How to go to 100% Wind, Water, Solar with a Stable Grid at Low Cost 100% of the Time with no Coal, Oil, Gas, or Nuclear

Mark Z. Jacobson Stanford University

J. G. Swanepoel/Dreamstime.com

U Houston Energy Symposium Houston, Texas February 15, 2017

Wind farm near Middelgrunden, Denmark

Wind, Water, Solar (WWS) All-Sector Solutions to Energy and Job Security, Air Pollution, Global Warming

ELECTRICITY	TRANSPORTATION	HEATING/COOLING	INDUSTRY
Wind Solar PV/CSP Geothermal Hydro Tidal/Wave	Battery-electric HFC-BE hybrids	Electric heat pumps Solar water preheat	Electric arc furnaces Induction furnaces Dielectric heating Electric resistance

Types of Storage for 100% WWS System

ELECTRICITY	HEATING/COOLING	OTHER
CSP with storage Pumped hydro Existing hydroelectric Batteries	Water Ice Rocks in soil	Hydrogen Demand-response

Nighttime Storage in Ice for Daytime Air Cooling

https://www.torontohydro.com/sites/electricsystem/electricityconservation/businessconservation/Pages/IceBearEnergyStoragePilot.aspx

Seasonal Heat Storage in Underground Rocks, Okotoks, Canada

http://www.sustainapedia.com/drake-landing-solar-community/ https://www.leidos.com/project/north-america's-first- Mark Z. Jacobson (2015) right

Energy Purposes

2012 Demand 12.1 TW	
2050 Demand with current fuels (BAU) 20.6 TW	
2050 Demand with WWS 11.8 TW	
2050 Demand reduction w/ WWS42.5%23.0% electrification12.6% energy self use6.9% efficiency beyond BAU6.9%	

Number of New Plants to Power 139 Countries All Purposes

TECHNOLOGY	PCT SUPPLY 2050	NUMBER
5-MW onshore wind turbines	23.5%	1,582,000
5-MW offshore wind turbines	13.6	935,000
5-kW Res. roof PV systems	16.0	1.96 billion
100-kW com/gov roof PV syst	ems 12.2	78.6 million
50-MW Solar PV plants	19.7	233,000
100-MW CSP plants	9.7	21,500
100-MW geothermal plants	0.67	839
1300-MW hydro plants	4.0	0
1-MW tidal turbines	0.06	30,000
0.75-MW wave devices	0.58	410,000
	100%	

Area (km²) Beyond 2015 Installations to Power 100% of 139 Countries for all Purposes w/ WWS in 2050

Matching 100% 2050-51 U.S. & Canada All-Sector Load w/WWS

Matching 100% 2050-51 Central America (7 Countries) All-Sector Load w/WWS

Matching 100% 2050-51 Cuba All-Sector Load With WWS

Matching 100% 2050-51 Haiti-Dominican Republic All-Sector Load With WWS

Matching 100% 2050-51 Jamaica All-Sector Load With WWS

Matching 100% 2050-51 South America (12 Countries) All-Sector Load w/WWS

Matching 100% 2050-51 New Zealand All-Sector Load w/WWS

Matching 100% 2050-51 Australia All-Sector Load With WWS

Matching 100% 2050-51 Southeast Asia (9 Countries) All-Sector Load w/ WWS

Matching 100% 2050-51 Philippines All-Sector Load With WWS

Matching 100% 2050-51 Japan-South Korea All-Sector Load With WWS

Matching 100% 2050-51 Taiwan All-Sector Load With WWS

Matching 100% 2050-51 China-Hong Kong-Mongolia-North Korea All-Sector Load With WWS

Matching 100% 2050-51 Russia-Georgia All-Sector Load With WWS

Matching 100% 2050-51 India-Nepal-Sri Lanka All-Sector Load With WWS

Matching 100% 2050-51 Central Asia (6 Countries) All-Sector Load With WWS

Matching 100% 2050-51 Middle East (16 Countries) All-Sector Load With WWS

Matching 100% 2050-51 Europe (40 Countries) All-Sector Load With WWS

Matching 100% 2050-51 Iceland All-Sector Load With WWS

Matching 100% 2050-51 Africa (27 Countries) All-Sector Load With WWS

2050 139 Country WWS vs. Conventional Fuel Cost (¢/kWh)

WWS electricity for electricity sector total cost 9.8 (Includes short+long T&D, elect+heat storage; stable grids)

Conventional electricity sector total cost38.3Conventional fuel for elec sector (incl T&D+storage)9.8Conventional fuel health cost12.7Conventional fuel climate cost15.8

WWS electricity for all sectors 10.7 (elec, transport, heating/cooling, indus, ag/for/fish)

Jacobson et al. (2016)

Why Not Nuclear?

- 1) 6-24 times more CO₂ & air pollution per kWh than wind
- 2) Takes 10-19 yrs between planning & operation vs 2-5 yrs for wind/solar
- 3) Costs 2.5-4 x that of new onshore wind/utility PV
- 4) → Takes 2-10 times longer to obtain 25%-40% the CO₂ savings per dollar than wind/solar.

5) IPCC 2014: P. 517. "Robust evidence, high agreement" that increased use of nuclear leads to more
(a) Weapons proliferation risk
(b) Meltdown risk
(c) Waste risk
(d) Mining risk

Can WWS or Nuclear Avoid 1.5 C Warming?

- 1) We can allow 350-575 GT-CO₂ emissions after 2015 to stay below 1.5 °C warming
- 2) Converting to 80% WWS by 2030 & 100% by 2050 emits ~415 GT CO₂, limiting warming to 1.5 ℃.
- 3) New nuclear plants proposed today require 10-19 yrs until operation. Wind/solar require 2-5 years
- 4) \rightarrow Impossible for nuclear to avoid 1.5 °C warming; possible for WWS.

Summary–Grid Reliability With 100% WWS

→It is possible to convert world's energy infrastructure to 100% WWS for all sectors and keep the grid stable 100% of the time at low cost

→We obtained 100% stable grids w/100% WWS in 20 world regions among 139 countries.

→Energy+storage+T&D costs in the 20 regions 10.7 (7.3-13) ¢/kWh

→Nuclear, CCS, and natural gas were not needed

Articles and data

web.stanford.edu/group/efmh/jacobson/Articles/I/

WWS-50-USState-plans.html

Infographic maps

www.thesolutionsproject.org

100.org

Twitter: @mzjacobson