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ABSTRACT

A wide range of code intelligence (CI) tools, powered by deep
neural networks, have been developed recently to improve pro-
gramming productivity and perform program analysis. To reliably
use such tools, developers often need to reason about the behav-
ior of the underlying models and the factors that affect it. This is
especially challenging for tools backed by deep neural networks.
Various methods have tried to reduce this opacity in the vein of
“transparent/interpretable-AI”. However, these approaches are often
specific to a particular set of network architectures, even requiring
access to the network’s parameters. This makes them difficult to use
for the average programmer, which hinders reliable adoption of neu-
ral CI systems. In this paper, we propose a simple, model-agnostic
approach to better understand the models used in CI systems, by
drawing on software debugging research, specifically delta debug-
ging. Our approach, Sivand, uses simplification techniques that
reduce the size of input programs of a CI model while preserving
the predictions of the model. We show that this approach yields
remarkably small outputs and is broadly applicable across many
model architectures and problem domains. We find that the models
in our experiments often rely heavily on just a few syntactical fea-
tures in input programs. The results support Sivand’s effectiveness
in producing useful insights into neural CI systems’ predictions
and more generally learned behavior.
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1 INTRODUCTION

Deep learning has increasingly found its use in state-of-the-art
tools for code intelligence (CI), thriving in defect detection, code
completion, type annotation prediction, and many more [13, 14, 37].
This growing body of work benefits from the remarkable generality
of deep learning models: they are universal function approxima-
tors [17]; i.e., they can represent any function, not just linear ones.
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In practice, deep neural network methods appear to learn rich repre-
sentations of raw data through a series of transforming layers [22].
This substantially reduces the burden of feature engineering in
complex domains, including vision, natural languages, and now
software.

Given this capacity, learned models seem capable of discovering
many non-trivial properties about the source code, even ones that
are beyond the reach of traditional, sound static analyzers. As such,
they can uncover bugs in code that is not syntactically invalid, but
rather “unnatural” [28]. Although this may be reminiscent of a
software developer’s ability to intuit properties about programs,
there is a sharp contrast in interpretability: developers can explain
their deductions and formulate falsifiable hypotheses about the
behavior of their code. Deep neural models offer no such capability.
Rather, they remain stubbornly opaque “black boxes”, even after
years of research on interpreting their behavior[23].

This opacity is already a concern in non-critical applications,
where the lack of explainability frustrates efforts to build useful
tools. It is substantially more problematic in safety- and security-
critical applications, where deep learners could play a key role
in preventing defects and adversarial attacks that are hard to de-
tect for traditional analyzers. At present, deep neural models can
change their predictions based on seemingly insignificant changes,
even semantic-preserving ones [24, 27], and fail to provide any
traceability between those predictions and the code.

In this paper, we propose a simple, yet effective methodology for
a better understanding of the behavior of neural models in software
engineering applications. Our approach is model-agnostic: rather
than study the network itself, our approach relies on the input
reductions using delta debugging [39]. The main insight is that by
removing irrelevant parts to a prediction from the input programs,
we can better understand important features in the model inference,
consequently.

Given a prediction, correct or not, we show that model inputs
can often be reduced tremendously, even by 90% or more, while
returning the same prediction. Importantly, our work is the first to
show that these reductions in no way require the inputs to remain
natural, or depending on the task, in anyway valid. This allows us to
generate significantly simpler explanations than related work [36].
Our results hold on four neural architectures across two popular
tasks for neural CI systems: code summarization, using Code2Vec
and Code2Seq [4, 5], and variable misuse detection, with RNNs and
Transformers [15]. We show that our minimal programs are related
to, but not fully explained by the “attention” [35] in models that use
it. Overall, our findings clearly support that current models, when
trained on a single task such as ours, have very little care for the
readability of functions as a whole; rather, they overwhelmingly
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Original

@Override

public void onCreate(Bundle savedInstanceState ){

super.onCreate(savedInstanceState );

setContentView(R.layout.fragmentdetails );

}

Minimized

d onCreate(u ve){s.onCreate ();}

Figure 1: Example of an original and minimized method in

which the target is to predict onCreate as the method name.

