Trimetallic NiFeMo for Overall Electrochemical Water Splitting with a Low Cell Voltage

Fan Qin, Zhenhuan Zhao, Md Kamrul Alam, Yizhou Ni, Francisco Robles-Hernandez, Luo Yu, Shuo Chen, Zhifeng Ren, Zhiming Wang, and Jiming Bao

ABSTRACT: We report the development of an efficient and earth-abundant catalyst for electrochemical overall water splitting. Trimetallic NiFeMo alloy is synthesized by hydrothermal deposition from inorganic precursors and subsequent low-temperature thermal annealing. A complete cell made of NiFeMo electrodes on nickel foam exhibits a low voltage of 1.45 V at 10 mA cm\(^{-2}\) as a result of low overpotentials for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). High-resolution transmission electron microscopy reveals that nanometer-sized single-crystal domains of Ni, Fe, and Mo are intimately integrated at the atomic level, which enables a synergistic effect of metallic Ni, Fe, and Mo for efficient HER, while self-formed Ni–Fe–Mo (oxy)hydroxides on the surface of the NiFeMo anode become active sites for OER. Such a multimetallic alloy and its (oxy)hydroxides represent a typical HER/OER catalyst couple, and our method provides a new route to develop efficient low-cost metallic alloys for overall water splitting.

Electrochemical water splitting into hydrogen fuel and oxygen using solar energy is a clean and sustainable technique that cannot only meet the world’s potential energy demand but also reduce greenhouse gas emission. It becomes even more important today because solar electricity generation from photovoltaics and wind farms has been mature and commercially employed with an ever-increasing capacity.1–3 Because the core components of efficient water splitting cells are materials that should catalyze hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at low cost for a long period, there have been great efforts to develop highly active catalysts based on earth-abundant elements.4,5 Among them, overall water-splitting catalysts that can perform both HER and OER are particularly appealing because of the simplicity in implementing the system where only one type of electrolyte and electrode are needed.6 Past years have witnessed the emergence of catalysts with various elemental compositions and structures, but large cell voltages (>1.5 V, defined at the current density of 10 mA cm\(^{-2}\)) are usually required.6–27 More active catalysts with lower cell voltages and other better characteristics are needed in order to make water electrolysis economically viable.28–30 Note that well-designed nanostructures have played an important role in increasing current density and reducing the cell voltages, but they suffer from complicated synthesis and low yields.7,10,15,22,25,31

An efficient water-splitting catalyst must exhibit excellent performance for both HER and OER; therefore, it is more challenging to design and fabricate than a HER or OER catalyst alone. For example, Pt is the best HER catalyst, but IrO\(_2\) is much better for OER.1 Stability is another serious issue. Most above-mentioned catalysts such as metal sulfides,6,9 selenides,8,9 and phosphides10–12,14,19,24 become partially or entirely converted to the metal oxides/(oxy)hydroxides accompanied by the dissolution of anionic elements under a high oxidation potential in the electrolyte.12,14

The ternary Ni–Mo–Fe composites have been reported as HER and OER electrocatalysts in an alkaline electrolyte. For the HER, the Ni–Mo–Fe alloy composite shows huge potential for industrial hydrogen production. However, the previously reported Ni–Mo–Fe alloy electrocatalysts usually show different compositions or atomic ratios,32–34 and the most active composition is still not clear while the OER performance of the reported Ni–Mo–Fe needs to be improved. For example, the most recent work prepared...
MoO$_4^{4-}$ intercalated NiFe layered double hydroxide (LDH), but large overpotentials are still required ($\eta_{10} > 270$ mV).41,42 Up to now, quite a few studies report the HER and OER activities on a single electrode;43,44 therefore, it is highly significant to optimize the trimetallic Ni–Fe–Mo system for overall water splitting. Here we reported a trimetallic NiFeMo thin film on Ni foam synthesized by hydrothermal deposition and H$_2$-induced alloying. This straightforward approach leads to the combination of a Ni–Mo and Ni–Fe catalyst that yields high practical HER and OER activity with no need to optimize catalyst components independently. This binder-free water-splitting catalyst served as the HER catalyst and the precatalyst for the OER catalyst, and the NiFeMo(−)/NiFeMo(+) couple exhibited a cell voltage of as low as 1.45 V in alkaline solution.

