
Automated Fault Localization Techniques; A Survey

Mohammad Amin Alipour

School of Electrical Engineering and Computer science
Oregon State University

alipour@eecs.oregonstate.edu

Abstract. Fault localization is a task in software debugging to identify the
set of statements in a program that cause the program to fail. As size and
complexity of software grows,and the more developers participate in de-
bugging, fault localization becomes harder than before. Automated fault
localization techniques aim to facilitate this task by guiding the developers
to a small portion of program that are likely to be culpable for the program
failures.
In this paper, we look at important techniques for automated fault localiza-
tion and categorize them based on their common features. We also briefly
discuss some of challenges and shortcomings in this field.

1 Introduction

Software systems fail. Bug reports are filed. Software developers request more time
to investigate the problems. customers call in to complain about bugs. Project man-
agers face such situations everyday.

Software is a complex system. Usually many pieces of code interact through
interfaces and manipulate different data to accomplish a task, e.g. processing a
purchase query or, rendering a LATEX file. It requires good understanding of the
specification (i.e. expected behaviors), moreover, proper abstraction and design
and, proper implementation of algorithms, interfaces and data structures. An
error can occur in each of this stages and it can remain unknown until it mani-
fests in a failure, (hopefully) during testing. A software fault is the embodiment
of errors in the source code, e.g. wrong initialization or operator, or missing
statements or logic, etc. To fix failures, faults should be located and corrected.

Studies on software debugging1 suggest that debugging is an iterative pro-
cess that includes hypothesizing the location of faults, proposing a fix and finally
validating the hypothesis by testing. Fault localization (FL) is a crucial part of
software debugging. Obviously, in this process, imprecise fault localization can
mislead the whole chain of locate-fix-validate and entails excessive time and ef-
fort burden on software development. On the other hand, precise and efficient
fault localization can reduce the number of trial-error cycles, hence accelerate
the debugging.

1 Understanding the process of software debugging is still an active field of research, e.g.
See [17,31,29] for more.

Fault localization is essentially a search over the space of program compo-
nents (e.g. statements, variables, values, predicates) to find suspicious entities
that might have participated in a program failure. It often involves inspection of
numerous components and their interactions with the rest of system. In practice,
there are many suspects in a program for a failure, i.e. faults.

Automated fault localization techniques attempt to assist developers by re-
fining and reducing the search space for faults. Thus, developers need to focus
on smaller number of entities. This would save time in debugging; hence it may
reduce maintenance costs. Moreover, since most companies are under market
pressure, they tend to release software with known and unknown bugs [32].
Automated fault localization techniques can help companies debug more known
bugs before shipping their products. It would improve the dependability of soft-
ware products by facilitating timely debugging.

Fault localization techniques can be classified based on approaches that they
are based on. The major approaches are program slicing [46, 4, 21], spectra
based fault localization [40,39,27], statistical inference [34,?], delta debugging
[49] and model checking [?]. In this paper, we study techniques based on the
two last approaches: delta debugging, and model checking.

Delta debugging framework is a collection of techniques for minimizing fail-
ing test cases and isolating the failure-inducing part of them. Section 6 intro-
duces these techniques. Then it looks at a technique based on them for fault
localization. Model checking is the process of searching state space of a pro-
gram for violations of a given property. Such violations are returned in form of
a counter-example trace. Since model checking can provide various information
about program states, transitions and execution paths in the program, it can be
used in fault localization. In Section ??, we provide a brief background on model
checking. Then, it outlines some techniques that analyze counter-examples for
fault localization. Section 9 concludes the paper with laying out the opportuni-
ties in fault localization.

As we will see, these two approaches differ in many ways, but most signifi-
cantly by the amount of information that they need/extract from the program.
In this paper, each technique is followed by a discussion of its merits and short-
comings.

The rest of the paper is organized as follows. After establishing common tax-
onomy for the paper in Section 2, we explain some efforts which utilize program
slice for fault localization in Section 3. Then, in Section 4 we describe spectrum-
based approaches that attempt to quantify the different behaviors of program in
failure and success runs. Presence of high speed networks can justify collecting
information from many execution over the Internet; Section 5 outlines series of
efforts to utilize this information for cooperative bug isolation. Section 6 sum-
marizes major efforts that exploit delta debugging [49] to find cause of failures.
In Section 7, we look at some techniques that dynamically modify a failure ex-
ecution of program to spot the statements which their modifications makes the
execution succeed. In 8, we point out some techniques for fault localization in
model checking. Section 9 discusses the current state of the art.

1: BinarySearch[l_List, k_Integer,

2: low_Integer, high_Integer, f_] :=

3: Module[{mid = Floor[(low + high)/2]},

4: If [low > high, Return[low - 1/2]];

5: If [f[l[[mid]]] == k, Return[mid]];

6: If [f[l[[mid]]] > k,

7: BinarySearch[l, k, 1, mid-1, f], // FAULT

8: BinarySearch[l, k, mid+1, high, f]]]

Fig. 1: A snippet of a fault Mathematica package

2 Preliminaries

In this Section, we introduce some terms that we use throughout this paper. In
this paper we use the term software and program interchangeably.

Definition 1 (Error) An error is an internal state of a program that deviates from
the expected behavior of the program.

Definition 2 (Fault/Bug/Flaw) Fault is set of statements which their execution
may perturb the state of program to error state. In other words, it may infects the
state of program.

Definition 3 (Failure) Failure is manifestation of error to an external entity (i.e.
oracle) which discern the program failure. In this case we say the program fails.

Definition 4 (Testable Program) A program is testable, if some error states can
be manifested.

Program failures are often observed at output of program when the the pro-
gram crashes or produces wrong output. Many of error states do not manifest
at output, because they may be ignored later during execution of the program,
e.g. data race of similar values on a shared variable. Another reason that makes
the program un-testable is lack of specification. For example, Figure 1 illustrates
a snippet of of a flaw in Mathematica software that was not detected for five
years, because there was no performance specification [1]. Line 7 in this pro-
gram must be BinarySearch[l, k, low, mid-1, f]. This fault which turns
the logarithmic algorithm to linear.

3 Program Slicing for Fault Localization

In this section we explain the fault localization techniques that are based on
program slicing. A slice of program with respect to a criterion is a subset of
statements in the program which faithfully reflect that criterion [46]. Through-
out this sectopm, we use two program snippets (taken from [51]) depicted in
Figure 2 to illustrate some of techniques.

1: read (a) ;
2: read (n) ;
3: i =0;
4: while (i<n) {
5: read (x) ;
6: read (y) ;
7: a=a/x ;
8: b=x ;
9: i f (a>1)

10: b=a−4;
11: i f (b>0)
12: z=x+y ;

else
13: z=x−y ;
14: output (z) ;
15: i=i +1;}

Fig. 2: Running Example

For example the slice of program in Figure 2 for criterion “the statements
that may influence the value variable b in Line 10” is: <1,2,3,4,5,7,8,15>.

Forward static slice fs of a program p regarding to a variable v in statement
s is the set statements in p that may be influenced by the value v at s [46].
Conversely, a backward static slice of bs regarding to a variable v in statement s
is set of statements that may affect the value of v in s.

Backward dynamic slice of a program with respect to a variable v at statement
s in the execution trace hist for some test-case is the set of statements in hist
that affect the value of v [4, 3]. Agrawal et al. argue that the majority of faults
exist in the dynamic slice of failing test cases [4]. For example in Figure 2, given
the input values { a = 8, n = 1, x = 2, y = 2}, the backward dynamic slice
for z in Line 14 is {1,2,3,4,5,6,7,9,10,11,12}. Pan and Spaffor provide several
heuristics based on dynamic slices of programs for debugging [38].

