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Transportation and Energy

Transportation
28%

Other
72%

Total energy used in the U.S. [1]

[1] U.S. Energy Information Administration, Monthly 
Energy Review, Table 2.1, May 2020.

Annual CO2 emission of 
buses  in the U.S. [2]

19.7 million 
metric tons

[2] Office of Transportation and Air Quality, “Fast facts: 
U.S. transportation sector greenhouse gas emissions 
1990–2017,” Tech. Rep. EPA-420-F-19-047, June 2019. 



Electric Vehicles

$500K
$700K

$1,000K

Diesel Electric Electric with
charging

infrastructure

Cost of typical transit bus [3]

[3] A. O’Donovan,  J. F.  Analyst,  and C. McKerracher,  
“Electric buses in cities:  Driving towards cleaner air  and 
lower CO2,” Bloomberg New Energy Finance, March 2018.

Mixed fleets of transit vehicles

Diesel

Electric

Hybrid

How to optimize the operation of a mixed fleet of transit vehicles 
(e.g., assign vehicles to transit trips, schedule electric charging) 

to minimize energy usage?



HD-EMMA: High-dimensional Data-driven Energy 
optimization for Multi-Modal transit Agencies
• Funded by the Department of Energy under Award DE-EE0008467 *

(2019 – 2021)
• Project partners include

• Project website: https://smarttransit.ai/

* This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency 
thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PI: Aron Laszka
https://aronlaszka.com/

PI: Abhishek Dubey
https://scopelab.ai/

PI: Yuche Chen



Chattanooga Area Regional 
Transportation Authority

• Project lead, PI: Philip Pugliese (Transportation System Planner)
• CARTA serves the Chattanooga, TN area, providing over 3 million 

passenger trips per year
• CARTA spends more than $1.1 million on fuel annually

• CARTA operates a mixed fleet of 
ICEVs, EVs, and hybrid vehicles



Presentation Outline

1. Data collection, storage, and analytics
2. Macroscopic energy usage prediction
3. Transit optimization algorithms
4. Supporting results: 

microscopic prediction and visualization
5. Related transit projects



1. Data Collection and Storage



Background

This project is building a high-resolution 
system-level data capture and analysis for 
transit operations to provide CARTA the capability 
to identify energy bottlenecks, accurately predict 
energy costs of all operations, and to optimize 
vehicle assignments and charging schedules.

Approach

Source code and datasets: 
https://smarttransit.ai/energy.html

System architecture

Telemetry
sensors

Vehicle 
mobility data

Anomaly 
detection 
and online 

learning

in



Data Sources
• Data aggregated since August 2019 into 

the data store
• Analysis requires joining data from 

multiple real-time and static sources
• Future work: integration with Spark for 

real-time data synthesis
• Example: fuel consumption from ViriCiti + 

vehicle location from Clever Devices + 
weather from DarkSky + traffic conditions 
from HERE

Volume of data was so large that we had to 
design a distributed datastore



Data Store Approach

Brokers & Bookies 
– 5 Nodes
• 2 VPUs
• 8 GB Ram
• 40 GiB Root 

Disk
• 128 GiB Volume

Zookeeper 
– 5 Nodes
• 1 VPUs
• 8 GB Ram
• 40 GiB Root 

Disk
• 64 GiB Volume

MongoDB – Replica Set
• 2 storage nodes

• 8 VPUs
• 16 GB RAM
• 150 GiB root disk
• 4 TB volume

• 1 arbitrator
• 1 VPU
• 2 GB RAM
• 40 GiB root disk

OpenStack

HERE

ViriCiti

Weather

Pulsar Cluster

Clever

Features of the architecture
• Distributed storage
• Replicated data
• Real-time stream 

processing
• Spatial queries
• Integrated visualization
• Temporal queries
• Integrated joins for 

analysis across different 
data features

• weather
• traffic
• vehicle telemetry 



Electrical Vehicle on Routes

Daily Energy Consumption

Energy Consumption Distribution by Time

Energy Consumption Distribution by Fleet

Online visualization dashboards:
https://smarttransit.ai/energydashboard/



Bus Route

Analysis and Insights
Energy KWh/mile – BYD Electric

KW
h/

m
ile

Bus Route

• Boxplots show the KWh per mile for all trips on each route, data range from December 20, 2019 to April 15, 2020
• KWh per mile is higher for diesel vehicles compared to electric vehicles
• There is some variation between routes, which implies electric vehicles (agencies have limited numbers) can be 

deployed strategically to lower overall energy consumption
• Future work: we are analyzing the differences between vehicle models and years