To fabricate binder-free NiFeMo catalyst, we first immersed nickel foam in an aqueous solution of NiCl$_2$·6H$_2$O, FeCl$_3$·6H$_2$O, and Na$_2$MoO$_4$ with a molar ratio of 1:1:2 in an autoclave at 160 °C for 6 h. The foam was then taken out and annealed in a forming gas of Ar/H$_2$ at 500 °C for 1 h. Other trimetallic or bimetallic samples such as NiFe, FeMo, and NiMo were also fabricated with a similar process. More details are provided in the experimental section of the Supporting Information. The X-ray diffraction (XRD) pattern in Figure 1A shows the appearance of Fe and Mo peaks besides stronger Ni lines. The coexistence of Fe, Mo, and Ni is also confirmed by X-

Figure 1. Chemical composition characterizations by XRD and XPS spectroscopy of a NiFeMo film on Ni foam. (A) XRD pattern, standard data: Ni (JCPDS No. 65-380), Fe (JCPDS No. 1-1252), and Mo (JCPDS No. 1-1205). (B) XPS elemental survey. (C–F) XPS high-resolution scans of (C) Ni 2p, (D) Fe 2p, (E) Mo 3d, and (F) O 1s.
ray photoelectron spectroscopy (XPS) in Figure 1B. Metallic Ni, Fe, and Mo signatures can be seen from the detailed XPS spectra in Figure 1C−F besides their oxides due to exposure to air. Due to the difficulty in distinguishing the metallic Ni signal from the Ni foam substrate and deposited metallic Ni, the NiFeMo film was deposited onto Cu foam through the same process to obtain an accurate atomic ratio of the three metals. The corresponding XPS results in Figure S1 (Supporting Information) indicate the formation of trimetallic NiFeMo, and the relative intensity gives us the atomic ratio of Ni, Fe, and Mo to be 1:1.34:2.18.

Scanning electron microscopy (SEM) images in Figure 2A−C indicate that Ni foam (Figure S2, Supporting Information) is still covered by a smooth and compact film. To find out the thickness of the film and spatial distribution of Fe, Mo, and Ni, we used focused ion beam (FIB) to cut out a cross-sectional piece (Figure S3, Supporting Information) and studied it with transmission electron microscopy (TEM). High resolution TEM images in Figure 2D−G confirm that the NiFeMo film is crystalline with mixed nanodomains of Ni, Fe, and Mo. The thickness of the film is about 1 μm. The energy-dispersive X-ray spectroscopy (EDS) elemental mapping in Figure 2H shows a relatively uniform distribution of Ni, Fe, and Mo, which is also confirmed by surface EDS elemental mapping from SEM in Figure 2I, as well as EDS elemental mapping of a scratched flake from TEM in Figure S4 (Supporting Information). For comparison, a series of alloys with different Ni, Fe, and Mo ratios were prepared. The SEM images (Figure S5, Supporting Information) indicate that they have a similar film morphology but different surface roughness. Moreover, a compact film is observed for bimetallic NiFe and FeMo (Figure S6A−D, Supporting Information), but the NiMo alloy (Figure S6E,F, Supporting Information) forms a uniform nanowire structure, consistent with the literature.45

HER, OER, and overall water splitting were evaluated in N2-saturated 1.0 M KOH aqueous solution—a typical water-splitting electrolyte. The Ag/AgCl electrode and Pt wire were used as the reference and counter electrodes, respectively.
Potentials reported in this work are referenced to the reversible hydrogen electrode (RHE), and the polarization curves are corrected against the ohmic potential drop (Figure S7, Supporting Information). The catalytic performances of NiFeMo samples synthesized with different NiCl₂·6H₂O, FeCl₃·6H₂O, and Na₂MoO₄ ratios were first studied, and NiFeMo with an initial molar ratio of 1:1:2 exhibited the best catalytic activity in both HER and OER; further increase in Mo molar ratio had little effect on the activity (Figure S8, Supporting Information). Unless otherwise stated, NiFeMo is referred to as the sample with this optimal 1:1:2 ratio.