Later in [5], Agrawal et al. propose χ-slicing to narrow down the search
space for faults to χ-slice of programs. A χ-slice of a program regarding to a
failing test case and a passing test case contains the statements that are in failing
trace but not in passing trace. χ-slicing fails whenever faults appear in both
failure and successful traces.

Gyimóthy et al. propose the notion of relevant slice and propose a method
for computation of it [21]. A relevant slice of a program regarding to a variable
in a location and a test input comprises of the dynamic slice of the program,
set of predicates in the dynamic slice which their different evaluation may affect
the value of the variable, and statements that affect those predicates. Relevant
slicing is more inclusive than subsumes dynamic slicing, thus it can include the
faults that are not in dynamic slice. For example, suppose we modify Line 7
in Figure 2 to the fault a = a/2x - 1;. In this case, the dynamic slice of the

program regarding to variable z at Line 14 for input values { a = 8, n = 1, x
= 2, y = 2} would be: {1, 2, 3, 4, 5, 6, 8, 11, 12}, which misses Line 7 where
the fault resides, but relevant slice is: {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12} and
includes the fault.

Zhang et al. have evaluated the use of relevent slicing for fault localization
on Siemens benchmark. They have shown that it captures all faults in single
fault programs and part of faults in multiple fault programs [51]. In [52], they
propose a dynamic approach to find faults that are not captured by dynamic
slices.

4 Spectrum-based Fault Localization Techniques

In this section we review some of fault localization techniques that try to find
the faults based on quantifying their different behaviors in passing and failing
traces. These aspects of behaviors are called spectra.

Reps et al. have used (loop-free) path profiles (spectra) to analyze programs
with potential Y2K errors2 [40]. They compare path profiles of executions of pro-
grams with pre-2000 and post-2000 date values. Their method tries to find new
paths that appears in the processing of post-2000 which are not in the pre-2000
date values and conversely paths that are missed in the execution of post-2000
values. The shortest prefixes of such paths summarize abnormal behavior of pro-
grams. For the path profiling they use the Ball and Larus’s path profiling [10].
In the experiments they used few Unix utilities including cal and ncftp which
have shown the approach is viable. They conjecture that there is a correlation
between the path spectra and faulty programs.

In [22], Harrold et al. validate above conjecture on test. For the experimen-
tation they used seven Siemens original subject programs and their variants (to-
taling 88 programs). They tested these programs under several input values and
extracted different spectra information out of the executions. The experiment
shows a correlation between the difference in spectra and faulty programs.

Renieris and Reis propose nearest neighborhood which contrasts basic block
coverage of successful runs and failures to rank the suspicious blocks that may
contain faults [39]. To build the profile of traces, covered basic blocks are sorted
by number of times that they are executed in the trace. Then closest pair of
passing trace and failing trace is selected based on the minimum difference of
trace profiles. They use Ulam’s distance to measure this difference. The basic
blocks that are in the failing trace but not in the successful trace are reported as
potential fault locations.

Jones et al. employ statement spectra to build the Tarantula system for vi-
sualizing the potential location of faults [27]. In Tarantula, a program is instru-
mented to compute statement coverage for several failing and succeeding test
cases. Then, based on number of occurrences of a statement in successful and

2 Y2K bug was the problem of two-digit encoding of date values in some legacy program.
This encoding would have caused the dates reset to 00 in the beginning of year 2000,
which in turn could cause miscalculations in those legacy systems.

failing executions, a suspiciousness factor (SF) for the statement is computed.
The suspiciousness factor of a statement denotes the likelihood of statement to
be fault. Thus, the SF’s are used to rank the statements for inspection by de-
velopers. The Tarantula assigns higher SF to statements that show up more in
failure traces than successful traces using Formula (1).

SF (s) =
%Failed(s)

%Failed(s) + %Passed(s)
(1)

In the above Formula, %Failed(s) is the ratio of number of failing traces which
include statement s to total number of failing traces. Likewise. %Passed(s) is
the ratio of number of successful traces to the total number of successful traces.
The evaluation of Tarantula with 20 mutants of Space program shows it gives
high suspiciousness factor to the faulty statements in majority of cases. However,
in some cases that failure is due to incorrect variable initialization, it fails to
identify it because all executions run these statements.

In [2], Abreu et al. propose Ochiai metric (Formula 2) to calculate the suspi-
ciousness factor in the Tarantula framework.

SF (s) =
Failed(s)√

TotalFailed ∗ (Failed(s) + Success(s))
, (2)

where Failed(s) is the number of failing test cases which execute s, Success(s)
is the number of successful test cases that execute s, and TotalFailed is the
number of failing test cases in the test suit. The Ochiai formula improves the
accuracy of Tarantula framework on Siemens programs.

Santelices et al. compare the effectiveness of three coverage metrics: state-
ment, branch and Def-Use(DU) pairs as spectra in Tarantula framework [41].
They introduce a mapping between branch and DU-pairs suspiciousness factors
to suspiciousness of individual statements. They define the cost of fault local-
ization as the percent of statements needs to be inspected before the fault is de-
tected. In their subject programs, DU-paths works better than branch and branch
coverage works better than statement coverage. Moreover, they show that the
average of the (statement-branch-DU-pairs) entails better results on average,
than each individually.

Yilmaz et al. use time spectra for fault locaization [47]. To this end, they
instrument the programs to calculate the time of function calls. Then, they try
to derive a model for time per caller-callee in failing and passing executions
using Gaussian Mixture Models (GMMs). Afterwards, they rank the caller-callee
model of failing executions based on their difference with the corresponding
model in the successful run. They noticed that the number of passing test cases
is important for proper modeling of time behavior of successful programs. That
is , in cases with small ratio of passing test cases to failing test cases, the results
were inferior to the cases with higher ratio.

Another spectra that has been used for fault localization is edge spectra that
has been proposed by [53]. In this work the suspiciousness factor of each edge
based is calculated and then these factors are used to calculate the suspicious-
ness factor of basic blocks.

5 Cooperative Bug Isolation

With prevalence of the Internet and given the fact that shipped software prod-
ucts often have bugs, users’ running programs can cooperate in producing a
large variety of information about the behavior of programs. Moreover, these
techniques must keep overhead of profiling (i.e. instrumentation) as low as pos-
sible to incur acceptable performance overhead on the execution of programs on
users’ machines. This section surveys the techniques that tap into such informa-
tion for fault localization.

Cooperative bug isolation (CBI) was introduced in [32]. CBI instruments
program to extract the following predicates:

– For each assignment to variable a, it introduces three relational predicates
(<,==,>) to all in-scope variables.

– Predicates for the return value of function calls at call-site, as of x > 0,
x == 0 and x < 0 where x is the return value of the function call.

– Predicates for relations between same type pointers: p == q, p 6= q , p ==
null and p! = null.

CBI samples predicates, to alleviate the performance overhead of predicate
instrumentation, It utilizes sampling rate of 1

a1000 , meaning that each predicate
can be sampled with probability of 1

a1000 . in the experiments which incurs only
5% performance overhead to the execution.

CBI tries to find predicates that are good predictors for program. To this end,
authors classify bugs into two categories: deterministic bugs and non-deterministic
bugs. A bug is deterministic with respect to a predicate P , when P = true
implies that program will eventually fail. If no such P exists, the bug is non-
deterministic.

Deterministic bugs are determined by contrasting the predicates that only ap-
pear in failure traces. For non-deterministic bugs, CBI utilizes logistic regression
learning method [44] for learning binary classifiers. This method assigns a value
between 0 and 1 to for each predicate. This value represents the correlation of
predicates with a failure. Top score predicates are reported as potential causes
of the failure.

