

AGENDA

- 1. Introduction
- 2. Desalination
- 3. SWRO Seawater Reverse Osmosis
- 4. Energy consumption
- 5. Renewable energy
- 6. Conclusion

Introduction

INTRODUCTION

The Impact of Water Scarcity on GDP

Source: https://www.worldbank.org/en/topic/water/publication/high-and-dry-climate-change-water-and-the-economy

Desalination

1970 1982 2002 2005

Multistage Flash Membrane Membrane Renewable Energies
Technology Technology
Improvements

Source: Multistage picture - Environmental XPRT. Membrane technology - James Grellier / Wikimedia Commons

Source: Watereuse association – Seawater Desalination Costs 2020 – Estimated cost breakdown. $Jubail\ SWRO-0.41\ USD/m^3\ and\ Yanbu\ 4-0.47\ USD/m^3$

Membrane Feed Pressure for Feedwater and Membrane Technology

Annual Contracted Capacity by Feedwater Type, 2000-2019

Dotted line indicates values through June 2019; Source: GWI

Annual Contracted Capacity by Region, 2000-2019

Persian Gulf has the largest demand of SWRO desalination

Dotted line indicates values through June 2019; Source: GWI

Additional Contracted Desalination Capacity by Technology, 2000-2019

Source: GWI DesalData

Dotted line indicates values through June 2019; Source: GWI

SWRO – Seawater Reverse Osmosis

SWRO DESALINATION PROCESS OVERVIEW

SWRO DESALINATION PROCESS OVERVIEW

Source: <u>www.Sciencedirect.com</u>

Energy Consumption

Energy Consumption Over Time

Energy Consumption per Process

- RO Process is the most energy intensive process within the SWRO treatment plant
- ERD can reduce energy consumption of RO process up to 60%; therefore, it is a critical component to achieving 2 kWh/m³
- ERD CAPEX only represents 1% of overall plant CAPEX

Source: www.Sciencedirect.com

Problem Statements:

- Energy consumption and costs made SWRO uneconomical historically
- o Approx. 60% of energy wasted during SWRO prior to implementation of ERDs

HP Pump Provides Full Feed Flow and Pressure to SWRO Membranes

SEC: 8 kwh/m³

How it Works

A full-size main high-pressure pump is use to supply the membranes with 100% of the feed flow + pressure in order to over come the osmotic pressure of the membranes. Potential energy is "wasted" across the discharge valve.

SEC: 4 kwh/m³ HIGH PRESSURE PUMP MEMBRANES TURBINE SHAFT

How it Works

The Pelton Wheel converts hydraulic energy into mechanical energy to offload the work done by the high-pressure pump's motor. The Pelton Wheel's shaft is directly connected to a dual-shafted motor and must rotate at the pump's design speed. The high-pressure pump must be sized for the full flow and head required by the membranes.

Turbocharger

How it Works

Turbochargers convert hydraulic energy in the brine stream into mechanical energy reducing the amount of head required by the main high-pressure pump. The turbine drives the pump section "boosting" the discharge of the high-pressure pump to membrane feed pressure. The Turbocharger "decouples" the ERD from the pump and motor, allowing it to run at higher speeds and higher efficiency than the Pelton Wheel.

How it Works

The PX Pressure Exchanger converts hydraulic energy in the concentrated brine stream into hydraulic energy that supplements the flow from the main high-pressure feed pump which feeds the membranes. This is done via direct contact between the concentrated brine and filtered seawater feed stream.

Isobaric energy recovery systems have high efficiency regardless of system size

o Carlsbad SWRO

Location: California

Capacity: 189,250 m³/day (50 MGD)

■ Energy recovery device: Isobaric – PX devices

√ 116 million kWh (kilowatt-hours)

✓ Equivalent to 82,107 metrics tons per year of CO₂

✓ Equivalent to 12 million dollar in electricity cost

Carlsbad

Greenhouse gas emissions from

CO2 emissions from

https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

Photo courtesy of Poseidon Water

Renewable Energy

RENEWABLE ENERGY POWERED DESALINATION

- The energy consumption of seawater desalination is higher than traditional water supply solutions (groundwater, rain catchment, rivers, lakes, etc.)
- This is a sustainable and cost effective solution thanks to decreasing cost of renewable energy systems

Estimated CO₂ Emissions of Global Water Desalination Plants

- Baseline scenario assumes compounded growth rate of water desalination of 10% per year
- Target scenario assumes gradual introduction of fully renewable powered desalination until 2040

SMALL-SCALE RENEWABLE ENERGY POWERED DESALINATION

- Suitable option for remote locations and small islands where the reliable and safe provision of drinking water is a constraint and expensive
- Electric grid and water networks are often inadequate
- Small-scale renewable energy powered desalination can be the optimal solution to address the water constraints

TECHNOLOGY BRIEF: SMALL SCALE SOLAR SEAWATER DESALINATION – DIRECT COUPLING (OFF-GRID), NO STORAGE

- This configuration is ideally suited for very remote locations with limited access to a reliable electricity grid and service personnel
- The configuration avoids using batteries and uses water storage instead to allow a water supply during day and night