The minimized example clearly shows that the model (i.e.

Code2Vec) has learned to take short-cuts, in this case look-

ing for the name in the function’s body.

focus on very small, simple syntactic patterns that provide salient
clues to the required output.

2 MOTIVATING EXAMPLE

We first present an example to illustrate our approach and the
insights that it can provide about the prediction of neural code in-
telligence models. Figure 1 shows a code snippet from the Method-
Name dataset. Here, the goal is to infer the method name from
the method body. The Code2Vec model predicts the method name
onCreate, which is indeed correct. Unfortunately, it is hardly clear
why; Code2Vec considers dozens to hundreds of “paths” in the
methods’ AST (abstract syntax tree) and struggles to identify which
ones are most informative – indeed, in our results, we find its built-
in “attention” based explanations to only poorly correlate with
essential tokens.

Of course, a developer looking at this program could provide sev-
eral explanations why this is intuitively correct. For one, themethod
invocation super.onCreate strongly suggests that this method over-
rides a method with the same name in the parent class, as such calls
are usually made to the overridden method. This guess does not
need to be informed by just that call; if the developer is familiar
with Android development, they might recognize this code as work-
ing with Android APIs, and perhaps even know that the Activity1
in Android systems provides onCreate method to initialize a user
interface in which developers can place their UI objects on the
interface window using the setContentView method.

Turning back to the Code2Vec model, it does not offer any of
these explanations, but rather an output based on a complexmixture
of its inputs and millions of parameters. This lack of transparency is
problematic for practitioners and researchers alike, who are unlikely
to accept recommendations without evidence, especially in cases
that are not so trivial. For instance, does Code2Vec note and use the
.onCreate invocation? If so, does it specifically leverage the inheri-
tance relation? And/or, does it use any of the more Android-specific
reasoning about the presence of the setContentView invocation?

Our approach, Sivand, can better provide compelling answers
to these questions. The second half of Figure 1 shows the smallest
possible version of this program that is still syntactically valid
(a necessity for Code2Vec) and yields the same prediction. Any
1https://developer.android.com/reference/android/app/Activity

evidence of this method relating to Android development has been
thoroughly scrubbed; all that remains is the single onCreatemethod
call – even the mention of super has been minified to a single
character ‘s’.

Table 1 shows some steps that yielded this reduced program
in greater detail. Sivand works by iteratively reducing the size of
the input program by the Code2Vec model while preserving the
prediction output at every step. We continue this reduction until
the program is either fully reduced (to its minimal components,
depending on the task) or any further reduction would corrupt the
prediction. Each row in this table shows the intermediate, most
reduced program that still yields the same prediction as the original
input program in the first row, as well as the probability (“score")
of that prediction for reference. A close examination of the inter-
mediate results suggests that the savedInstanceState parameter
and the setContentView call, indicative of Android development,
is reduced with almost no penalty to the score. Other such cues
follow soon after. In step 10, the super call, which represents cues
of inheritance, is similarly pruned, and here too with virtually no
penalty to the score. The subsequent steps largely serve to remove
a few miscellaneous characters; these compromise the prediction
score somewhat, perhaps because the method is increasingly irreg-
ular. Regardless, as long as onCreate is present, the score remains
high, ample to sustain the prediction. Evidently, even if the model
noticed the Android-related features, it certainly did not need them,
nor even the mention of super; all that remains is the presence of
another method call onCreate.

That Sivand can elucidate these insights is a mixed blessing
and curse: its model-agnostic approach effectively lets us bypass
interpreting the millions of parameters and complex inner work-
ings of the studied models, and yields remarkably short programs
that make the original predictions easier to comprehend. The use
of delta debugging [39] is a novel approach to such model inter-
pretation in general, and its intermediate steps evidently provide
useful insights into the model’s “thinking”. At the same time, our
approach is a notable departure from more common neural attribu-
tion methods (e.g. [33]), which typically try to find the part of the
input that was most informative, but do not necessarily assume that
all other parts could be removed entirely. Sivand, on the other hand,
frequently corrupts its input programs almost beyond recognition.
That the assessed models continue to perform so well during this
process (Section 5), across multiple code intelligence tasks, is in-
dicative of these models’ overreliance on small features and lack of
holistic interpretation of their input programs. We discuss various
interpretations and implications of this phenomenon in Section 6.

