

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

History of Electric Vehicles

EV History

- 1834 Non-rechargeable battery powered electric car- invented by Thomas Davenport
- > 1851 Non-rechargeable 19-mi/h electric car.
- > 1859 Development of lead acid storage battery.
- > 1874 Battery powered carriage.
- Early 1870's Electricity produced by dynamo-generators.
- 1881 First electric vehicle (Gustave Trouve), Int'l Exhibit of Electricity, Paris, FR.
- 1890's : EV's outsold gas cars 10 to 1, Oldsmobile and Studebaker started as EV companies
- 1900 4,200 automobiles sold:
 - 40% steam-powered
 - 38% electric powered
 - 22% gasoline powered
- 1920's EVs disappear and ICEVs become predominant.

• The Impact prototype was	GM Impact 1990/EV1 powered by two induction motors, one driving each front wheel. The battery pack
	olt Delco Remy lead-acid batteries, connected in series. The inverter for converting the
	8 MOSFETs, each leg consisting of 24 parallel connected devices, switching at about 20
, 0	e AC current was varied to maintain the highest possible efficiency throughout the RPM
	s transmitted to the tires via a 10.5:1 planetary gear unit.
– Motor Type	Three phase induction motor
– Max. motor output	57 bhp @ 0 to 6600 rpm (per motor)
 Motor speed at 60 mph 	9500 rpm
– Top speed	100 mph (rev.limited to 75 mph)
– Torque	47 lb-ft @ 0 to 6600 rpm (per motor)
 Inverter type 	Dual MOSFET inverter
 Frequency range 	0-500 Hz
 Battery type 	Lead acid, 32, ten volt batteries in series.
 Capacity 	42.5 amp. hour,13.6 KWh
 Battery weight 	395 Kg
 Battery charger 	Integral with dual inverter package
 Recharge Time 	2 hrs (80%)
– Range	120 miles @ 55 mph
 Acceleration(0 to 60 mpł 	a) 8 seconds
 Vehicle weight 	1000 Kg
 GM's Impact was the first p 	roduction intent EV announced by a major car manufacturer. Impact technology led to
the production of EV1 electr	
	10

15

2017 Nissan Leaf

Horsepower	107 HP
MPGe(City/Highway)	120/101
Torque	187 lb-ft
Range	107miles
Battery Type	Li ion
Battery Energy	30kWh
Battery charger	6.6kW
Charging time	6hours

Battery Housing

The vehicle is a					
If it	Micro Hybrid	Mild Hybrid	Full Hybrid	Plug-in Hybrid	
Automatically stops/starts the engir in stop-and-go traffic	e 🕜				
Uses regenerative braking and operates above 60 volts					
Uses an electric motor to assist a combustion engine					
Can drive at times using only the electric motor			0		
Recharges batteries from a wall out for extended all-electric range				Ø	
Function	Micro Hybrid	Mild Hybrid	Full Hybrid	Plug-in Hybrid	
Fuel economy	5% to 10%	7% to 15%	>30%	>50%	
Power levels	3kW to 5kW	10kW to 15kW	>20kW	>20kW	

2017 Toy	ota Prius	Plug-In Hyb	orid
Horsepower, 1.8L engine (EV/ECO/Power)	95 HP @5200rpm	System net power	121 HP
Torque	105 lb-ft	Motor type	PMSM
Curb weight	3365lb	Voltage	600V(max)
Acceleration 0-62mph	10.7secs	Battery voltage	351.5V
Top speed electric/combined	62mph / 112mph	Battery capacity	8.8kWh
	25miles / 640miles	EPA MPG	55/53/54
Range (electric/total)		(city/high/combined)	
Range (electric/total) Battery charging time 240V	2hrs 10min	(city/high/combined) Battery charging time standard	5hrs 30mins

2021 Toyota Mirai Fuel Cell Vehicle

Toyota hydrogen fuel cell car Mirai . Base Price: \$49,500 Range: 650 km Trunk can hold 5.6 kilograms of hydrogen when compressed at 10,000 psi Lithium ion battery : 310.8V and 4.0 Ah, Motor: 182-hp/221 lb-ft Permanent-magnet motor Range: 404 miles

https://fuelcellsworks.com/news/new-mirai-hydrogen-fuel-cell-electric-vehicle-under-the-skin/

DC Fast Charging

- DC-fast charging (DCFC) enables a direct connection to the DC leads to the vehicle battery for the very fastest rate charging.
- DCFC is most often associated with the fastest charging rates possible in an attempt to approach the rapid energy transfer rate of gasoline refueling.
- DCFC charge rates of 100kW+ require grid connections that are only typically available in commercial or industrial sites (and not homes).
- For an intercity trip, a rough estimate is that a large battery BEV (such as an 85kWh Tesla Model S) can acquire enough charge for about 2.5 hours of highway driving in 30 minutes at the fastest Tesla Supercharger DCFC station.
- Siemens has developed a 150kW charger with up to 920V capability.
- Automobile manufacturers are launching long-distance batterypowered vehicles worldwide, which can recharge a range of 500 km in 10 to 15 minutes (Charging like refueling)

BYD's new 150 kW DC fast charger earns UL certification

https://chargedevs.com/newswire/b yds-new-150-kw-dc-fast-chargerearns-ul-certification/

37

http://tec.ieee.org/newsletter/january-february-2015/plug-in-hybrid-electric-vehicledc-fast-charging-the-future-just-got-more-interesting

Bi-directional on-board charger (V2G and G2V)

Bel Power Solutions has introduced the a 22/25 kW bi-directional liquid-cooled on-board inverter battery charger with export functionality. Up to 4 of these charging units can be connected in parallel, with efficiency near 94%.

