results #2

Electric Diesel
40% 20 %
2 E 10%
K 20% -
T T ; 5%
10% beobooo oo b .. [ foo. .. [ L. oo b .. L. T f | | | | | | { { !
10 20 30 40 50 60 120 180 240 300 360 10 20 30 40 50 60 120 180 240 300 360
Trip duration in minutes Trip duration in minutes
Prediction error for longer trips with neural network (ANN), decision tree (DT), and linear regression (LR)
1077 . . , , , ,
2; 315 [ o SR e SN S . AR %‘1
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LE 312 15 L e L ) ST SR ; [5 ; ; : : : : : :
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Weather features used for prediction Weather features used for prediction

Prediction error with various weather features: temperature (T), humidity (H), visibility (V), wind speed (W), and precipitation (P)

For electric vehicles., we attain lowest error when we use all For diesel vehicles we attain lowest error using only three features:
five features together temperature, visibility and pressure (need further investigation)
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Vehicle Assignment and Charging Optimization

« Motivation: minimize the energy use of transit services through
vehicle assignment and electric charge scheduling
« Problem:

iverside

Transitw}tripsw |

A
%ot 5, cARTA <

Vehicles (ICEV and EV)
syl )8 T

: e NN Sschedule
g assign e = = "W
% c\~ —— / i £ 7 q

(for EVs)

< >

o Computational approaches (ongoing work)
o Integer program: finds optimal solution, but does not scale well computationally
o Greedy algorithm: very efficient computationally

o Simulated annealing: computationally efficient, improves greedy algorithm with random search



Optimization Results #1

How do the proposed algorithms perform?

Computational Complexity Energy Cost
¢ I - —
_wtf (0] : : _
8 ; ; % £ 1,000 | .
g g2 % *(T) X
g 0¥ s & & 2 & & §oroeTd S %
n >
2, | >
£ 100 s 8 25T T 0 g 0 %%
- s &7 L0 o :
G- %
02—t | |} | | L= | 4 1 1 1 0 b ]
1 2 3 4 5 6 7 8 9 1011 12 1 2 3 4 5 6 7 8 9 1011 12
Number of Bus Lines Number of Bus Lines

Integer Program
Simulated Anneal.
Greedy Algorithm



Optimization Results #2

What are the potential savings in energy usage?

o« We compute assignments for

_ 900 the daily schedule of CARTA
£, T - - with 3 electric and 50 diesel
% 8,500 | | .
S buses using greedy and
> <000 | simulated annealing algorithms
ks o Assignments found by simulated
> 7,500 |- : annealing lower daily costs by
A — L L $134 and CO, emission by 0.48
7,000 Real Greedy Sim. Ann. metric tons
| — $48K and 175.2 tons of CO,
Algorithms

saved annually



Microscopic Energy Prediction Model

Variable and model selections for

Classifying data based on driving features optimal prediction performance

Energy
Consumption
Model .
- Velocity
Acceleration
Road Grade Instant.
Weather/humidity power
Weather/temperature
Acceleration > Acceleration
> 2 ftisecN2 HELSIEL < -2 ftilsecN2
v v - v
@i@ @i@ /l raining [TraininQ; input layer hidden layer 1 hidden layer 2 output layer
ANN ANN NN ArﬁN ;
model ' model that 4 No[ mo@ »@,@ Neural network model Regular regression model
predicts D oot o]
; >=0?
sign of
power v , -

; — Predicted

@

v A
Pl;edicted Predicted T Predicted Predicted
Dol Power Power Power
Test Data, Test data, Test data,
Acceleration > 2 Acceleration Acceleration < -2
- between -2 and 2 i
r-y

0 2 4 6 8 10 12
| I S

Cumulative Energy Cunsumption (kWh)

I I T T !
0 200 400 600 800

Trip Time (second)



Visualization Framework for Operational Guidance

« Historical trends and real-time monitoring

« Technologies
- HoloVIZ: server and dashboard framework, Jupyter notebook integration
- deck.gl, vis.gl, kepler.gl: visualization engine from Uber Technologies

« Accessible by Jupyter notebook and web client
R
‘ Uber jupyter

Holo




Visualization: Historical Trends

6AM to 9AM

4 Energy )
consumption
depends on
route as well as

\_ time of day

Legend: Energy Usage (Per Quantile)
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Summary

Relevance
Reduce energy consumption of

public transit fleet through
vehicle optimization

Approach

Collaborative partnership with
transit agency operating mixed-
vehicle fleet

Accomplishments o~ e

 Data collection completed ‘ -

* Prediction models developed

« Ability to inform capital vehicle acquisition
and deployment strategies




Related Transit Project by Our Team

* Al-Engine for Optimizing Integrated Service in Mixed Fleet Transit Operations
» funded by the Department of Energy, 2021 — 2023

« idea: artificial intelligence for the integrated optimization of fixed-route and on-
demand transit services

VEHICLE ELECTRIC
| e CHARGING
VEHICLES




Related Transit Project by Our Team

Al-Engine for Optimizing Integrated Service in Mixed Fleet Transit Operations
» funded by the Department of Energy, 2021 — 2023

« idea: artificial intelligence for the integrated optimization of fixed-route and on-
demand transit services to decrease energy usage

Mobility for all - Harnessing Emerging Transit Solutions for Underserved
Communities

« funded by the National Science Foundation, 2021 — 2024

 idea: design a community-centric micro-transit services that augments fixed-line
transit following a socio-relational approach to community engagement

« Addressing Transit Accessibility Challenges due to COVID-19
« funded by the National Science Foundation, 2020 — 2021

For more information, datasets, publications, etc., please visit

https://smarttransit.ai/
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Aron Laszka P4
alaszka@uh. edu P4

http://aronlaszka.com/ %