3 SIVAND METHODOLOGY

This section describes Sivand, a methodology for better understand-
ing and evaluating CI models. This methodology is model-agnostic
and can be used for any CI model, however, in this paper, we will
focus on the CI models that use neural networks for training, as
their lack of transparency warrants more attention.

3.1 Notation

We use 𝑝𝑜 to denote the original input to the neural CI model and
𝑝𝑟 to denote the simplified input. LetM be an arbitrary CI model,

https://developer.android.com/reference/android/app/Activity
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Table 1: Reduction of a program while preserving the predicted method name OnCreate by the Code2Vec model.

Step(s) Score Code

1 1.0

@Override

public void onCreate(Bundle savedInstanceState ){

super.onCreate(savedInstanceState );

setContentView(R.layout.fragmentdetails );

}

- - ...

4 1.0 void onCrea te ( Bundle s a v c e S t a t e ) { super . onCrea te ( s n c e S t a t e ) ; s e tConten tV iew ( R . l a y ou t . f r a gm e n t d e t a i l s ) ; }
7 1.0 void onCreate(Bundle savceState) { super.onCreate(snceState ); setContentView(s); }

10 0.99 void onCreate(Bu savate) { s.onCreate(snceState ); setContentView(s); }

13 0.98 void onCreate(Bu savate) { s.onCreate(snte); View(s); }

15 0.62 void onCreate(Bu savate) { s.onCreate(snte );(s); }

18 0.46 id onCreate(Bu save) { s.onCreate(snte );; }

27 0.86 d onCreate(u ve){s.onCreate(e); }

- - ...

29 0.79 d onCreate(u ve){s.onCreate ();}

and 𝑝 an arbitrary input program, then 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(M, 𝑝) denotes
the prediction result ofM given 𝑝 , and |𝑝 | the resultant size of 𝑝 .
Conceptually, we define size as the number of atomic parts that 𝑝
has. In the evaluation of this approach, we use token as the atomic
part, hence |𝑝 | denotes the number of tokens that are returned by
the lexer of the language.

The high-level goal of Sivand is to produce a reduced input
program 𝑝𝑟 that is smaller than the size of 𝑝𝑜 , i.e., |𝑝𝑟 | < |𝑝𝑜 | (and
ideally |𝑝𝑟 | ≪ |𝑝𝑜 |), such that if 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(M, 𝑝𝑜 ) = 𝑟 , 𝑝𝑟 still
retains the same prediction 𝑟 : 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑀, 𝑝𝑟 ) = 𝑟 . While such
a reduction process can in principle terminate under many kinds
of conditions (and even return the original input program), we are
interested in finding the so-called “1-minimal” input program [39],
where no single part of 𝑝𝑟 can be removed without losing some
desired property of 𝑝𝑜 .

3.2 Workflow in Sivand

Figure 2 depicts a high-level view of the workflow in the proposed
methodology, i.e. Sivand. Given a input program, Sivand uses the
DD module to reduce the size of the program. The DD module
uses delta debugging to produce various candidate programs by
removing various parts of the original input program and itera-
tively searches for the 1-minimal input program that produces the
same prediction as the original input program. Some of the gen-
erated candidates might be invalid programs; that is, they do not
follow the syntax of the programming language that the program
is written in. Therefore, since some CI models require inputs to be
syntactically valid; to enhance the efficiency, Sivand filters out the
invalid candidates that do not parse only for those CIs.

3.3 Reduction Algorithm

Algorithm 1 describes the delta debugging algorithm proposed
by Zeller and Hildebrandt [39] and later extended by Groce et al. [11,
12], that is adapted to our task for finding minimal input programs.
At a high level, the delta debugging algorithm iteratively splits

Algorithm 1 High level algorithm for 𝑑𝑑𝑚𝑖𝑛 delta debugging. The
algorithm is initiated by 𝑑𝑑𝑚𝑖𝑛(M, 𝑝𝑜 , 2).
Input: M, CI model, 𝑝 , input program, and𝑛, number of partitions.