Figure 3A shows HER polarization curves of the NiFeMo and two bimetallic samples. The NiFeMo exhibits a low overpotential η₁₀ of 45 mV, which is significantly lower than that of the control samples (262 mV for NiFe, 100 mV for FeMo, and 68 mV for Pt plate). An ultrasmall onset potential of 12 mV is observed for the NiFeMo film (Figure 3B). Figure 3C plots recently reported water-splitting catalysts based on their overpotential at a geometric current density of 10 mA cm⁻², with NiFeMo having a comparable overpotential. Furthermore, we also summarized recent reported HER catalysts (Table S1, Supporting Information); NiFeMo exhibits a comparable or even better catalytic performance among the best catalysts. Note that the flat Pt plate has smaller surface area than the Ni foam, indicating that the surface area effect should be an important reason for the difference in activity of the NiFeMo film compared to that of the Pt plate. Meanwhile, the NiMo alloy exhibits a lower overpotential, but its specific nanowire structure makes it difficult to compare with other film samples; more comparisons will be discussed in the following text.

To gain more insight into the HER activity of NiFeMo, we performed electrochemical impedance spectroscopy (EIS). The Nyquist plots in Figure S9 (Supporting Information) show a single semicircle without Warburg impedance in the low-frequency range for each catalyst, suggesting a rapid mass transport process and a kinetically controlled reaction. The NiFeMo exhibits charge-transfer resistance Rₓ of 4.5 Ω. The turnover frequency (TOF, Supporting Information) is calculated to be 0.09 and 0.21 H₂ s⁻¹ at η of 100 and 150 mV, respectively. This value is higher than those of reported HER catalysts such as Ni–Mo nanopowder (0.05 H₂ s⁻¹)⁵⁰ and Ni₅P nanoparticles (0.012 H₂ s⁻¹).⁵⁷ To probe the durability of the NiFeMo catalyst, continuous cyclic voltammetry (CV) scan was performed between 0 to 0.15 V (vs RHE) at a 100 mV s⁻¹ scan rate. As observed in Figure 3D, the polarization curve remains the same after 1000 CV cycles, indicating its high stability.

Besides the excellent HER activity, trimetallic NiFeMo is also highly active for OER in the same electrolyte; it exhibits the lower overpotential (238 mV, Figure 4A) and the smaller Tafel slope (35 mV dec⁻¹, Figure 4B) among control samples. This performance is comparable with that of reported water-splitting electrocatalysts as well as the OER catalysts summarized in Figure 4C and Table S2 (Supporting Information). The control electrode of the NiFe alloy shows relatively poorer OER activity
than that of other catalysts in the literature,6 and the reason is probably the difference in the samples’ preparation. Our NiFe alloy prepared at a temperature of 160 °C shows a film structure rather than nanosheets prepared at around 120 °C.6,53 NiFe LDH, one of the most active and benchmarked OER catalysts, was also grown on the same nickel foam at 120 °C for a fair OER comparison later (Figure S10, Supporting Information). The electrochemical double-layer capacitance (Cdl) was also measured to investigate the electrochemically active surface area (ECSA, Figure S11, Supporting Information). As revealed in Figure S11E, the NiFeMo possesses the highest Cdl (75 mF cm⁻²), which is ∼22 times larger than that of sample NiFe (3.3 mF cm⁻²). Even though the double-layer capacitance was commonly used for determining the ECSA, this approach is limited, especially for most low-conductive metal oxide OER catalysts. Furthermore, the Cdl will also be influenced by other factors such as surface coordination of ions, ion intercalation, chemical capacitance due to the population of trap states, and capacitance from any residual charge-transfer processes in the putative nonfaradaic region.54−57 Therefore, the ECSA may not reflect the real surface area of the electrodes. In Figure S12 (Supporting Information), the Nyquist plots indicate that the NiFeMo has lower charge-transfer resistance, which means faster OER kinetics. Furthermore, the NiFeMo also exhibited remarkable OER stability, as evidenced by the almost overlapping CV curves (Figure 4D) after 1000 CV cycles.

