

Hydrogen Explosion Hazards

Unv. of Houston Hydrogen Symposium

J. Kelly Thomas, Ph.D. Vice President Blast Effects Section Manager

OUTLINE

- Purpose
- Background
- Accidental Unconfined H₂ VCEs
- H₂ VCE Tests
 - Unconfined
 - Jet Release
 - Vented
- H₂ VCE Blast Load Prediction
- Conclusions

Purpose

- Provide broad overview of explosion hazards associated with a release of hydrogen in an industrial setting:
 O Unconfined vapor cloud explosion (VCE)
 - Establish that an unconfined hydrogen VCE is credible
 - Vented explosion (i.e., within an enclosure)
 - Blast load prediction approaches

Background (1 of 2)

- Hydrogen poses a fire and explosion hazard
- Not unique, and other commonly encountered fuel sources also pose fire and explosion hazards
 - Natural gas & propane (home, LNG, BBQ grills, etc.)

 \circ Gasoline

- Important to recognize the hazard and properly manage the risk
 - This presentation limited to hydrogen explosion hazard
- Hydrogen guidance available:
 - NFPA codes & standards (NFPA 2, NFPA 68 & 69, etc.)
 - Hydrogen Safety Panel

Background (2 of 2)

- Papers and conference presentations upon which this presentation is primarily based:
 - 1) Malik, D.R., W.B. Lowry, E. Vivanco and J.K. Thomas (2023) "Very-Lean Hydrogen Vapor Cloud Explosion Testing," <u>Process Safety</u> <u>Progress</u> (AIChE GCPS, Houston, TX, March 12-16, 2023).
 - 2) Jallais, S., E. Vyazmina, D. Miller and J.K. Thomas (2018) "Hydrogen Jet Vapor Cloud Explosion: A Model for Predicting Blast Size and Application to Risk Assessment," <u>Process Safety Progress</u>, 37(3): 397-410.
 - 3) Thomas, J.K., J. Geng, O.A. Rodriquez, et al. (2018) "Potential for Hydrogen DDT with Ambient Vaporizers," Mary Kay O'Connor Process Safety International Symposium, College Station, TX, October 2018.
 - 4) Horn, B.J., O.A. Rodriquez, D.R. Malik and J.K. Thomas (2018) "Deflagration-to-Detonation Transition (DDT) in a Vented Hydrogen Explosion," AIChE GCPS, Orlando, FL, April 22-25, 2018.
 - 5) Thomas, J.K. and D.R. Malik (2017) "Ammonia and Hydrogen Vapor Cloud Explosion Testing (A Tale of Two Gases)," 62nd Annual Safety in Ammonia Plants and Related Facilities Symposium, New York, September 10-14, 2017.
 - 6) Thomas, J.K., C.D. Eastwood and M.L. Goodrich (2015) "Are Unconfined Hydrogen Vapor Cloud Explosions Credible?" <u>Process Safety</u> <u>Progress</u>, 34(1): 36-43.
 - 7) Miller, D., C.D. Eastwood and J.K. Thomas (2015) "Hydrogen Jet Vapor Cloud Explosion: Test Data and Comparison with Predictions," AIChE GCPS, Austin, TX, April 26-30, 2015
 - 8) Thomas, J.K., M.L. Goodrich and R.J. Duran (2013) "Propagation of a Vapor Cloud Detonation from a Congested Area into an Uncongested Area: Demonstration Test and Impact on Blast Load Prediction," <u>Process Safety Progress</u>, 32(2): 199-206.
 - 9) Thomas, J.K., R.J. Duran and M.L. Goodrich (2010) "Deflagration to Detonation Transition in a Lean Hydrogen-Air Unconfined Vapor Cloud Explosion," Mary Kay O'Connor Process Safety International Symposium," College Station, TX, October 27, 2010,

• Accidental Unconfined H₂ VCEs

Copyright BakerRisk. All rights reserved.