CBI framework further extended in [33] to include a richer set of predicates:

– Branch predicates:Two predicate for each branch which show if the branch
has been taken in the execution of the program or not.

– Return predicates:Five predicates for each return values to monitor whether
the returned value is ever < 0, ≤ 0,= 0, ≥ 0 and > 0.

– Scalar-pair predicates:For each assignment to variable a, six predicates
(<,≤,=,≥,>, 6=) to all same-type in-scope variables and constants.

The new framework tries to find the cause of failures in presence of several bugs.
Given information of failure traces, the high-level of the proposed algorithm is:

1. Find predictors of the most important bug in the failure traces.
2. Remove all failure runs that belong to the bug in Step 1 and go to Step 1.

In the new framework, the conditional probability of failure of program with
respect to predicates P is computed (Pr(Crash|P)). The conditional probability
of observing the predicate is calculated (P (Crash|Pobserved)), too. The value
Increase is calculated using Formula 3. (3).

Increase(P) = Pr(Crash|P)− Pr(Crash|Pobserved) (3)

For reduction of noise in the statistical reasoning, those predicates which the
confidence interval of their Increase is less than 95% are eliminated. Afterwards
the Importance factor for each predicate is estimated by Formula 4:

Importance(P) =
2

1
Increase(F) + 1

log(F (P))/log(NumF)

, (4)

where F (P) is the number of failures when predicate P is evaluated to true and
NumF is the total number of failures.

Importance factor of a predicate approximates how much the predicate is
correlated to failure. In each iteration of the above algorithm, the predicate with
highest value of Importance is given to programmer for debugging. Then, all
traces that contain that predicate are removed and the above fault localization
scheme is repeated on the remaining traces.

Thakur et al. extended the CBI infrastructure to isolate the concurrency bugs
[43]. In their framework, they have added two additional predicates for each
shared variable that capture the thread access patterns to shared data.

Sometimes a single predicate is an inadequate predictor for a bug. Thus,
Arumuga et al. extend CBI to include compound predicates [8]. In the new
framework, they only consider conjunction and disjunction between pairs of
predicates. A peculiar aspect of their contribution is that instead of extra in-
strumentation for extracting such predicates, they approximate them from the
available information of individual predicates.

Chilimbi et al. have adapted CBI framework to develop HOLMES which uses
paths instead of predicates [15]. HOLMES attempts to catch acyclic, intra-procedural
paths that are strong predictor of failures. The motivation is that paths pro-
vide context for failures which programmers can trace for debugging. Moreover,
paths usually are available with failures for postmortem analysis, which in this
case it adds no monitoring overhead on software execution. Authors also pro-
pose an adaptive process to reduce the cost of path monitoring of software which
restricts the monitoring to parts of the program that are more likely to include
fault. Since the path monitoring happens in a small portion of programs,HOLMES

does not need to sample all paths, instead it monitors all paths in a small portion
of program.

Adaptive HOLMES does not start monitoring until a failure occurs. It uses the
formula 5 to select the functions to monitor.

θ(f) = Σn
i=1

1
∆i(f)

(5)

In this formula, θ(f) is the effective score of function f which ranks functions
according to the possibility of including fault. n is the number of bug reports.

∆i(f) is the number of functions between occurrence of f in stack trace and the
location of failure.

In HOLMES, users can define a threshold for strong predictors. If the current
monitored functions does not produce a sufficiently strong predictor higher than
the threshold, either path monitoring is expanded to include more functions that
interact with current monitored functions [7,14] or the predictors are strength-
ened by coupling predictors with branches, or by coupling paths together [8].

HOLMES inspired ArumugaNainar and Liblit to reduce the cost of instrumen-
tation with heuristics for selection of instrumentation sites in CBI [9]. In their
technique when a branch predicate is found as a best predicator, its vicinity can
potentially be good predictors, thus they are added for monitoring to reach a
strong fault predictor.

Liu et al. argue that the fraction of time that a predicate at a location that
evaluates to true can boost the accuracy of CBI, thus they develop SOBER [34].
SOBER utilizes the fraction of “true” observations of a predicate P within each
program execution, as in formula 6, in its calculations.

π(P) =
nt

nf + nt
(6)

where nt and nf are the number of times the predicate P evaluates to true or
false, respectively.

In SOBER, sets of failing and passing test cases are treated as statistical sam-
ples. If the density function of a predicate in failing traces differs from its density
functions in passing traces, the predicate is correlated to a bug. f(π(P)|θ) de-
notes the density function of a predicate P in a sample θ.

To measure the difference of density functions, SOBER employs null test hy-
pothesis for f(π(P)|θf) and f(π(P)|θp), where θf and θp are failing and passing
samples respectively. If the likelihood of validity of this hypothesis was low, then
it concludes that they are not identical. The less likelihood of the hypothesis,
shows the greater difference between the density functions. Therefore, SOBER
uses likelihood of validity of the hypothesis for predicates to rank them for cor-
relation to failure.

Jiang and Su argue that giving a scenario of failure and affording the user the
correlated predicates in addition to most suspicious predicates would facilitate
understanding of the cause of failure, hence debugging it [25]. Thus, they use
combination of feature selection and clustering to find the correlated predicates
and error trace. They use SVM and Random forest techniques to find the most
important fault-inducing predicates, and k-means algorithm to partition set of
predicates in clusters of correlated predicates. They also devise an algorithm for
creating the error trace by choosing the outcomes of branches such that they
contribute to failures and assembling them. If the branch condition tends to be
more in the failing trace, the branch is taken and if the negation of it appears
more in the failure traces it will not be taken in the assembled trace.

6 Delta Debugging

In this section we explain two techniques that exploit delta debugging [49,48] for
fault localization. Delta debugging (DD) contains two algorithms: simplification,
and isolation.

Given a failing test input, simplification algorithm systematically reduces the
size of the input by eliminating parts of it to reach the minimal input such that
it cannot further reduced. The isolation algorithm constructs pair of passing and
failing inputs in which difference is minimal.

Gupta et. al combine delta debugging with dynamic slicing to locate faults
[20]. Their approach, first, finds the minimal distance passing and failing inputs.
Then, the forward dynamic slices with respect to the difference of failing input
and passing input is computed. Then the backward dynamic slice with respect
to outputs are computed. The intersection of the forward and backward slices
are called “failure-inducing chop” which potentially have contains fault.

Cleve and Zeller [16] use delta debugging to isolate a chain of state transi-
tions in a failing pass that leads to failure. Given a failing and a passing trace,
first their method uses memory graphs [54] to find common variables in the two
runs. The common variables are used to represent the state of the program. The
states of program in both executions are contrasted to candidate a cause vari-
able. They check the cause variable in every step. When it changes in a step, is
called the cause transition. Programmer can utilize chain of cause transitions for
debugging. Usually, the locations that cause transitions take place are potential
places to fix the program.

7 Dynamic Approaches

Fault are places in a program where they need to be modified to fix the program.
Hence, if a modification to the program at a location changes the output of a
failure trace to success, such location would be potential fault in the original
program. In this section, we describe two of these techniques which are based
on this idea:predicate switching, and value replacement.

Predicate switching starts with an input that entails a failure for th program,
it runs the program with one predicate switched at a time [50]. If switching a
predicate makes the program succeed, the predicate is identified as the source of
failure. Since there are many predicates in the program they employ two heuris-
tics to accelerate reaching such predicates. the predicate switching:LEFS, and
PRIOR. Last Executed First Switched (LEFS) ordering, switches the last executed
predicate. Prioritization-based ordering (PRIOR) which partition predicates into
two category: high and low priorities. PRIOR gives high priority to predicates
that can be influenced by the faulty run. Then, PRIOR starts with predicates in
high priority group. Predicate switching approach fails to find bugs data part
of program. Its developers justify the data part of program constitutes a small
portion of program comparing to control part.