KW
h/

m
ile

Energy KWh/mile – Gillig Diesel



Analysis and Insights

● Diesel vehicles are more affected by time of day than electric vehicles, which supports our hypothesis that electric 
vehicles perform better in dense traffic

● Scales of the heatmaps are different because of the difference in energy consumption magnitude between electric and 
diesel vehicles

Route 21 – has more stops and hilly terrain Route 21 – consumption is ~ 4 times more than electric

Energy (kWh/mile) per route for BYD electric vehicles Energy (kWh/mile) per route for Gillig diesel vehicles



Analysis and Insights

● Temperature has a negative correlation with energy cost for electric vehicles (as temperature goes up, energy cost 
goes down)

● Weather affects electric and diesel vehicles very differently and hence it is important identify correlation between 
features for each fleet separately

● Similarly, elevation affects the vehicles differently
● We utilize this sensitivity in planning the assignment problem

Weather – Energy Cost Correlation Matrix 
for BYD Electric Vehicles (Route 4 Inbound)

Weather – Energy Cost Correlation Matrix 
for Gillig Diesel Vehicles  (Route 4 Inbound)



2. Energy Usage Prediction



Macroscopic Energy Prediction
● Motivation: minimize the energy use of transit services through routing, 

scheduling, and vehicle assignment.
● Prerequisite: predict how much energy a transit vehicle will use on a route 

at a time.

Contrast to micro prediction: we can rely only on features that are vehicle agnostic.

Predictor

Vehicle make and model

Route (series of locations)

Day of week, time of day

Energy use
(gallons or 
Watt-seconds)

Expected Weather, Expected Traffic



Macroscopic Energy Prediction Workflow

Data from ViriCiti

electric, diesel, and 
hybrid vehicles

(timestamps, GPS 
location traces, fuel 

levels / battery voltage 
and current)

Calculate Energy 
Consumption

consumption time series 
from using battery current 
and voltage or fuel levels

Map Locations to Roads 

map noisy GPS location 
traces to road segments 
using intelligent filtering 

and OSM

Generate Samples 

segment time series 
into disjoint 

contiguous samples 
based on road 

segments

Augment Samples with 
Additional Data

for each sample, add 
elevation change, traffic, and 

weather features

Create Training and 
Test Sets

for each vehicle 
model, create 

randomized training 
and test sets

Machine Learning 
Models

apply linear 
regression, decision 

tree, deep neural 
networks

Training, 
Evaluation, 
Prediction

Noisy GPS data Clean GPS data



Macroscopic Energy Prediction Results #1
Which data features are the most useful for prediction?

Diesel (2014 Gillig Phantom) Electric (2016 BYD K9S)

Elevation is by far the most significant feature for electric vehiclesBoth elevation and traffic data are significant for diesel vehicles



Macroscopic Energy Prediction Results #2

Prediction error for longer trips with neural network (ANN), decision tree (DT), and linear regression (LR)

Electric Diesel

Prediction error with various weather features: temperature (T), humidity (H), visibility (V), wind speed (W), and precipitation (P)

For electric vehicles, we attain lowest error when we use all 
five features together

For diesel vehicles we attain lowest error using only three features: 
temperature, visibility and pressure (need further investigation)



3. Transit Optimization



Vehicle Assignment and Charging Optimization

● Motivation: minimize the energy use of transit services through 
vehicle assignment and electric charge scheduling

● Problem:
Transit trips Vehicles (ICEV and EV) Charging

schedule 
(for EVs)assign

● Computational approaches (ongoing work)
○ Integer program: finds optimal solution, but does not scale well computationally

○ Greedy algorithm: very efficient computationally

○ Simulated annealing: computationally efficient, improves greedy algorithm with random search



Optimization Results #1
How do the proposed algorithms perform?

Computational Complexity Energy Cost
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Figure 2: Energy costs for assignments using the integer program (⌅), simulated annealing (⌅), and the greedy algorithm (⌅).
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Figure 3: Energy costs for assignments using the greedy algorithm (⌅) and simulated annealing (⌅) for complete daily sched-
ules, compared to existing real-world assignments (⌅).
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Figure 1: Computation times for assignments using integer
program (⌅), simulated annealing (⌅), and greedy algorithm
(⌅). Please note the logarithmic scale on the vertical axis.