Accidental H₂ VCEs (1 of 8)

- Focus on accident history is on unconfined H₂ VCEs:
 - Some doubts expressed in this regards due to
 - Hydrogen being light (buoyant) "doesn't it just float away?"
 - High likelihood of immediate ignition "doesn't it just form a jet fire?"
- Many not reported (as with all explosions)
- Listing in 2015 paper remains a good summary, but incidents have continued to occur
 - Thomas, J.K., C.D. Eastwood and M.L. Goodrich (2015) "Are Unconfined Hydrogen Vapor Cloud Explosions Credible?" <u>Process Safety Progress</u>, 34(1): 36-43

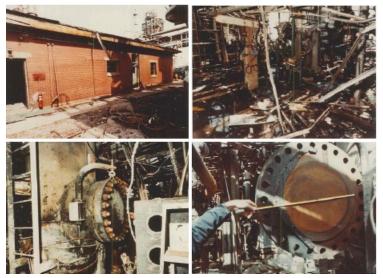
Accidental H₂ VCEs (2 of 8)

- Ordin (1974):
 - Reviewed incidents from NASA operations
 - 62% of releases to environment ignited (i.e., 38% did not)
 - At least 9 unconfined H₂ VCEs due to releases through vent stacks & failed components
 - \circ Some reported to be detonations, up to 20 lb_m (9.1 kg) of TNT-equivalent
- Zalosh and Short (1978):
 - Reviewed > 400 H_2 accidents (1965 1977)
 - Slightly > ½ of incidents were explosions
 - \circ 3/4 of incidents involved H₂ gas

Accidental H₂ VCEs (3 of 8)

- Other reviews & data collections:
 - H₂ Safety Panel "H₂ Incident Examples" report
 - H₂ Incidents database (2014 paper data review)
 - 7 events clearly unconfined H₂ VCEs
 - Sarnia and another similar incident
 - Several similar to Muskingum River Plant incident
- Selected reported unconfined H₂ VCEs:
 - Jackass Flats, NV, 1964
 - o Polysar, Sarnia, Ontario, 1984
 - Muskingum River Plant, Beverly, OH, 2007
 - Air Products, Santa Clara, CA, 2019

Accidental H₂ VCEs (4 of 8)


- Jackass Flats (Jackass Flats, NV, 1964):
 - o Reider, Otway & Knight, 1965
 - Rocket motor test program
 - \circ H₂ test run without ignition (by design)
 - Release from 3,400 psi (23.6 MPa) upward through convergent-divergent nozzle
- Flowed 13 sec. before unintentional ignition
- Estimated 200 lb_m (90 kg) of H₂ (10% of that released) involved in VCE
- VCE determined to be deflagration
 Flame acceleration due to jet turbulence

Accidental H₂ VCEs (5 of 8)

- Polysar petrochemical complex (Sarnia, Canada, 1984):
 - MacDiarmid & North, 1989
 - Release of H₂ from partially failed gasket on compressor in open-sided shed (i.e., not completely unconfined)
 - $\odot~$ 700 psi (48 bar), 10 to 15 sec before ignition, released 30 kg of $\rm H_2$
 - Building damage at 500 ft (150 m) consistent
 with 1.1 psi (0.076 bar) overpressure
 - Consistent with detonation of 26 kg of H₂
 (BST); high fraction of estimated release

used with permission

Accidental H₂ VCEs (6 of 8)

- Muskingum River Plant (Beverly, Ohio, 2007):
 - Rupture disc failure on outdoor hydrogen storage tank vent line during tank filling operations
 - Tank pressure at roughly 2000 psi
 - Release continued for roughly 10 sec. before ignition
 - WHA estimated 18 kg H₂ released
 - Killed driver, heavily damaged adjacent buildings

Accidental H₂ VCEs (7 of 8)

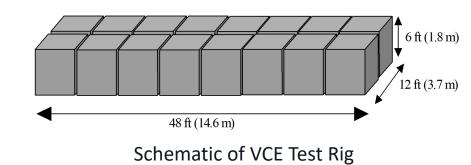
- Air Products (Santa Clara, CA, 2019):
 - H2 Safety Panel Report (June 2021)
 - Filling H2 trailer (gaseous), gas cylinders loaded to 7,200 psi
 - \circ Did not involve liquid H₂
 - Attempt to repair leaking valve results in release from open pipe
 - Explosion within seconds, followed by jet fire; other cylinders to release through PRDs and contribute to fire
 - Window failure at 125 feet

Accidental H₂ VCEs (8 of 8)

- Based on review of accidental unconfined H₂ VCE information:
 - \circ They have happened regularly in the past,
 - $\,\circ\,$ They have happened recently, and
 - $\circ\,$ It is therefore reasonable to expect will happen in the future.