In a failure trace, if the incorrect outcome of a faulty statement is replaced
with the correct value, a failing execution changes to a successful one. Based

on this intuition, Jeffrey et al. propose value replacement technique [24]. In this
technique, the value of variable in statements, are systematically changed to a
value from value profile of the statement. Value profile of a statement in a test
suit is all values of variables at the statement in all (failing/successful) traces.
For predicates the profile also includes the result of branching (taken/not taken).
The authors observe that the growth of size of value profiles is logarithmic in
size of test suit. Given a failing trace and value profiles, the value replacement
method executes the program until a statement, then it replaces a value in the
statement with another one from the value profile of the statement, and exe-
cutes the rest of program. The authors propose some heuristics to reduce the
number of statements subject to value replacement and the number of values to
be replaced.

8 Formal Techniques

In this section, first, we briefly introduce the concept of model checking (Section
8.1). Then, in Section 8.2, we study some techniques that locate faults using the
results of model checking procedures.

8.1 Model Checking

Model checking is the problem of verifying a property φ in a transition system R
which models a system/program [?]. Intuitively, R represents states of a system,
and the transitions between them. φ denotes a property of interest that we want
to investigate. Model checking procedures include sets of algorithms to validate
if model R holds the φ property. If R violates φ, the model checking procedure
returns a counter-example that details an example (i.e. a failure trace) in R that
leads to the violation of φ. Transition system R can represent many software and
hardware systems and property φ is usually a temporal property that needs to
be held by R.

Algorithmically, model checking techniques can be divided into two cate-
gories: explicit state and symbolic. Explicit state model checking enumerates
the reachable states from initial states in R explicitly. That is, it keeps the con-
crete value of variables for each state. Symbolic model checkers encode states
as boolean formulae. For this, symbolic model checkers may use Binary Deci-
sion Diagram (BDD) [?] or its variants for concise encoding of formulae [?], or
they may reduce the problem of model checking to a SAT/SMT problem and
utilize SAT/SMT solvers for the verification of properties [?]. Discussion about
model checking and related topics is out of the scope of this paper; we refer the
interested readers to [?] for a concise treatment of these topics.

8.2 Fault Localization Techniques

When a model checking procedure finds a violation of a desired property in the
transition system of a program, it returns a counter-example, which is a failing

trace of the program. In this section, we study several techniques that use a
counter-example in a model which try to locate the faults in the model/program.
In Section 8.2, we look at one of the first techniques in the area that contrasts the
transitions in one or multiple counterexamples with passing traces. In Section
8.2, we glance at techniques that given a counter-example, attempt to build
the closest passing trace to the counter-example. These methods are in a sense
similar to delta debugging, but they are trying to build similar traces. Contrasting
failing and passing traces can help to find suspicious transitions. Finally, Section
8.2, describes a reduction of fault localization problem to Max-SAT problem.

Contrasting Counterexamples with correct traces Using a Single Counter-
example
Ball et al. devised a technique for fault localization relying on the premise that
execution of the fault is necessary for the software failure [11]. In their tech-
nique, whenever a counter-example was found, it finds all traces that conform
to the property (passing traces). Then, by contrasting transitions in the pass-
ing traces and the counter-example, the faults that led to the deviation from the
property are found and reported as a fault. Furthermore, if the program contains
several faults, those faults that already have been found are replaced by the halt
statement. Halt statement semantically stops the execution of the program, thus
if a trace leads to a fault, it would not be resumed to avoid the error.
Merits and Shortcomings. This technique has been implemented in the SLAM
[?] model checker. It has been experimented on some Windows device drivers.
Its major caveat is that it cannot handle incidental correctness. That is, if a fault
also appears in the passing trace, this technique fails to find it. Another issue is
using SLAM for implementation of this technique. SLAM implements a model
checking technique based on predicate abstraction.The states of program with
predicate abstraction do not store concrete values of program variables, instead
they contain predicates on the values. This may add some infeasible traces to
the set of correct traces, because predicate abstraction does not check the valid-
ity of paths for the non-counter-examples. In this case, it is possible that fault
transitions be added to the set of correct transitions and this approach fails to
identify them.
Using Multiple Counter-examples
The above technique relies on one counter-example that violates the desired
properties at a particular location. However, it is possible that multiple counter-
examples exist that violate the properties at the same location. For that, Groce
and Visser introduce the notion of negative and positive traces with respect to a
counter-example and propose transition analysis on the traces [19].

Set of negative traces (neg) with respect to a counter-example t that ends
up with an error state se contains all traces that start from initial states and end
at se such that the control location immediately before the se is similar to the
control location in t. In other words, neg(t) contains all counter-examples that
violate same property, similarly. Likewise, a set of positive traces (pos) w.r.t. t is

defined, except that they take the control location immediately before the se but
they proceed. Moreover, they are not prefix to any of traces in neg.

Given pos and neg, this technique analyzes the transitions. The analysis
forms two groups all and only for each set. all(pos) denotes transitions that
exist in in all traces in pos. Similarly all(neg) contains transitions that appear
in all traces in neg. only(pos) denotes transitions in all(pos) but not in any
trace in neg. Likewise, only(neg) is the set of transitions in all(neg) but not in
any of traces in pos.

To illustrate this technique, Figure 3 depicts a snippet of a program that, iter-
atively, takes a lock randomly, and releases it. A desired property in this program
is: “lock can be released, if it has been acquired.” The fault in this program re-
sides on the Line 9 where it should be inside the scope of the second if-statement.
A counter-example for this program is 1 → 2 → 3 → 7 → 9 → 10 → 3 → 7 →
8→ Error.

– all(neg) = {1, 2, ¡3,F¿, 7, 8, 9 }
– all(pos)= { 1,2, ¡3,T¿,4,5,7,8 }
– only(neg) = {¡3,F¿, 9}
– only(pos) = { }

1 int got_lock = 0;

2 while(true){

3 if(random(2) == 0){

4 lock();

5 got_lock++;

6 }

7 if(got_lock !=0)

8 unlock();

9 got_lock --;

10 }

Fig. 3: Example

The technique uses the definition of all and only to define the cause of
failure as the transitions in both all(neg) and only(neg). That is, transitions
that all traces of neg(t) and did not appear in any of passing traces. Given the
above values for all’s and only’s, the cause of failure is determined as the set
of transitions: cause(neg) = {<3,F>, 9}. cause(neg) identifies the cause of
the failure as a combination of not taking the first if-statement and execution of
statement Line 9.
Merits and Shortcoming. This method has been implemented in Java PathFinder.
It could find the cause of an error in a buggy version of DEOS real-time operat-
ing system. This techique also suffers from incidental correctness problem. That
is, if the fault can appear in passing traces and failing traces, this technique is
not helpful.

Distance Metrics Given a counter-example, Groce proposed a technique to find
the closest passing trace to the counter-example [?, ?, ?, ?]. Distance between
a failing trace (i.e. counterexample) a and a passing trace b is defined as the
number of differences between a and b. This algorithm has been implemented
in explain tool [?]. explain uses the bounded model checker CBMC3. Figure
4 shows a version of minmax program that intended to find the minimum and
maximum of three input variables. It includes an assertion that states the value
of minimum must be less than or equal to the maximum value. The fault is at
Line 10, where the correct assignment is least = input2. Figure 5 depicts a
counter-example for the minmax program.