API, which we query for all 2,070 possible non-service trips342

(i.e., for every pair of locations in the network) for each343

1-hour interval of a selected weekday from 5am to 11pm.344

The response to each query includes an estimated duration345

as well as a detailed route, which we combine with our other346

data sources and then feed into our energy-use predictors.347

Charging Rate, Energy Costs, and CO2 Emissions348

Electric buses of model BYD K9S have a battery capacity of349

270 kWh, and the charging poles of the agency can charge a350

BYD K9S model bus at the rate of 65 kW/h. We consider 3351

charging poles for our numerical evaluation. Based on data352

from the transit agency, we consider electricity cost to be353

$9.602 per 100 kWh and diesel cost to be $2.05 per gallon.354

Finally, based on data from EPA (EPA 2020a), we calculate355

CO2 emissions for diesel vehicles as 8.887 kg/gallons and356

for electric vehicles as 0.707 kg/kWh.357

4.2 Results358

For all experiments presented in this section, we set the359

length of time slots to be 1 hours; wait-time factor to ↵ =360

0.003 for electric buses (see Algorithm 1); wait-time factor361

to ↵ = 0.09 for liquid-fuel buses; swapping rate to pswap =362

0.01 (see Algorithm 3); simulated-annealing iterations, ini-363

tial probability, and final probability to kmax = 50, 000,364

pstart = 0.5, and pend = 0.01, respectively (see Algo-365

rithm 4). We found these to be optimal configuration based366

on a grid search of the parameter space. Due to the lack of367

space, we include these search results in Appendix C.368

Computational Performance We first study how well our369

algorithms scale with increasing problem sizes. To this end,370

we measure the computation times of our algorithms with371

1 to 12 bus lines (selected from the real bus lines), and 10372

selected trips for each line. For each case, we evaluate the373

algorithms on 35 different samples and present statistical re-374

sults. For cases with 11 and 12 bus lines, we assign the entire375

vehicle fleet, which consists of 3 electric and 50 liquid-fuel376

buses. For cases with fewer bus lines, we assume that the377

agency has 3 electric buses but only 5 times as many liquid- 378

fuel buses as bus lines. We solve the integer program (IP) 379

using IBM CPLEX. We run all algorithms on a machine 380

with a Xeon E5-2680 CPU, which has 28 cores, and 128 381

GB of RAM. Figure 1 shows the computation times for the 382

IP, greedy, and simulated annealing. As expected, the time 383

to solve the IP is significantly higher and increases rapidly 384

with the number of lines, becoming infeasible at around 10 385

lines. On the the hand, the greedy and simulated annealing 386

algorithms are orders of magnitude faster and scale well. 387

Solution Quality Next, we evaluate the performance of 388

our algorithms with respect to solution quality, that is, en- 389

ergy cost. Note that we present CO2 results in Appendix C. 390

We use the exact same setting as in the previous experiment 391

(Figure 1). Note that for larger instances, solving the IP is in- 392

feasible. Figure 2 shows that simulated annealing performs 393

slightly better than greedy; however, neither perform as well 394

as IP (which is optimal). On the bright side, the cost ratio 395

between IP and our heuristics improves for larger instances. 396

Comparison to Existing Assignments Finally, we com- 397

pute assignments for the complete daily schedule of the 398

agency using 3 electric and 50 liquid-fuel buses using 399

greedy and simulated annealing algorithms. In Figure 3, 400

we compare real-world energy costs for 50 different sam- 401

ple days with greedy and simulated annealing assignments. 402

Our results shows that simulated annealing has lower energy 403

costs than existing real-world assignments. On average, real- 404

world assignments cost $8187 with CO2 emission of 35.58 405

metric tons, greedy approach costs $8062 with CO2 emis- 406

sion of 35.14 metric tons, and simulated annealing algorithm 407

costs $8053 with CO2 emission of 35.10 metric tons. We 408

were able to assign the full schedule using greedy algorithm 409

in around 6 minutes; meanwhile, the simulated annealing 410

runs for around 8 hours (around 50,000 iterations). Since an 411

agency might need to find a new assignment urgently (e.g., 412

because some buses are unavailable due to maintenance), the 413

greedy algorithm can be a better option. 414

5 Related Work 415

Wang et al. (2018), Tian et al. (2016), Wang et al. (2017) 416

collect GPS data, bus stop data, bus transaction data, traffic 417