Unconfined H₂ VCE Tests

Copyright BakerRisk. All rights reserved.


Unconfined H₂ VCE Tests

- Numerous unconfined H₂ VCE tests by multiple organizations have been performed
- Unconfined H₂ VCE testing has shown the potential consequences of H₂ release into unconfined area with delayed ignition:
 - \circ Can produce significant blast loads from unconfined H₂ VCE,
 - Can achieve deflagration-to-detonation transition (DDT) at moderate congestion levels
- Selected BakerRisk test programs illustrated on following slides

Unconfined Lean H₂ VCE Testing

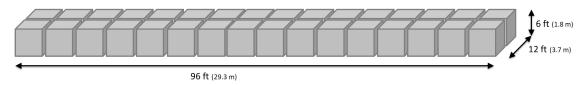
- Congested volume consisted of a regular array of vertical circular tubes:
 - $_{\circ}\,$ 2.375-in (60 mm) tube dia.
 - 45 per 6-foot cube (+ corner supports)
 - o "Medium" congestion level
- Center ignition (near grade)

Photograph of VCE Test Rig

18% Hydrogen (ER = 0.52)

20% Hydrogen (ER = 0.60)

22% Hydrogen (ER = 0.67)



Unconfined Very Lean H₂ VCE Testing

- Double rig length & volume
- Congestion provided by regular array of vertical circular tubes:
 - $_{\circ}~$ 3.5-in (89 mm) tube dia.
 - 42 per 6-foot cube (+ corner supports)
 - "High" congestion level
- Ignition at 24 ft from end
 - 3x the run-up distance

。72 ft. vs. 24 ft.

Schematic of VCE Test Rig

Photograph of VCE Test Rig

12% Hydrogen (ER = 0.33)

14% Hydrogen (ER = 0.39)

Unconfined H₂ VCE Tests

- Hydrogen concentrations less than 10%H₂ will not contribute to a VCE
 - Conservative value as testing demonstrated 12%H₂
 - Makes a significant difference in VCE blast load prediction, as much of the flammable cloud is at concentrations below 10%.
- Should consider potential for DDT at hydrogen concentrations above approximately 18%
 - Likelihood will depend on extent of congestion and confinement as well as size of flammable cloud interacting with congested/confined area

• Jet Release H₂ VCE Tests

Copyright BakerRisk. All rights reserved.

H₂ Jet Release Explosion Tests

- Jet release tests generally into open (unobstructed) environment
- Jet release tests with H₂ have shown the potential consequences of hydrogen jet release:
 - Can produce significant blast loads
 - Unlikely to be governing scenario for blast loading on buildings at an industrial site
 - May provide governing scenario in vicinity of release
- Large-scale test program carried out by Air Products illustrated on following slides (BakerRisk involved in evaluating test data)

H₂ Jet Release Air Products Test (1 of 2)

• Test conditions:

- Horizontal release from 3.25 m elevation
- 60 bar source pressure
- 。¾-inch and 2-inch release sizes
- $_{\circ}$ Initial release rates of \approx 1 and 8 kg/s
- $_{\circ}$ Ignition \approx 2 seconds after release initiated
- Load for 2-inch release (off centerline):

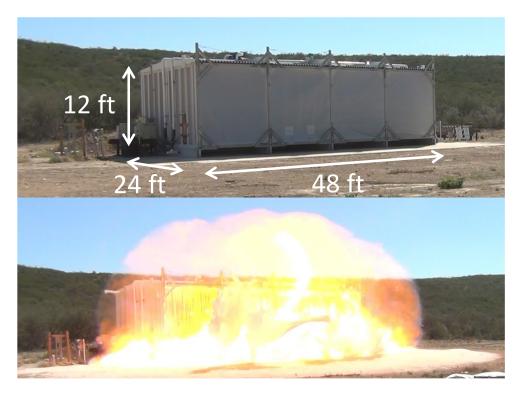
 10 meters: 0.43 barg (6.2 psig) 15 ms
 20 meters: 0.21 barg (3.0 psig) 13 ms

H₂ Jet Release Test Video (2" release)

• Vented H₂ Explosion Tests

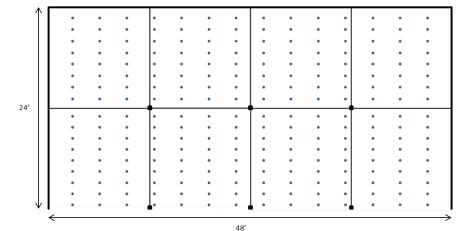
Copyright BakerRisk. All rights reserved.