It is possible to connect this charger to a charging station or directly to the grid (190-264 VAC single-phase or 330-528 VAC three-phase) to charge EV batteries. The output voltage covers a wide variety of batteries from 240 VDC to 800 VDC, with a constant 60-amp output current. When running on battery power, the system can export up to 25 kW (400 VAC @ 50 Hz or 480 VAC @ 60 Hz) to power three-phase AC equipment.

https://chargedevs.com/newswire/bel-power-solutions-announces-bi-directional-on-board-charger/

	Power Electronics	
	er electronics and high power density electric machines are the enabling technologies ressful development of MEAs. Further work is needed in the following areas:	for the
1	Power device packaging required to withstand the large temperature variations, and high thermal c capability	cycle
•	Effects of EMI, and EMI mitigation at high altitudes	
•	Fault tolerant power conversion topologies	
1	High temperature operation of power electronics and electric machines (For embedded generation 250°C)	, up to
•	Passive components with reduced weight, volume, and high temperature capability	
	e band gap devices (SiC and GaN) can meet some of the challenges:	
1. R	educed heat-sinking / thermal management	
2. C	loser integration into the hostile engine environment	
3. R	educed passives with increased switching frequency	
4. A	Iternative circuit topologies with inherently reduced passives	
	ral companies have developed inverter prototypes based on SiC switches that show ificant size reduction up to 1/6 of the size with silicon devices	
		42

Lithium ion batteries

Li-ion systems get their name from their unique cathode materials. The lithium-ion family is divided into three major battery types, so named by their cathode oxides, which are cobalt, manganese and phosphate. The characteristics of these Li-ion systems are as follows.

- Lithium-ion-cobalt or *lithium-cobalt* (LiCoO2): Has high specific energy with moderate load capabilities and modest service life. Applications include cell phones, laptops, digital cameras and wearable products.
- Lithium-ion-manganese or *lithium-manganese* (LiMn2O4): Is capable of high charge and discharge currents but has low specific energy and modest service life; used for power tools, medical instruments and electric powertrains.
- Lithium-ion-phosphate or *lithium-phosphate* (LiFePO4): Is similar to lithium-manganese; nominal voltage is 3.3V/cell; offers long cycle life, has a good safe record but exhibits higher self-discharge than other Li-ion systems.

Solid state batteries

• Solid-state batteries replace the liquid or polymer electrolyte found in current lithium-ion batteries with a solid

• The key difference between the commonly used lithium-ion battery and a solid-state battery is that the former uses a liquid electrolytic solution to regulate the flow of current, while solid-state batteries opt for a solid electrolyte. A battery's electrolyte is a conductive chemical mixture that allows the flow of current between the anode and cathode.

• Solid state batteries still work in the same way as current batteries do, but the change in materials alters some of the battery's attributes, including maximum storage capacity, charging times, size, and safety.

• The main benefits are batteries that are lightweight, smaller, higher-capacity and cheaper than current liquid-based lithium-ion batteries

• Solid state Batteries are becoming increasingly relevant with the adoption of electric vehicles. Toyota and Dyson both believe solid-state batteries could be in final products in the very near future.

				Team Roadmap F				
T-11-2 T-1-1-	17	FI						
Table 2. Technica			tion Drive system	Table 3. Technical	Targets for	High Voltage	Power Electroni	cs
ETDS Targets				Pow	er Flecti	onics Tar	ants	
Year	2020	2025	Change	Year	2020	2025	Change	
Cost (\$/kW)	8 4.0	6 33	25% cost reduction 88% volume reduction	Cost (\$/kW)	3.3	2.7	18% cost reduction	
Power Density (kW/L)	4.0	33	88% volume reduction	Power Density (kW/L)	13.4	100	87% volume reduction	
	-		Traction Motor					
	1	otor Targe						
Year	2020	2025	Change	Table 5. Technical Targets for DC/DC Converter				
Cost (\$/kW)	4.7	3.3	30% cost reduction	DC/DC Converter Targets		ots	2020	2025
Power Density (kW/L) ¹ 5.7 50 89% volume reduction		Cost, \$/kW			<50	30		
Table 6. Tech	hnical Targ	ets for On-E	Board Charger	Specific power, k	N/ka		>1.2	4
On-Board Charger Targets		2020	2025	Power density, kW/L			>3.0	4.6
Cost, \$/kW		50	35	Efficiency			>94%	98%
Specific power, kW/kg		3	4	Enterency			- 5470	5070
Power density, kW/L		3.5	4.6					
Efficiency		97% 98%						47
Efficiency		5170	5670					

Future Vehicles

- MOSFET-IGBT-Silicon carbide based vehicles
- Advanced high density packaging and operating at junction 250°C temperature and up to 100kHz
- Induction- PM--Synchronous Reluctance?
- Presently, no standards for nominal battery voltage. In future, there will be standards based on the classification of the vehicles
- Lead acid- NIMH-Lithium ion- Solid state- Lithium Air (Long term ?)
- Wireless Charging
- Renewable energy for charging
- · Grid integration: Most new electric vehicles come with grid power connection as standard
- Driverless-Autonomous-connected
- 3D printing, packaging, and miniaturization
- New materials and processes
- Flying cars and VTOL vehicle

Questions?