Split 𝑝 into 𝑛 partitions to build Δ1, ...,Δ𝑛
if ∃Δ𝑖 such that 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(M, 𝑝𝑜 ) == 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(M, 𝑝) then
𝑑𝑑𝑚𝑖𝑛(M, Δ𝑖 , 2)

else if ∃Δ𝑖 s.t. 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(M, 𝑝𝑜 ) == 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(M, 𝑝 − Δ𝑖 )
then

𝑑𝑑𝑚𝑖𝑛(M, 𝑝-Δ𝑖 , 𝑚𝑎𝑥 (𝑛 − 1, 2))
else if 𝑛 < |𝑝 | then
𝑑𝑑𝑚𝑖𝑛(M, 𝑝, 𝑚𝑖𝑛(2𝑛, |𝑝 |))

else

return 𝑝

end if

a input program into multiple candidate programs by removing
parts of the input program. It uses 𝑛 to specify the granularity of
parts. That is, for an input program 𝑝 and granularity level 𝑛, it
generates 2𝑛 candidates:𝑛 candidates by splitting 𝑝 into𝑛 partitions
Δ1, . . . ,Δ𝑛 , and another 𝑛 candidates by computing 𝑝 −Δ1, . . . , 𝑝 −
Δ𝑛 . At each of these steps, the algorithm checks if any resulting
candidate program 𝑝 satisfies the desired property, which here
means preserving the prediction of the model on the original input
program, i.e., 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(M, 𝑝𝑜 ) = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(M, 𝑝), where 𝑝𝑜
denotes the original input program. When the algorithm finds a
candidate satisfying the property, it uses the candidate as the new
base 𝑝 to be reduced further; otherwise, the algorithm increases
the granularity, i.e., 𝑛 for splitting, until the algorithm determines
that the 𝑝 is 1-minimal. The time complexity of the delta debugging
algorithm is quadratic, i.e. 𝑂 (𝑛2) in the size of the input program,
i.e. 𝑝𝑜 .
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Figure 2: Workflow of Sivand.

4 EXPERIMENTAL SETTINGS

Our proposed methodology is task- and program agnostic. We
assess these properties by studying two tasks, and two models on
each of these. This section outlines all of these.

4.1 Subject Tasks

We study two popular code intelligence tasks that have gained
interest recently: method name prediction (MethodName) [3–5],
and variable misuse detection VarMisuse [2, 15, 34].

4.1.1 MethodName. In the method name prediction task, the
model attempts to predict the name of a method, given its body.
We study two commonly used, and similar, neural approaches for
this task: Code2Vec [5], and Code2Seq [4]. Both these approaches
rely on extracting “paths” in the method’s AST, that connect one
terminal (token) to another, which are mapped to vector embed-
dings. These paths are enumerated exhaustively and used by the
two models in various ways. The premise is that these paths consol-
idate both lexical and syntactic information, thus providing more
benefit than strictly token-based models, such as RNNs.

In Code2Vec [5], each path, along with its source and destina-
tion terminals, is mapped into a vector embedding that is learned
jointly with other network parameters during training. The sepa-
rate vectors of each path-context are then concatenated to a single
context vector using a fully connected layer. An attention vector
is also learned with the network, which is used to aggregate the
path-context representations into a single code vector representing
a method body. The model then predicts the probability of each
target method name given the code vector of the method body via
a softmax-normalization between the code vector and each of the
embeddings of a large vocabulary of possible method names.

The Code2Seq [4] model uses an encoder-decoder architecture
to encode paths node-by-node and generate labels as sequences
at each step. In Code2Seq, the encoder represents a method body
as a set of paths in AST where individual paths are compressed to
a fixed-length vector using a bi-directional LSTM, which encodes
paths node-by-node with splitting tokens into sub-tokens. The
decoder again uses attention to select relevant paths while decoding,
and predicts sub-tokens of a target sequence at each step when
generating the method name.