Given a counterexample a for a program P that violates assertion p, explain
transforms P to SSA format such that each variable is defined (i.e. assigned) only
once. The comments in the Figure 4 show variables to be added for SSA format.
If P includes loops, P are unwound to the length of a plus a small constant
integer. To find a passing trace that does not violate the assertion, it is sufficient
to conjunct a propositional formula for P , say symb(P) with the assertion p, i.e.
symb(P) ∧ p. Any satisfiable valuation to this formula would be a passing trace
for P .

1 int main(){

2 int input1, input2, input3;

3 int least = input1; //least#0

4 int most = input1; //most#0

5 if(most < input2) //guard#1

6 most = input2; //most#1,2

7 if(most < input3) //guard#2

8 most = input3; //most#3,4

9 if(least > input2) //guard#3

10 most = input2; //most#4,5

11 if(least > input3) //guard#4

12 least = input3; //least#1,2

13 assert (least <= most);

14 }

Fig. 4: Buggy Minmax program, courtesy of [?].

Then, explain adds a set of constraints that represent the difference between
a and the passing traces. If the variables of the SSA format of P have values:
v1 = va1

3 CBMC verifies safety properties in C programs. It constructs a propositional formula
(say M) that represents the transition system of the program. If a program contains
loops, CBMC unwinds loops for a particular number of iterations. To verify assertion
p, the negation of p is conjuncted to M . If M ∧ ¬p is satisfiable, it means that there is
a counterexample that violates the p, otherwise the program satisfies the property.

v2 = va2
...
vn = van
The related constraints would look like:
v1∆ = (v1! = va1)
v2∆ = (v2! = va2)
...
vn∆ = (vn! = van).
For example, input1#0∆ ==(input1#0 ! = 1). Obviously, the above constraints
would not affect the result of the satisfiablity problem. Afterwards, explain uses
a Pseudo-Boolean Solver (PBS) to solve the resulting formula. PBS is similar to
SAT/SMT solvers except it accepts formulas in form Σwi.bi ./ k where ./ is ei-
ther of {<,>,≤,≥,=} and tries to solve it. bi is a boolean variable and, wi and
k are constant values. explain chooses bi = vi∆ and wi = 1. Then, starting
from k = 1, it incrementally increases the k and invokes the PBS until it finds
a valuation that satisfies symb(P) ∧ p and the constraints on ∆’s. The result is
a passing trace, say b that its distance to a is k. The difference of a and b is
reported to the programmer. For example, Figure 6 shows resutls of application
of this technique to the minmax program. It shows that in the nearest passing
trace, the result of guard#3 is not true, meaning that branch at Line 9 is not
taken and respectively Line 10 is not executed. It can lead developers to Line 10.

input1 = 1

input2 = 0

input3 = 1

least#0= 1

most#0 = 0

\guard#1 = false

most#1 = 0

most#2 = 1

\guard#2 = false

most#3 = 1

most#4 = 1

\guard#3 = true

most#5 = 0

most#6 = 0

\guard#4 = false

least#1 = 1

least#2 = 1

Fig. 5: counterexample for minmax in Figure 4

A potential problem in using SSA format of program in definition of ∆’s is
that it may count variables that are not executed in the program. To address

this, explain introduces ∆-slicing which slices the parts of programs that are
not executed or are not related to assertion p.

Value changed: input2 from 0 to 1

Value changed: most#1 from 0 to 1

guard changed: least#0 > input2#0 (\guard#3) was TRUE

Value changed: most#5 from 0 to 1

Value changed: most#6 from 0 to 1

Fig. 6: Result of execution of explain on the minmax

Merits and Shortcoming. explain has been experimented on some versions of
Tcas4 program from Siemens test subjects [?] and also on a micro-kernel. It was
compared to nearest neighborhood method [39] that is a spectra-based fault
localization technique. The results show that in some cases it outperforms the
nearest neighborhood technique. The basic underlying caveat of this techniques
is that it relies on symbolic model checking and PBS that hardly scale to large
programs.

Abstract Counterexamples Predicate abstraction model checking relies on the
fact that not all components of a program are involved in a specific property.
Therefore, instead of considering values of all variables in the program, it stores
a set of predicates on the state of the program that actually affect the property
under investigation. It helps scaling up model checking for larger programs.(See
[?, ?] for further details.)

In [?], explain has been extended to predicate-based abstract counter-examples.
The new technique has been implemented on top of MAGIC [?] model checker.The
new algorithm is the same as explain, except for comparison of failing and pass-
ing traces it uses predicates. But this comparison is not straightforward like ∆’s
in SSA, because at each control location, MAGIC may keep different predicates.
Thus, the new technique attempts to align the states of passing and failing coun-
terexamples such that they can be comparable. States in predicate abstraction
are like {(s1, α1), (s2, α2), ..., (si, αi), ...}, where si is composed of predicates at
state i and αi represents transition in state i. c(si) denotes the control location
on state si, furthermore pj(si) denotes the jth predicate in si.

The alignment is defined as follows and assures the states are aligned if they
are comparable. The alignment is one-to-one and it preserves the order of states
in the transitions system.

4 Tcas is a program for traffic collision avoidance in avionic system. An implementation
of it that is available at Siemens test subject is a popular test subject.

align(i, j) =



1 if (c(si) = c(sj)∧
align(i, k) = 0 for k 6= j ∧ k ≤ |b|∧
align(k, j) = 0 for k 6= i ∧ k ≤ |a|∧
align(m,n) = 0 for m < i ∧ n > j∧
align(m,n) = 0 for m > i ∧ n < j

0 otherwise

The unalignment is defined as not being aligned.
unaligenda(i) = ¬

∨
align(i, j)

unaligendb(j) = ¬
∨
align(i, j)

Then, the difference between two traces a and b is defined as d(a, b) =
Wp.∆p(a, b)+Wα.∆α(a, b))+Wc.∆c(a, b), where∆p(a, b) denotes the total num-
ber of predicate differences in all aligned states and ∆α(a, b) is the total number
of differences in actions in the aligned states. ∆c(a, b) denotes the total num-
ber of states that are not aligned. Wp,Wα and Wc are weights for each of those
terms. For the sake of minimizing the difference of states, the weights have been
chosen as Wp = Wα = 1 and Wc = max(|p(sa)|)+2. Afterwards, d(a, b) is added
to the transition relation as in explain and a PBS is used to minimize the differ-
ence of a and b. Figure 7 is the result of using this technique on the bug in the
minmax program.

Control location deleted (step #5):

10: most = input2

{most = [$0 == input2]}

Predicate changed (step #5):

was: most < least

now: least <= most

Predicate changed (step #5):

was: most < input3

now: input3 <= most

Predicate changed (step #6):

was: most < least

now: least <= most

Action changed (step #6):

was: assertion failure

Fig. 7: distance of a passing trace and counter-example in abstract terms for
minmax program.(Courtesy [?])

Shortcomings and Strengths. Good predicates provide a higher level expla-
nation of the failure and there are more intuitive. Essentially, it can summarize
the conditions under which a program fails. Moreover, model checking with
predicate abstraction usually scales better than model checking without abstrac-
tion. On the other hand, predicate abstraction may need numerous iterations
adding numerous predicates to states in order to produce a passing traces. It
may result a conjunction of several predicates to explain the counter-example
which it is not necessarily helpful. This technique has been used for faulty ver-
sions of some small programs (upto 350 LOC) and some moderate size of code
(3 KLOC).

Reduction to Max-SAT Propositional representation of program traces has fa-
cilitated reduction of various program analysis and verification to propositional
logic problems (See [?,?,?]). In this section, we look at reduction of fault local-
ization to Max-SAT problem.