Sea Water / Brackish Water

TECHNOLOGY BRIEF: SMALL SCALE SOLAR SEAWATER DESALINATION – DIRECT COUPLING (OFF-GRID) WITH STORAGE OR BACKUP GENERATION

- Good option for locations with inadequate grid supply but access to service personnel for batteries or back-up generators
- o Distributed solution obviating the need for costly water transmission and distribution systems

TECHNOLOGY BRIEF: SMALL SCALE SOLAR SEAWATER DESALINATION – GRID CONNECTED

- Good option for locations with access to a reliable electric grid
- The renewable energy supply system can be sized to completely offset the CO₂ emissions of the desalination plant
- o Reduced maintenance requirements due to absence of storage and backup generators

Sea Water / Brackish Water

TECHNOLOGY BRIEF: UTILITY-SCALE RENEWABLE DESALINATION – GRID CONNECTED WITH VIRTUAL NET METERING

- The Desalination Plant and the Renewable Power Plant are connected to the grid and don't need to be co-located
- The Renewable Power Plant is sized to completely offset the CO₂ emissions of the Desalination Plant (over the lifetime of the plant)

Desalination Plant

- o Operates 24h per day
- Connected to the grid, using existing infrastructure to supply electricity 24h per day

Electricity Grid

Renewable Power Plant

- Operates only during certain hours of the day producing electricity from sunlight or wind
- Connected to the grid, using existing infrastructure

REFERENCES: SMALL-SCALE SOLAR DESALINATION (OFF-GRID) — PHILIPPINES

General Information

Item	Description
Owner/promoter	Elemental Water Makers
Location of SWRO Plant	La Union, Luzon, Philippines
Year of construction	2018
Capacity of SWRO Plant	11 m³/d
Type of RE Plant	PV plant
Capacity of RE Plant	4 kWp

11 m³/d PV powered RO system from Elemental Water Makers, Philippines

Source: https://www.elementalwatermakers.com/project-philippines/

REFERENCES: MEDIUM-SCALE WIND AND SOLAR-POWERED DESALINATION – CHINA

An independent grid was designed to support the desalination of 10,000 m³/day of sea water a day. The current production line has a capacity of 5,000 m³/day.

Item	Description
Owner/promoter	Dafeng Plant
Location of SWRO Plant	Jiangsu province, China
Year of construction	2014
Capacity of SWRO Plant	5,000 m³/d
Type of RE Plant	Wind power
Capacity of RE Plant	2.5 MW turbine

Containerized system

Source: http://en.fhned.com/product/equipments/

REFERENCES: UTILITY-SCALE RENEWABLE POWERED DESALINATION – PERTH, AUSTRALIA

General Information

Item	Description
Owner/promoter	Water Corporation
Location of SWRO Plant	Kwinana, Perth Western Australia
Year of construction	2006
Capacity of SWRO Plant	144,000 m ³ /d
TDS (design)	35,000 – 37,000 mg/l
Specific Energy Consumption	4 - 6 kWh/m³
Power requirement of SWRO Plant	24 MW
D&C Joint Venture	Suez-Degrémont/ Multiplex/Worley Parsons/Water Corporation

It is the first large-scale seawater RO plant in the world powered by renewable energy using green electricity procured from an Australian wind farm.

Kwinana SWRO Plant – Perth

Emu Downs Wind Farm

- The green electricity consumed by the desalination plant is provided by the 80 MW Emu Downs Wind Farm.
- The wind farm comprises 48 wind turbines and is located in a distance of 200 km from the desalination plant.

Conclusion

CONCLUSION

- Seawater Reverse Osmosis (SWRO) is a feasible option to increase water availability for isolate locations, cities, industrial applications or others
- o Reverse Osmosis is the preferred technology for desalination
- o If the SWRO plant uses the correct technology, the SWRO design will reduce energy consumption and operational cost

- Energy renewable + SWRO are a good match to reduce water cost, and environmental impact
 - Wind power
 - Wave power
 - ✓ DOE Announces Prize
 Competition for Wave Energy
 Water Desalination
 - Solar Power
 - Other options

CONCLUSION

SWRO energy consumption to produce water for a family of four for one day is equivalent to:

- o 1 m³ of desalinated water requires 2.98 kwh
- 1 family of 4 persons 100 gallons per person per day [1] 400 gallons (1.5 m³) per family
 - Equivalent to 4.5 kwh to produce desalinated water + 1.5 kwh for distribution
- o 6 kwh is the same energy consumption for the following appliances [2]:
 - Equivalent to 3 tons of air conditioning capacity running for 1.3 hour (covers 1,200-1,500 sf) [3]

CONTACT US

Juan Miguel Pinto

+1.786.925.8500 | Office

+1.510.325.7412 | Mobile

jmpinto@energyrecovery.com

Energy Recovery, Inc.

1717 Doolittle Drive San Leandro, CA 94577, USA

energyrecovery.com