4.1.2 VarMisuse. A variable misuse bug [2] occurs when the in-
tended variable used at a particular location of the program dif-
fers from the actual variable used. These mistakes are commonly
found in real software development [21], and naturally occur as
“copy-paste bugs”. We specifically experiment with the joint bug

localization and repair task of VarMisuse [34]: given a tokenized
sample (buggy or correct), the task is to predict two pointers into
these tokens: a) localization: one pointer to indicate the location of
the token that contains the wrong variable, or some default token if
no bug exists, and b) repair: another pointer to indicate the location
of any token that contains the correct variable (ignored for bug-free
samples).

We specifically use the dataset released by Hellendoorn et al.
[15], whose repository also includes a number of models that be
applied directly to this dataset.2 From these, we use the following
two generic neural approaches: RNN, and Transformer. The RNN
model here is a simple bi-directional recurrent architecture that
uses GRU as the recurrent cell, and has 2 layers, and 512 hidden di-
mensions. The Transformer model is based entirely on attention,
in which the representations of a snippet’s tokens are repeatedly
improved through combination with those of all others in the func-
tions. We use the parameters from the original Transformer [35],
with 6 layers, 8 heads, and 512 attention dimensions.

4.2 Datasets and Models

Table 2 summarizes the performance characteristics of the CI mod-
els that we use in our experiments which is on par with the ones
reported in the original studies.

For the MethodName task, we use the Java-Large dataset3
to train both the Code2Vec and Code2Seq models. This dataset
contains a total of 9, 500 Java projects from GitHub, partitioned
into 9, 000 projects as training data, 200 projects as validation data,
and 300 projects to test on. Overall, it contains about 16Mmethods.

For the VarMisuse task, we use the Py150 corpus 4 to train both
the RNN and Transformer models. This dataset contains functions
from a total of 150K Python files from GitHub, and are already
partitioned into 90K files as training set, 10K files as validation
set, and 50K files as testing set. Each function is included both as
a bug-free sample, and with up to three synthetically introduced
bugs, yielding about 2 million samples in total.

4.3 Sample Inputs

To evaluate the effectiveness of Sivand, we choose both correctly
and incorrectly predicted samples from the test set of these datasets.
a) Correctly predicted samples:

2https://github.com/VHellendoorn/ICLR20-Great
3https://github.com/tech-srl/code2seq#java
4https://github.com/VHellendoorn/ICLR20-Great#data

https://github.com/VHellendoorn/ICLR20-Great
https://github.com/tech-srl/code2seq#java
https://github.com/VHellendoorn/ICLR20-Great#data
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Table 2: Characteristics of the trained models.

Model Dataset Precision Recall 𝐹1-Score

Code2Vec Java-Large 45.17 32.28 37.65
Code2Seq Java-Large 64.03 55.02 59.19

Model Dataset

Localization

Accuracy

Repair

Accuracy

Joint

Accuracy

RNN Py150 63.56 63.22 52.18
Transformer Py150 73.39 76.79 66.05

• For the MethodName task, we choose 1000 correctly pre-
dicted samples for token-level reduction, where the smallest
unit of reduction is a token, and 500 correctly predicted sam-
ples for character-level reduction, where the smallest unit is
a character. Running character-based reduction was slow as
the search space of possible reductions is much larger, hence
the lower total. We use the same randomly selected samples
for both Code2Vec and Code2Seq models.

• For VarMisuse task, we choose 2000 correctly predicted
samples: 1000 from buggy samples, and 1000 bug-free ones.
For the selected buggy samples, models correctly predicted
both the location pointer and repair targets. For the selected
non-buggy samples, models correctly identify as no-bug
by prediction special 0-index. We use the same randomly
selected samples for both RNN and Transformer models,
thus ensuring that we selected only samples on which their
predictions were both correct.

b) Wrongly predicted samples:
• For the MethodName task, we choose 500 samples where
the models’ predicted method name is wrong. Because of the
time limit, we randomly select 500 different wrong samples
(instead of the same 1000 wrong samples) for Code2Vec and
Code2Seq, and we only use token-level reduction.