The counter-example includes an input data that leads to the violation and
the trace. Using the program specification (say p), a failing output (I) and the
corresponding symbolic encoding of trace of the failing input(SP (I)), Jose and
Majumdar has built BugAssist that reduces the problem of fault localization to
the Max-SAT problem [28,?].

Max-SAT problem is the problem of finding a valuation for a SAT formula
that satisfies the maximum number of clauses in the formula. Max-SAT problem,
like 3-SAT problem, is an NP-hard problem and like SAT-Solvers, several Max-
SAT solvers exist. As a result, Max-SAT solvers also show the clauses that are not
satisfied by the proposed valuation. The set of clauses that are not satisfied by
the valuation is called minimal “UNSAT-core” of the formula. An un-satisfiable
formula can have several UNSAT-cores.

An interesting feature of modern Max-SAT solvers is the ability to allow users
to divide the constraints (i.e. clauses) in the formula into two categories: soft
and hard. Hard constraints denote the constraints that must be satisfied by the
valuation and soft constraints are those constraints that can be left unsatisfied.
It should be recalled that in SAT problems all constraints must be satisfied. Fur-
thermore, some Max-SAT solvers let users to associate weights to clauses and
they attempt to maximize the total weight of satisfied clauses.

Given a program and a failing input, BugAssist generates the symbolic rep-
resentation of the trace of the failure(say P), then it builds the propositional
formula I ∧ P ∧ p . where I is a formula that denotes the input of program and
p is the specification of program. BugAssist makes constraints I and p hard con-
straints and P constraints are soft constraints. That is, the Max-SAT solver must
find the minimal UNSAT-CORE within P . UNSAT-cores are the cause of unsatisfi-
ability of the formula, hence we can assume that there are reasons for program
failure. For example, consider the program in Figure 8. It fails for input index =
1. Thus, in this program I = (index == 1), the specification is p = (i ≥ 0∧i < 3),
and P = (index1 == 1 ∧ index2 == index1 + 2 ∧ i == index2), where I and p
are hard constraints. The UNSAT-core of this example is index2 == index1 + 2.

The inspection of the corresponding statement and related statements can lead
us to the fault.

An UNSAT-core might be incomplete or insufficient to explain the program
failure. Thus, BugAssist employs an iterative process that uses the feedback from
the user. For this, when the Max-SAT procedure in BugAssist finds an UNSAT-
core u of the formula, it reports it to the user. The user inspects u as clue for
debugging, if she found it useless for debugging, she asks for another UNSAT-
core. BugAssist adds u to the hard constraints and then reruns the Max-SAT
procedure.

Merits and shortcoming. Perhaps the most significant contribution of BugAs-
sist is the reduction of fault localization to Max-SAT problem and using off-the-
shelf solvers to solve it. Another contribution is that it needs only a failing trace
and the corresponding input to form the corresponding Max-SAT formulation. In
other word, it does not need passing traces for fault localization. On the down-
side, it suffers from the problem of scalability that all of symbolic techniques
suffer. However, it suggests using dynamic symbolic techniques or slicing, delta
debugging to reduce the size of propositional formulae or failing traces. BugAs-
sist has been experimented on Tcas program of the Siemens test subject and on
avarage it could reduce the search space for the fault to 8% of the program.

int Array[3];

int testme(int index)

{

if (index != 1) /* Potential Bug 2 */

index = 2;

else

index = index + 2; /* Potential Bug 1 */

i = index;

assert(i >= 0 && i < 3);

return Array[i];

}

Fig. 8: sample program

9 Discussion

In this paper, we have looked at two different approaches to fault localization.
In this section, we discuss the viability of these approaches. First, we revisit the
goal of fault localization and relate them with the techniques that we studied in
this paper. Finally, we discuss about a type of fault that is not addressed by the
techniques presented in this paper, missing component fault.

9.1 Goal of Automated Fault Localization

Automation of fault localization techniques intends to facilitate and accelerate
debugging by finding the suspicious components of programs. A large portion
of software development (35% according to [?]) is spent on navigating through
programs for maintenance. Thus, there is an opportunity for the automated fault
localization techniques to reduce that. Their success in this mission depends on
their effectiveness and efficiency.

Effectiveness An effective fault localization technique should point to the places
that actual faults reside and provide some clues for fixing the fault. In short, it
should be precise, and informative.

Precision Precision demands low false positives. The output of an FL technique
should not confuse developers by pointing to too many different, irrelevant com-
ponents of a program as suspects of a failure. Current automated FL techniques
usually either produce a set of suspicious statements without any particular
ranking, or they devise a suspiciousness factor and then rank all statements ac-
cording it. The techniques that we described in this paper fit in the first category;
they just give a set of suspicious statement and do not rank them.

There are two major metrics that researchers use to evaluate the FL tech-
niques. One metrics assumes that statements are ranked by suspiciousness. The
precision of the technique is the percent of statements in the program that
must be examined to reach the fault, starting from the most suspicious state-
ment [27, 6]. The other metric uses program dependence graph (PDG) [23] to
evaluate FL techniques. That is, given a suspicious statement, the percentage of
nodes in PDG that needs to be examined to reach the fault node determines the
accuracy of a method [39, 16]. It is worth mentioning that a recent study [?]
has shown that developers, on average, only pay attention to the first 10 sugges-
tions of FL techniques and would dismiss the rest of results. In other words, an
automated FL technique is useful if the actual fault is in its 10 first suggestions.

.

Informativeness Although identifying some statements as suspects for a failure
reduces the search space for debugging, it barely helps developers to design a fix
for the program. In other words, each suspicious statement is a hypothesis about
the location of fault and it would be better to accompany with the justifications
about why the FL technique has inferred a component as the potential bug.
Given such information, developers can add their own knowledge about the
program to decide if a particular location is the cause of the failure and if so,
what would be the best fix for that?

In the cause transition technique, Section ??, the hypothesis is backed with
the fact that a cause transition has happened at a location. Techniques using
contrasting, Section 8.2 justify selection based on absence of a transition in a
passing trace. Likewise, BugAssist in Section 8.2, just relies on the fact that the

suspicious statement appear in the UNSAT-core of the trace formula. Although all
of these justifications seem appealing, they are easy to refute; e.g. it is possible
if we try different inputs we get different cause transitions, or a faulty transi-
tion can appear in some passing traces. We wish to have a better explanation
of the participation of a potential fault in a failure. The technique for explain-
ing abstract counter-examples, described in Section 8.2, has the advantage of
summarizing the failure in higher abstraction (predicates on program variables)
than other techniques. We do no know the most suitable level of abstraction for
explaining failures or justifying a fault at a particular location; e.g. if a chain or
series of why questions [?, ?] the best. But it seems reasonable to expect fault
localization techniques to augment suspicious program components with the in-
formation about how they could have contributed to the error.

Efficiency Software debugging should be performed timely, within the timing
and budgeting constraints. This constraint also applies to fault localization as
well. It should be efficient. We identify two metrics for efficiency: scalability,
and information usage.

Performance Time and budget for debugging is limited. This limitation also
applies to the fault localization. thus, a fault localization technique must termi-
nate in the timely manner. Depending to the size of program and the property
under investigation, model checking techniques can take long time to produce
the result. Delta debugging may also take a long time, because it uses debuggers
extensively.

Scalability As we have seen in this paper, the techniques vary in their scalabil-
ity. The methods based on model checking and symbolic execution, Section ??,
suffer from scalability. That is they cannot be used for large programs. On the
other hand, delta debugging techniques are able to scale better.