The polarization curves normalized with ECSA and the loading mass were also compared. Figure S13A,B shows the ECSA normalized HER and OER polarization curves. NiMo shows better HER than NiFeMo, while NiFeMo and FeMo have similar OER when normalized with ECSA. However, as we mentioned above, the ECSA may not reflect the real intrinsic activity trend. The mass-specific activities were illustrated in Figures S13C,D and S14 and Table S3: the trimetallic NiFeMo shows the highest activities for both HER and OER. The excellent HER and OER allow us to build a complete cell with NiFeMo as both the anode and cathode in the same electrolyte. Not surprisingly, the NiFeMo cell exhibits the lowest voltage of 1.45 V among control couples including NiMo,NiMo (1.66 V), NiFe LDH@NiFe LDH (1.62 V), NiFe LDH@NiFe LDH (1.55 V), and IrO₂|Pt plate (1.62 V), as shown in Figure 5A. Moreover, it is notable that the NiFeMo catalyst exhibits a lower or comparable cell voltage compared to the recent reported non-noble metal water-splitting catalysts (Figure 5C). Furthermore, the electrolytic cell demonstrates excellent stability in a prolonged chronoamperometric test at 1.6 V for 50 h (Figure 5B). The durability of the NiFeMo electrode is further supported by the nearly overlapped polarization curves before and after electrolysis (Figure 5D). The stability is also tested in an industrial concentrated electrolyte (7 M KOH under 50 °C), as shown in Figure S15 (Supporting Information). Even though the current density

![Figure 4. OER performance of NiFe, FeMo, NiMo, NiFeMo, and IrO₂ conducted in 1.0 M KOH. (A) CV curves and (B) Tafel plots. (C) Comparison with selected state-of-art water-splitting electrocatalysts. (D) Polarization curves of the NiFeMo electrocatalyst before and after 1000 CV cycles. References cited in (C): Ni−Fe−P,50 NiCo₂S₄ nanowire,26 Ni NPs/NC,52 Ni₀.₆₅Co₀.₃₅P film,57 Ni₃P nanoparticles,24 NiFe LDH-NS@DG10,51 Ni₁.₅Fe₀.₅P/CF,19 MoS₂/Ni₃S₂ heteronanorods,56 NiFe LDH@NF,20 NiCoP/rGO hybrids,10 nest NiCoP,12 and porous MoNi₄.18](http://acsnano/acsenergylett.7b01335)
gradually decreased over the time, the current density could still remain at ∼43 mA cm⁻² after 80 h of electrolysis. The Mo concentration in the electrolyte was measured by Inductively coupled plasma optical emission spectrometry (ICP-OES), and the etching rate of Mo was found to be 0.158 μg g⁻¹ h⁻¹. We also measured the Faradaic efficiency under controlled potential electrolysis for 60 min. As illustrated inFigure 5E, the actual detected H₂ and O₂ volume along the reaction time is well fitted with the volume calculated from charge transfer, indicating a near-100% Faradaic efficiency.

The challenge of reducing the cell voltage of water-splitting catalysts is that very few materials exhibit both excellent HER and OER in the same electrolyte. Gradient-decorated Ni₃S₂, porous urchin-like Ni₃P, MoS₂/Ni₃S₂ heteronanorods, Mo-doped Ni₃S₂ nanorods, Cu@CoSₓ/CF, nest-like NiCoP, NiFe LDH/Cu nanowire, FeMnP/GNF, NiFe-MOF, FeS nanoparticles, Ni₃S₂–NGQD/NF, Ni₃FeₓSₓ/P/CF, Co₉S₈ nanowires, Ni₃Fe LDH@NF, NiFe LDH/NiCoOₓ/NF, NiCoSₓ@NiFe LDH, Co₉S₈@NOSC-900, Ni–Mo/Cu nanowires, NiSe nanowire, Ni₃P nanoparticles, Ni/Mo₂C, and NiFe LDH/NF. NF: Ni foam; GNF: graphene/Ni foam; CF: carbon fiber; LDH: layered double hydroxide; NOSC: N-, O-, and S-tridoped carbon-encapsulated.