• For VarMisuse task, we choose 1000 buggy samples where
the predicted location pointer is wrong but models correctly
predict the repair targets. Because of the time limit, we ran-
domly select different wrong samples for RNN and Trans-
former.

4.4 Metrics

Here, we define the metrics that we measure in the experiments as
follows.

We use size reduction ratio of input programs to evaluate the
effectiveness of Sivand in reducing the size of the original input
programs. For the input program 𝑝𝑜 , and its reduced counterpart 𝑝𝑟 ,
size reduction ratio (or Reduction%) is calculated as 100 ∗ |𝑝𝑜 |− |𝑝𝑟 |

|𝑝𝑜 | .
All neural network models in our work are capable of making

probabilistic predictions, in which a probability distribution is in-
ferred over either tokens (for VarMisuse) or method name (parts)
(for MethodName). We can leverage these prediction probabilities
to compute a “prediction score”, that indicates the confidence of
the model in a particular prediction. When we reduce the inputs,
we track changes to these scores on the original targets; the reduc-
tion is stopped once the model ceases to predict the correct output,
which generally comes with a drop in the score (probability) of
that target. To assess whether our models lose certainty during this

Figure 3: Initial vs. final size of reduced programs in our

dataset, measured in tokens. Note the log-scaling on both

axes.

reduction phase, we study the changes in the distribution of these
scores relative to program reductions.

Hardware. We used a server with an Intel(R) Xeon(R) 2.30GHz
CPU and a single NVIDIA Tesla P100 GPU with 12GB of memory
to run the experiments in this study.

5 RESULTS

In this section, we present the results of our experiments where we
seek to answer the following research questions.
RQ1 How much can typical input programs be reduced?
RQ2 What factors influence reduction potential?
RQ3 Do reduced programs preserve the tokens most used by

attention mechanisms?
RQ4 What is the computational cost of Sivand?
Note that for brevity, in this section, unless otherwise noted, the

results belong to token-level reduction of correct predictions, and
in VarMisuse models, buggy programs.

5.1 RQ1: Length Reduction

The goal of Sivand is to reduce the size of programs as much as
possible to help uncover features that highly impact the predic-
tion. Figure 3 shows its capacity to do so in terms of the size of
the original programs versus the reduced programs, measured in
tokens. This plot aggregates the results of 1,000 such reductions
in which each program is reduced until just before its prediction
changes. In this, and similar figures, we show the LOESS trend to
amortize that large volume of data points (also shown with low
opacity). The confidence intervals on these trends are generally
very tight and mostly omitted, except where informative.

We find this relation to be mostly linear across all our datasets
and models, with the final program containing 2 to 5 times fewer
tokens than the initial one. Figure 4 provides an alternative view,
showing the achieved reduction as a percentage of the input pro-
gram size; evidently, program reduction is somewhat easier on
larger programs, perhaps because those are more redundant.

These figures alone suggest that the Sivand can reduce a large
portion of the input programs, but we found that the true reduc-
tion is more substantial: in both datasets, the maximum possible
reduction is limited, in the VarMisuse case by the need to preserve
all variable occurrences (which are error and repair targets), and
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Figure 4: Percentage of tokens reduced vs. initial program

size in the various models studied. Note the log-scaling on

the x-axis.

Figure 5: Tokens remaining relative to the minimum possi-

ble reduction, in the VarMisuse task. Note the log-scaling

on both axes.

in the MethodName case by requiring the program to be syntacti-
cally valid (which requires keeping at least some syntactic tokens).
The true minimum is less tractable for the latter dataset, but when
we subtract the irreducible portion from the former, we found the
relation shown in Figure 5. Interestingly, for most programs, this
trend was nearly constant, especially for the RNN, which on average
preserves just a few “extra” tokens. The Transformer, meanwhile,
appears to be especially reliant on additional syntax on larger pro-
grams, although still just a fraction of the original (some 5% of
non-essential tokens). In other words, both models require nearly
no additional syntax than just the variable names to make their
predictions.