Information Usage Each fault localization technique needs some information
from the program for its processing. It consumes this information to infer loca-
tions of faults. There are two dimensions on the information consumption: what
it needs to start with, and what it can exploit to boost its precision or perfor-
mance.

Techniques based on delta debugging, require little knowledge about the
program and specification; they can started from a failing input and passing in-
put, which are usually available. On the other hand, techniques based on model
checking need formal specification of programs to be able to work, which is
unlikely to exist for all programs.

In addition to a program itself, there are many other sources of information
that can be used; e.g. change history, developers, and found errors. Each of
these can be exploited to enhance the fault localization. For example, we may
be able to enhance fault localization by identifying components with complex

behaviors; these components may be identified by their developers or comments
in the program. We have not seen usage of such information in any of techniques
that described in this paper.

9.2 Missing Component

Software faults can be partitioned into two broad categories: wrong algorithmic
component and missing component. While the former has to do with statements
that are faulty (e.g. using wrong operator), the latter characterizes situations
when a piece of program logic is missing (e.g. missing an assignment statement,
or a conditional statement). A study of real faults in some open source project
has shown that the missing component faults constitutes 64% of real faults [18].
Majority of proposed techniques attempt to find the wrong algorithmic compo-
nent faults. Thus, there is a need to devise techniques to address these faults.

References

1. ABBOTT, P. Tricks of the trade. The Mathematica Journal 5, 4 (1995), 27–34.
2. ABREU, R., ZOETEWEIJ, P., AND GEMUND, A. J. C. V. On the accuracy of spectrum-

based fault localization. In Testing: Academic and Industrial Conference Practice and
Research Techniques - MUTATION (TAICPART-MUTATION 2007) (2007), pp. 89–98.
Generated by Odysci - http://www.odysci.com/article/1010112995982027.

3. AGRAWAL, H., DE MILLO, R., AND SPAFFORD, E. An execution-backtracking approach
to debugging. Software, IEEE 8, 3 (may 1991), 21 –26.

4. AGRAWAL, H., AND HORGAN, J. R. Dynamic program slicing. In Proceedings of the
ACM SIGPLAN 1990 conference on Programming language design and implementation
(New York, NY, USA, 1990), PLDI ’90, ACM, pp. 246–256.

5. AGRAWAL, H., HORGAN, J. R., LONDON, S., AND WONG, W. E. Fault localization
using execution slices and dataflow tests. In International Symposium on Software
Reliability Engineering (1995).

6. ALI, S., ANDREWS, J., DHANDAPANI, T., AND WANG, W. Evaluating the accuracy
of fault localization techniques. In Automated Software Engineering, 2009. ASE ’09.
24th IEEE/ACM International Conference on (nov. 2009), pp. 76 –87.

7. ALLEN, E. B., KHOSHGOFTAAR, T. M., AND CHEN, Y. Measuring coupling and cohe-
sion of software modules: An information-theory approach. In Proceedings of the 7th
International Symposium on Software Metrics (Washington, DC, USA, 2001), MET-
RICS ’01, IEEE Computer Society, pp. 124–.

8. ARUMUGA NAINAR, P., CHEN, T., ROSIN, J., AND LIBLIT, B. Statistical debugging
using compound boolean predicates. In Proceedings of the 2007 international sympo-
sium on Software testing and analysis (New York, NY, USA, 2007), ISSTA ’07, ACM,
pp. 5–15.

9. ARUMUGA NAINAR, P., AND LIBLIT, B. Adaptive bug isolation. In 32nd Interna-
tional Conference on Software Engineering (ICSE 2010) (Cape Town, South Africa,
May 2010), P. Devanbu and S. Uchitel, Eds., ACM SIGSOFT and IEEE.

10. BALL, T., AND LARUS, J. R. Efficient path profiling. In Proceedings of the 29th an-
nual ACM/IEEE international symposium on Microarchitecture (Washington, DC, USA,
1996), MICRO 29, IEEE Computer Society, pp. 46–57.

11. BALL, T., NAIK, M., AND RAJAMANI, S. K. From symptom to cause: localizing errors
in counterexample traces. In Proceedings of the 30th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages (New York, NY, USA, 2003), POPL ’03,
ACM, pp. 97–105.

12. BELL, R. M., OSTRAND, T. J., AND WEYUKER, E. J. Does measuring code change
improve fault prediction? In Proceedings of the 7th International Conference on Pre-
dictive Models in Software Engineering (New York, NY, USA, 2011), Promise ’11, ACM,
pp. 2:1–2:8.

13. BELL, R. M., WEYUKER, E. J., AND OSTRAND, T. J. Assessing the impact of using
fault prediction in industry. In Proceedings of the 2011 IEEE Fourth International
Conference on Software Testing, Verification and Validation Workshops (Washington,
DC, USA, 2011), ICSTW ’11, IEEE Computer Society, pp. 561–565.

14. BESZEDES, A., GERGELY, T., FARAGO, S., GYIMOTHY, T., AND FISCHER, F. The dy-
namic function coupling metric and its use in software evolution. In Proceedings of
the 11th European Conference on Software Maintenance and Reengineering (Washing-
ton, DC, USA, 2007), IEEE Computer Society, pp. 103–112.

15. CHILIMBI, T. M., LIBLIT, B., MEHRA, K., NORI, A. V., AND VASWANI, K. Holmes:
Effective statistical debugging via efficient path profiling. In Proceedings of the 31st
International Conference on Software Engineering (Washington, DC, USA, 2009), ICSE
’09, IEEE Computer Society, pp. 34–44.

16. CLEVE, H., AND ZELLER, A. Locating causes of program failures. In Proceedings of the
27th international conference on Software engineering (New York, NY, USA, 2005),
ICSE ’05, ACM, pp. 342–351.

17. DEMILLO, R. A., PAN, H., AND SPAFFORD, E. H. Critical slicing for software fault
localization. ACM Sigsoft Software Engineering Notes 21 (1996), 121–134.

18. DURAES, J., AND MADEIRA, H. Emulation of software faults: A field data study and
a practical approach. Software Engineering, IEEE Transactions on 32, 11 (nov. 2006),
849 –867.

19. GROCE, A., AND VISSER, W. What went wrong: explaining counterexamples. In
Proceedings of the 10th international conference on Model checking software (Berlin,
Heidelberg, 2003), SPIN’03, Springer-Verlag, pp. 121–136.

20. GUPTA, N., HE, H., ZHANG, X., AND GUPTA, R. Locating faulty code using failure-
inducing chops. In Proceedings of the 20th IEEE/ACM international Conference on
Automated software engineering (New York, NY, USA, 2005), ASE ’05, ACM, pp. 263–
272.

21. GYIMÓTHY, T., BESZÉDES, A., AND FORGÁCS, I. An efficient relevant slicing method
for debugging. In Proceedings of the 7th European software engineering conference held
jointly with the 7th ACM SIGSOFT international symposium on Foundations of software
engineering (London, UK, 1999), ESEC/FSE-7, Springer-Verlag, pp. 303–321.

22. HARROLD, M. J., ROTHERMEL, G., WU, R., AND YI, L. An empirical investigation
of program spectra. In Proceedings of the 1998 ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering (New York, NY, USA, 1998),
PASTE ’98, ACM, pp. 83–90.

23. HORWITZ, S., AND REPS, T. The use of program dependence graphs in software engi-
neering. In IN PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE
ON SOFTWARE ENGINEERING (1992), pp. 392–411.

24. JEFFREY, D., GUPTA, N., AND GUPTA, R. Fault localization using value replacement.
In Proceedings of the 2008 international symposium on Software testing and analysis
(New York, NY, USA, 2008), ISSTA ’08, ACM, pp. 167–178.