Vented H₂ Explosion Tests


- Numerous vented H₂ explosion tests by multiple organizations have been performed
- Vented H₂ explosion shown the potential consequences of H₂ release into enclosure with delayed ignition:
 - Can produce significant blast loads from vented H₂ explosions,
 - Can achieve deflagration-to-detonation transition (DDT) at low congestion levels
- Single large-scale BakerRisk test program illustrated on following slides

Lean H₂ Vented Explosion Testing (1 of 2)

- Deflagration Load Generator (DLG)
 - 。 48 × 24 × 12 ft (14.6 × 7.3 × 3.7 m)
 - Enclosed volume of 13,800 ft³ (392 m³)
 - One open side sealed with plastic
- Test rig used by BakerRisk both to:


 Produce blast loads to test structural response of full-scale structures
 - Investigate vented deflagration hazards

Lean H₂ Vented Explosion Testing (2 of 2)

- Very low congestion array of vertical circular tubes (next slide):
 - $_{\circ}\;$ 2.0 and 2.375-in (60 mm) tube dia.
 - Pitch to diameter = 8.5
 - Area and vol. blockage ratios of 5% and 0.5%, respectively
- Center rear-wall ignition

20% Hydrogen (ER = 0.60)

22.5% Hydrogen (ER = 0.69) – normal video

22.5% Hydrogen (ER = 0.69) – high-speed video

• H2 VCE Blast Load Prediction

Copyright BakerRisk. All rights reserved.

VCE Blast Load Predictions (not H₂ specific)

- VCE blast load prediction methods:
 - TNT Equivalent (explicitly recommend <u>not</u> using)
 - Blast curve methods
 - Baker-Strehlow-Tang (BST)
 - TNO Multi-Energy Method (TNO MEM)
 - Computational fluid dynamic (CFD) methods
 - FLACS (GexCon)
 - Others are available
- VCE blast load function of:
 - Explosion energy (how much energy is released)
 - Flame speed (how fast this energy is released)
 - Standoff (how far away you are from the energy released)

Unconfined H₂ VCE Blast Loads

- Have seen that:
 - Accidental releases with significant flow rates can generate large flammable clouds,
 - Delayed ignition can occur with such clouds, and
 - VCE if such clouds engulf an unconfined congested volume (+ delayed ignition)
- What type of blast loads can result?
- Hydrogen flame speeds:
 - High compared to typical hydrocarbons at near-stoichiometric concentrations
 - \circ Too low to produce blast load at < 10% H₂
 - DDT expected for concentrations approaching stoichiometric in moderate levels of congestion (even with no confinement)
 - DDT observed at 22% in BakerRisk's testing (vs. 30% stoichiometric) & predicted at 18% for larger test rig configuration

Conclusions

Copyright BakerRisk. All rights reserved.

Closing Thoughts

H₂ poses unconfined VCE hazard

Can form a large flammable gas cloud near grade level and can have delayed ignition.

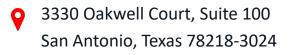
Accidental H2 VCEs are not rare

Incident history clearly illustrates this is a credible scenario

H₂ mixtures are subject to DDT

Observed in both unconfined and confined VCE testing.

Blast loads from H₂ VCEs can be large


Should account for potential loads in facility siting.

2

Kelly Thomas, Ph.D.

@ <u>KThomas@bakerrisk.com</u>

QUESTIONS?

BakerRisk.com

Copyright BakerRisk. All rights reserved.

WE HAVE ANSWERS

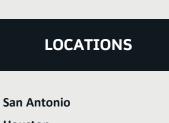
SERVICES

Better Risk Management Starts Here

Accident Investigation

Electrical Safety

Fire Protection and


Insurance Risk

, |/

Consequence and Risk Modeling

BAKERRISK LEARNING CENTER

BAKERRISK LEARNING CENTER

Qualitative Hazard Identification and **Risk Assessment**

Im

Protective **Structures**

Testing

Low Carbon Energy

(0)Houston Chicago Los Angeles Canada **United Kingdom**

BakerRisk.com