The “Reduction(%)” columns in Table 3 provides details of the
ratio of reduced tokens to the number of maximum allowed tokens
in the models. It shows that our Sivand could remove more than
10% of tokens from each input programs, on average, it removes
62.39%, 61.22%, 93.61%, and 89.43% of the maximum allowed
tokens of the original inputs in Code2Vec, Code2Seq, RNN, and
Transformer models, respectively. Also in some cases, Sivand was
able to remove all or almost all of the maximum allowed tokens and
isolate the important features. This substantial reduction allows to
better understand and pinpoint important features in the prediction
of the models.

Figure 6: The final score of maximally reduced programs

(immediately before changing predictions) vs. the degree of

reduction.�




�

	
Observation 1: Sivand can reduce the input programs sig-
nificantly: on average, more than 61% in MethodName
models, and more than 89% in VarMisuse models. Different
neural architectures show slightly different behaviors, with
Transformers permitting less reduction than RNNs.

5.2 RQ2: Factors Impacting Reduction

We next study a range of factors that impact, and are impacted by
our program reduction approach, to better understand its effect.

Impact on prediction score: Figure 6 tracks the final prediction
score against the fraction of the program that was reduced, with
inter-quartile ranges shaded (“buggy” samples only for VarMisuse).
Recall that the reduction process halts when any further reduction
would change its prediction, so it is expected that scores remain
modestly high (although not necessarily above 50%). The Code2Vec
and Code2Seq models, and to a lesser extent the Transformer
(Transformer), display pronounced “tipping point” behavior, in
which the final reduction step still preserved relatively high proba-
bilities while the immediate next step would have to drop at least
below 50%. Note that most samples started out with a score of
almost exactly 100%, regardless of models; thus, the difference be-
tween the initial and final score is not especially informative. The
degree of reduction does not appear to impact the prediction scores
much; only for the RNN model on the VarMisuse task do we see a
slight downwards trend among input programs that could not be
reduced by much, usually smaller ones. We found similarly little
correlation with the input and final reduced program sizes. This
further reinforces that just one or a few tokens make the difference
between a confident prediction and a misprediction.

Character vs. token level: On the MethodName dataset, we addi-
tionally studied character-level delta debugging (besides the token-
level default). This has the potential to reduce inputs beyond what
is possible with token level models, and Figure 7 confirms that
it frequently does: this based approach is able to remove another
10-20% of the characters in the input program, thus yielding shorter,
and potentially more informative reductions (such as the one in
Figure 1).

Incorrect predictions: Finally, we analyzed whether models could
reduce evidence for incorrect predictions as well: so far, all our
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Figure 7: Character vs. token-based model reduction poten-

tial on the MethodName task, both compared in terms of

total characters reduced. Note the log-scaling on the x-axis.

analysis focused on correctly predicted samples, but of course, in
practice all these models regularly make mistakes. We can extract
the reduced programs for these mispredictions in much the same
way, by setting the goal for Sivand to preserve the incorrect target
while reducing the program. Here, we found basically no effect:
the correct and incorrect predictions could on average (across all
models) be reduced by 62.9% and 64.8% respectively. Similarly, this
did not seem to correlate much with the initial program size for any
of our models. Thus, it appears that the models do not differentiate
in terms of the evidence required to mispredict: correct or not, the
models base their prediction on small parts of the input program.

5.3 RQ3: Similarity Between Attention &

Reduction

Attention mechanism [35] in neural networks attempts to capture
the important features in the input and directly connect them to
the output layer to increase the impact in the prediction and im-
prove the performance of neural networks and accelerate training.
Intuitively, attention captures the important features in the input
programs; therefore, the number of features shared between Sivand
and attention can indicate the effectiveness of the approach for re-
taining important features.