is to combine HER and OER catalysts, for example, by growing OER Ni–Fe LDH nanosheets on HER graphene, or synthesizing an OER amorphous Ni–Co complex on HER 1T MoS₂. Such an approach requires an additional complex nanofabrication step; furthermore, it is not clear whether cells with water-splitting catalysts will outperform those with the original separate HER and OER catalysts. Note that no nanofabrication is required for the NiFeMo thin film. Besides its high conductivity and intimate integration with the nickel substrate, a synergistic effect between Ni, Fe, and Mo is responsible for the enhanced HER, which is a function of M–H (metal hydride) bond strength. Because Ni and Fe have a relatively weaker M–H bond strength compared with Mo,

Figure 5. Overall water-splitting performance and stability test of the trimetallic NiFeMo conducted in 1.0 M KOH. (A) Polarization curve for overall water splitting with the NiFeMo electrode as both the anode and cathode at a scan rate of 5 mV s⁻¹. (B) Long-term stability test under an applied voltage of 1.6 V. (C) Comparison of the required cell voltage at 10 mA cm⁻² of NiFeMo with recently reported noble-metal-free water-splitting electrolytes. (D) Polarization curves of before and after 50 h of electrolysis. (E) Amount of gas calculated and experimentally measured along reaction time for overall water splitting of NiFeMo. References cited in (C): Hollow Ni₃S₂ microspheres, porous urchin-like Ni₃P, porous Ni₃S₂–NGQD/NF, Ni₃FeₓSₓ/P/CF, Co₉S₈ nanowires, Ni₃Fe LDH@NF, NiFe LDH/NiCoOₓ/NF, NiCoSₓ@NiFe LDH, Co₉S₈@NOSC-900, Ni–Mo/Cu nanowires, NiSe nanowire, Ni₃P nanoparticles, Ni/Mo₂C, and NiFe LDH/NF. NF: Ni foam; GNF: graphene/Ni foam; CF: carbon fiber; LDH: layered double hydroxide; NOSC: N-, O-, and S-tridoped carbon-encapsulated.
combination of a M–H–weak metal (Ni) with an M–H–strong metal (Mo) can result in an optimized hydrogen adsorption free energy. Although this synergistic effect cannot be directly verified, the identification of metallic elements as active sites for HER is supported by the observation that morphology and the metallic nature of the film remained almost the same after the HER stability test (Figure S16).

According to the characterization results of the sample after OER in Figure S17, SEM images reveal that the nanosheet structure is on the entire surface of the electrode. On the other hand, obvious changes in the XPS spectrum are also observed; the metallic Ni signal located at 870.2 eV disappeared while the metallic Fe and Mo signals have almost vanished after OER. All of the results suggest the formation of NiFeMo (oxy)hydroxide on the surface. The NiFe (oxy)hydroxide species have been commonly considered as active OER sites.67,68 Besides that, as reported by Prof. Cui’s group,69 MoO3 is also active for OER. We believe that self-grown Ni–Fe–Mo (oxy)hydroxides are responsible for the efficient OER activity as well as the high stability of the cell.

In summary, we have demonstrated trimetallic NiFeMo as a highly active electrocatalyst for electrochemical overall water splitting. The trimetallic NiFeMo film serves as a HER catalyst and “precatalyst” for OER. Because of simple synthesis using conventional hydrothermal deposition and thermal annealing, NiFeMo can be easily coated on electrodes such as stainless steel. Unlike most catalysts, the NiFeMo thin film does not require any nanostructuring to be highly active. Together with its high stability, NiFeMo emerges as a great candidate for large-scale commercial application. The catalyst can be coated on other metallic foams such as Cu. Our method can be used to develop active multimetallic catalysts for water splitting, as well as catalysts for oxygen reduction reaction,70 CO2 reduction,71 and methanol oxidation reaction.72

REFERENCES

ACS Energy Letters 2018, 3, 546–554
DOI: 10.1021/acsenergylett.7b01335

(64) Yang, Y.; Fei, H.; Ruan, G.; Tour, J. M. Porous Cobalt-Based Thin Film as a Bifunctional Catalyst for Hydrogen Generation and Oxygen Generation. Adv. Mater. 2015, 27, 3175–3180.