25. JIANG, L., AND SU, Z. Context-aware statistical debugging: from bug predictors to
faulty control flow paths. In Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering (New York, NY, USA, 2007), ASE ’07,
ACM, pp. 184–193.

26. JONES, J. A., AND HARROLD, M. J. Empirical evaluation of the tarantula automatic
fault-localization technique. In Automated Software Engineering (2005), pp. 273–
282.

27. JONES, J. A., HARROLD, M. J., AND STASKO, J. Visualization of test information
to assist fault localization. In Proceedings of the 24th International Conference on
Software Engineering (New York, NY, USA, 2002), ICSE ’02, ACM, pp. 467–477.

28. JOSE, M., AND MAJUMDAR, R. Cause clue clauses: error localization using maximum
satisfiability. In Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation (New York, NY, USA, 2011), PLDI ’11, ACM,
pp. 437–446.

29. KATZ, I. R., AND ANDERSON, J. R. Debugging: an analysis of bug-location strategies.
Hum.-Comput. Interact. 3, 4 (Dec. 1987), 351–399.

30. KIM, S., ZIMMERMANN, T., WHITEHEAD JR., E. J., AND ZELLER, A. Predicting faults
from cached history. In Proceedings of the 29th international conference on Soft-
ware Engineering (Washington, DC, USA, 2007), ICSE ’07, IEEE Computer Society,
pp. 489–498.

31. LAWRANCE, J., BOGART, C., BURNETT, M., BELLAMY, R., RECTOR, K., AND FLEMING,
S. How programmers debug, revisited: An information foraging theory perspective.
Software Engineering, IEEE Transactions on PP, 99 (2010), 1.

32. LIBLIT, B., AIKEN, A., ZHENG, A. X., AND JORDAN, M. I. Bug isolation via remote pro-
gram sampling. In Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation (New York, NY, USA, 2003), PLDI ’03, ACM,
pp. 141–154.

33. LIBLIT, B., NAIK, M., ZHENG, A. X., AIKEN, A., AND JORDAN, M. I. Scalable statistical
bug isolation. In Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation (New York, NY, USA, 2005), PLDI ’05, ACM,
pp. 15–26.

34. LIU, C., YAN, X., FEI, L., HAN, J., AND MIDKIFF, S. P. Sober: statistical model-based
bug localization. In Proceedings of the 10th European software engineering confer-
ence held jointly with 13th ACM SIGSOFT international symposium on Foundations of
software engineering (New York, NY, USA, 2005), ESEC/FSE-13, ACM, pp. 286–295.

35. MCCONNELL, S. Code Complete, Second Edition. Microsoft Press, Redmond, WA, USA,
2004.

36. NAGAPPAN, N., ZELLER, A., ZIMMERMANN, T., HERZIG, K., AND MURPHY, B. Change
bursts as defect predictors. In Software Reliability Engineering (ISSRE), 2010 IEEE
21st International Symposium on (nov. 2010), pp. 309 –318.

37. OSTRAND, T. J., AND WEYUKER, E. J. Software fault prediction tool. In Proceedings
of the 19th international symposium on Software testing and analysis (New York, NY,
USA, 2010), ISSTA ’10, ACM, pp. 275–278.

38. PAN, H., AND SPAFFORD, E. H. Heuristics for automatic localization of software
faults. Tech. rep., Purdue University, 1992.

39. RENIERES, M., AND REISS, S. Fault localization with nearest neighbor queries. In Au-
tomated Software Engineering, 2003. Proceedings. 18th IEEE International Conference
on (oct. 2003), pp. 30 – 39.

40. REPS, T., BALL, T., DAS, M., AND LARUS, J. The use of program profiling for soft-
ware maintenance with applications to the year 2000 problem. In Proceedings of

the 6th European SOFTWARE ENGINEERING conference held jointly with the 5th ACM
SIGSOFT international symposium on Foundations of software engineering (New York,
NY, USA, 1997), ESEC ’97/FSE-5, Springer-Verlag New York, Inc., pp. 432–449.

41. SANTELICES, R., JONES, J. A., YU, Y., AND HARROLD, M. J. Lightweight fault-
localization using multiple coverage types. In Proceedings of the 31st International
Conference on Software Engineering (Washington, DC, USA, 2009), ICSE ’09, IEEE
Computer Society, pp. 56–66.

42. TAN, L., ZHOU, Y., AND PADIOLEAU, Y. acomment: mining annotations from com-
ments and code to detect interrupt related concurrency bugs. In Software Engineering
(ICSE), 2011 33rd International Conference on (may 2011), pp. 11 –20.

43. THAKUR, A., SEN, R., LIBLIT, B., AND LU, S. Cooperative crug isolation. In Proceed-
ings of the Seventh International Workshop on Dynamic Analysis (New York, NY, USA,
2009), WODA ’09, ACM, pp. 35–41.

44. TREVOR HASTIE, R. T., AND FRIEDMAN, J. The Elements of Statistical Learning Data
Mining, Inference, and Prediction. Springer, 2001.

45. WANG, X., CHEUNG, S., CHAN, W., AND ZHANG, Z. Taming coincidental correctness:
Coverage refinement with context patterns to improve fault localization. In Software
Engineering, 2009. ICSE 2009. IEEE 31st International Conference on (may 2009),
pp. 45 –55.

46. WEISER, M. Program slicing. In Proceedings of the 5th international conference on
Software engineering (Piscataway, NJ, USA, 1981), ICSE ’81, IEEE Press, pp. 439–
449.

47. YILMAZ, C., PARADKAR, A., AND WILLIAMS, C. Time will tell: fault localization using
time spectra. In Proceedings of the 30th international conference on Software engineer-
ing (New York, NY, USA, 2008), ICSE ’08, ACM, pp. 81–90.

48. ZELLER, A. Isolating cause-effect chains from computer programs. In SIGSOFT
’02/FSE-10: Proceedings of the 10th ACM SIGSOFT symposium on Foundations of soft-
ware engineering (New York, NY, USA, 2002), ACM, pp. 1–10.

49. ZELLER, A., AND HILDEBRANDT, R. Simplifying and isolating failure-inducing input.
IEEE Trans. Softw. Eng. 28 (February 2002), 183–200.

50. ZHANG, X., GUPTA, N., AND GUPTA, R. Locating faults through automated predicate
switching. In Proceedings of the 28th international conference on Software engineering
(New York, NY, USA, 2006), ICSE ’06, ACM, pp. 272–281.

51. ZHANG, X., HE, H., GUPTA, N., AND GUPTA, R. Experimental evaluation of using
dynamic slices for fault location. In Proceedings of the sixth international symposium
on Automated analysis-driven debugging (New York, NY, USA, 2005), AADEBUG’05,
ACM, pp. 33–42.

52. ZHANG, X., TALLAM, S., GUPTA, N., AND GUPTA, R. Towards locating execution
omission errors. In Proceedings of the 2007 ACM SIGPLAN conference on Programming
language design and implementation (New York, NY, USA, 2007), PLDI ’07, ACM,
pp. 415–424.

53. ZHANG, Z., CHAN, W. K., TSE, T. H., JIANG, B., AND WANG, X. Capturing propa-
gation of infected program states. In Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering (New York, NY, USA, 2009), ESEC/FSE ’09, ACM,
pp. 43–52.

54. ZIMMERMANN, T., AND ZELLER, A. Visualizing memory graphs. In Software Visual-
ization, S. Diehl, Ed., vol. 2269 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2002, pp. 533–537. 10.1007/3-540-45875-1.

	Automated Fault Localization Techniques; A Survey