data, and electricity consumption data, and use them to gen- 418

erate simulated models for energy prediction and optimiza- 419

tion in transit networks. Santos et al. (2016) assume fixed 420

costs, emission, and consumption rates for different types of 421

vehicles, and Paul and Yamada (2014) assume fixed energy 422

costs per unit distance without considering spatial and tem- 423

poral factors. Unlike the previous research efforts, we derive 424

realistic energy estimates using our energy predictors based 425

on vehicle locations, traffic, elevation, and weather data. 426

Various approaches have been applied in the domain of 427

energy optimization for bus transit networks. Chao and Xi- 428

aohong (2013) implement a genetic algorithm-based ap- 429

proach to minimize charging costs and operational costs sep- 430

arately. Yang and Liu (2020) implement a genetic algorithm 431
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Figure 2: Energy costs for assignments using the integer program (⌅), simulated annealing (⌅), and the greedy algorithm (⌅).
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Figure 3: Energy costs for assignments using the greedy algorithm (⌅) and simulated annealing (⌅) for complete daily sched-
ules, compared to existing real-world assignments (⌅).
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Optimization Results #2
What are the potential savings in energy usage?
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Figure 2: Energy costs for assignments using the integer program (⌅), simulated annealing (⌅), and the greedy algorithm (⌅).
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Figure 3: Energy costs for assignments using the greedy algorithm (⌅) and simulated annealing (⌅) for complete daily sched-
ules, compared to existing real-world assignments (⌅).
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● We compute assignments for 
the daily schedule of CARTA 
with 3 electric and 50 diesel 
buses using greedy and 
simulated annealing algorithms

● Assignments found by simulated
annealing lower daily costs by 
$134 and CO2 emission by 0.48 
metric tons
→ $48K and 175.2 tons of CO2
saved annually



Microscopic Energy Prediction Model
Classifying data based on driving features

Variable and model selections for 
optimal prediction performance

Velocity
Acceleration
Road Grade
Weather/humidity
Weather/temperature



Visualization Framework for Operational Guidance

● Historical trends and real-time monitoring
● Technologies 

○ HoloVIZ: server and dashboard framework, Jupyter notebook integration
○ deck.gl, vis.gl, kepler.gl: visualization engine from Uber Technologies

● Accessible by Jupyter notebook and web client



3PM to 6PM6AM to 9AM

Energy 
consumption 
depends on 

route as well as 
time of day

Visualization: Historical Trends



Summary
Relevance
Reduce energy consumption of 
public transit fleet through 
vehicle optimization 

Approach
Collaborative partnership with 
transit agency operating mixed-
vehicle fleet

Accomplishments
• Data collection completed
• Prediction models developed
• Ability to inform capital vehicle acquisition

and deployment strategies



Related Transit Project by Our Team
• AI-Engine for Optimizing Integrated Service in Mixed Fleet Transit Operations 

• funded by the Department of Energy, 2021 – 2023
• idea: artificial intelligence for the integrated optimization of fixed-route and on-

demand transit services

SEAMLESS
TRANSFER

MAINTENANCE SCHEDULE CHARGING SCHEDULE

COURTESY STOPS DISPATCH & ROUTING

VEHICLES

SERVICE
ASSIGNMENT

TRIP AGGREGATION & PRIORITIZATION

ELECTRIC
CHARGING

VEHICLE
MAINTENANCE

FIXED-SCHEDULE
TRIPS

FIXED-ROUTE
TRANSIT SERVICE

VEHICLE ASSIGNMENT & REASSIGNMENT

ON-DEMAND
TRIPS

ON-DEMAND
TRANSIT SERVICE

TRANSIT
REQUESTS



Related Transit Project by Our Team
• AI-Engine for Optimizing Integrated Service in Mixed Fleet Transit Operations

• funded by the Department of Energy, 2021 – 2023
• idea: artificial intelligence for the integrated optimization of fixed-route and on-

demand transit services to decrease energy usage

• Mobility for all – Harnessing Emerging Transit Solutions for Underserved 
Communities 

• funded by the National Science Foundation, 2021 – 2024
• idea: design a community-centric micro-transit services that augments fixed-line 

transit following a socio-relational approach to community engagement

• Addressing Transit Accessibility Challenges due to COVID-19 
• funded by the National Science Foundation, 2020 – 2021

For more information, datasets, publications, etc., please visit
https://smarttransit.ai/



Thank You
Aron Laszka

alaszka@uh.edu

http://aronlaszka.com/


