

Smart Sensing for Coupled Food, Energy and Water Systems

Alan Mickelson

Guided Wave Optics Laboratory (GWOL) of

Electrical, Computer and Energy Engineering (ECEE)

Mortenson Center for Engineering in Developing Communities (MC- EDC)

Interdisciplinary Telecommunications Program (ITP)

Smart Systems and Coupled Systems

- Smart farms, grids and water distribution combine sensors and distributed processing
- Progress continues on sensor autonomy, timing, smart system organization and security
- Smart cities require multiple (smart) services
- City management requires decision making running across service subsystems
- A smart city requires simultaneous control of multiple smart systems

Outline

- Interdependence of Food, Energy and Water (FEW) supply systems in cities
- Independent Smart Systems for Farms, Grids and Water Distribution - Data Collected
- The Run-off Problem
 - An Urban Water Supply System Boulder, CO
- Quantifying Inter System Coupling
- Autonomous Sensor Packs and Water

A Nexus View of FEW

 A sudden change to one FEW subsystem causes a new evolution in all the subsystems

Characteristics of a Smart City

- Economy of scale offers advantages in efficiency
- Operation requires on-demand supplies of food, energy and water throughout the city
- Smart food, smart grids and smart water distribution systems given sufficient supplies of raw materials (feed, fuel) and water
- System stressors couple the individual subsystems
- Understanding system coupling is important

Coupling in FEW Systems

- Agricultural consumes water for irrigation and requires supply of seed, feed and fertilizer
- Moving water and materials requires energy
- Energy production also requires water for fuel production and equipment cooling
- Water must be distributed from central storage for industrial (grey water) and human (potable) use and black water needs to be reprocessed
- Water is central to the nexus

Water Resources and Nexus

Water resources are central to nexus smart city control

Present Day Smart Systems

- Smart Farming by GIS and Ground Sensor
- Smart Grids
- Smart Water Distribution
- Investigation of the smart systems indicate that much of the information concerning coupling of the systems to each other is already gathered by individual smart systems

GIS for Smart Farming

 GIS systems together with satellite imagery are used to monitor/control fields

IOT for Smart Farming

 A more holistic view of farming includes imagery as well as flow with control

Coupling Data from Smart Farming

- Water used for irrigation is monitored
- Energy used by system is monitored
- Energy used in transporting raw materials to end use can be monitored
- Energy used in transporting water for irrigation can be monitored by smart grid
- What is not monitored is run-off (and run-off contents) that enter feeders to water supply

A Smart Grid

 A smart grid is used to control power inputs (nuclear, thermal, hydro, PV and wind) and outputs (chargers, offices, homes and factories)

A Smart Grid of Micro-Grids

 One view of smart grid is as a linking of multiple semi-autonomous micro grids

Smart Grids and Energy Use

- Energy drawn into grid from all sources is monitored and can be recorded
- Energy used by individual branches is monitored and can be recorded
- Sub-grid exchange can be monitored and recorded
- What is hard to record is run-off of pollutants and heat

Controlling (Monitoring) Water Input

Smart water systems monitor input from diverse sources

Controlling (Monitoring) Distribution

- Water used where is monitored
- Energy used in transport can be monitored
- Quality can be monitored

(Unmonitored) Coupling in FEW Systems

- Agricultural affects water quality by nitrate and phosphate pollution (fertilizer) as well as organic pollution from livestock
- Energy production also affects water quality thru
 - Organic and inorganic wastes from fuel production
 - Organic and inorganic waste from the burning of fuel
 - Waste heat from energy conversion
- Run-off in not easily monitored in smart system
- Water quality is sufficiently sensitive to the state of food and energy production to be a predictor

Run-Off into Water Supplies

- Water supplies can come from rivers, be piped in from distant resources (high flow areas, glaciers) or be stored (reservoirs) for seasonal use
- Pipes are easy to monitor
- Open groundwater channels are much harder to monitor for flow and the composition of the flow

An Urban Water Supply System

- Boulder, Colorado
 - Glacier fed system by a distant (25 mile) glacier with multiple holding lakes and pipes down the mountain

The System from the Glacier

 The conduit down the mountain is closed, however, the lakes and channels are open

Water Quality Monitoring

- Spatial and temporal monitoring of open groundwater channels can be used to locate inputs and composition of input water
- A smart water quality monitoring system can determine the hard to determine couplings
- Requires sufficiently high spatial and temporal resolution
- A solution is autonomous sensors

Autonomous Sensing

- State of the Art from USGS
- More important than present water quality is future water quality as determined by FEW
- The simplest FEW package would involve temperature, dissolved oxygen and nitrogen
- Expanding to turbidity, Ph and phosporus as well would straightforward

Lake Muttamuskeet NC

Almost autonomous but fixed location

A Sensor Pack for a FEW System

- 1. Turbidity senses the quantity of foreign substances in water
- 2. Dissolved oxygen is sensitive to algal blooms
- 3. Nitrate acts as a predictor of future water quality
- 4. Temperature is sensitive to waste heat from energy conversion

All the Components on a Board

 Components are light, compact and selfcontained (solar powered)

Conclusions

- Smart city management requires knowledge of the state of each FEW subsystem as well as the coupling between the subsystems
- An urban water supply is shared by all the FEW subsystems and is sensitive to coupling
- Autonomous water quality sensing can be the basis of a smart water quality system
- Microprocessor based sensors can be small, autonomous and cost effective