To evaluate the similarity between tokens in reductions and
attention, we apply the Sivand to reduce the input program 𝑝𝑜 to
𝑝𝑟 . Let 𝑇𝑑𝑑 denotes the set of tokens in 𝑝𝑟 , and 𝑘 is the length of
𝑇𝑑𝑑 . To evaluate how much the set of features retained by Sivand
overlap with the features used in the attention mechanism, for each
𝑝𝑜 , we then collect the set of tokens, 𝑇𝑎𝑡𝑡𝑛 in the original input
programs that receives high attention score. For a fair comparison,
we select almost the same size of attention tokens as in the reduced
program. From Transformer model, we get the attention score for
each token, hence, we select top-𝑘 tokens as𝑇𝑎𝑡𝑡𝑛 . However, for the
Code2Vec and Code2Seqmodels, we get an attention score for each
path between two terminal nodes in the program’s AST. Therefore,
we instead repeatedly choose high attention paths and collect all
nodes until we found 𝑘 distinct nodes. Finally, we calculate the
similarity between the tokens in the reduced input program and
the attention mechanism by computing |𝑇𝑎𝑡𝑡𝑛∩𝑇𝑑𝑑 |

|𝑇𝑑𝑑 | .
Figures 8 and 9 show the similarity between the tokens in the at-

tention and reduction in Transformer model. The results suggest
that in the majority (in more than 550 cases) of the non-buggy input

Figure 8: Percentage of common tokens between attention

and reduced input programs in Transformer for buggy in-

puts.

Figure 9: Percentage of common tokens between attention

and reduced input programs in Transformer for non-

buggy inputs.

programs 𝑇𝑎𝑡𝑡𝑛 and 𝑇𝑑𝑑 fully match, and in buggy input programs
there is a large overlap, majority over 80%match. According to the
column ‘Common(%)’ in Table 3, we can see that the Code2Vec and
Code2Seq also have an average overlap over 60% and 70%, respec-
tively. Note that RNN in this experiment does not use attention.�
�

�
�

Observation 2: On average, a large portion of tokens (be-
tween 60% and 80%) are shared between attention tokens
and tokes retained by the reduction.

5.4 RQ4: Computational Cost

Column “Time” in Table 3 shows the average time spent on re-
duction of the input programs. The time for reduction of the pro-
gram inputs in VarMisuse task was lower than four seconds, while
the average time needed for reducing an input program in the
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Table 3: Summary of reduction results in correctly predicted samples.

Task Model # Sample

# Tokens Reduction (%) Common (%) # DD Pass (Average) Time (second)

Min Avg Max Min Avg Max Min Avg Max Total Valid Correct Min Avg Max

MethodName Code2Vec 1000 19 76.08 300 15.38 62.39 98.28 21.43 63.97 93.33 351.22 37.01 33.75 29.44 106.32 714.56
Code2Seq 19 76.08 300 11.11 61.22 96.88 36.84 72.57 95.00 355.01 37.60 33.60 13.99 59.48 216.14

VarMisuse RNN 2000 13 82.41 501 29.41 93.61 100 - - - 237.32 43.53 30.57 0.13 3.68 77.57
Transformer 13 82.41 501 20.00 89.43 100 41.67 85.85 100 241.48 47.01 29.57 0.11 2.99 108.67

Original program:

def modified_time(self , name):

try:

file = open(self._path(mtime))

mtime = float(file.readlines ()[2])

file.close()

except:

mtime = None

return mtime

RNN minimized example:

self , name)

file(self._path(mtime)

mtime(file()

file

mtime

return mtime

Transformer minimized example:

def modified_time(self , name)

file(self(mtime

mtime = file

file

mtime

mtime

Figure 10: An example of two models learning different

kinds of shortcuts. The misused variable is ‘mtime’ (in red),

incorrectly passed in place of ‘name’ on line 3 of the original

snippet.

MethodName task was around 60 and 107 seconds in Code2Seq
and Code2Vec models, respectively.

The columns under “#DD Pass” suggest that the search for mini-
mal inputs in MethodName included creating and trying slightly
more than 350 intermediate results in the delta debugging, wherein,
on average, around 37 of them were syntactically correct and 33
produced the same prediction as to the original input program.
Similarly, in models related to VarMisuse, the reduction takes be-
tween 237 and 241 on average from which around 30 intermediate
reduced programs produce predictions similar to the original input
program.�
�

�
�

Observation 3: Input program reduction based on tokens
is efficient and can reach the minified input with the same
prediction in relatively small number steps.

Artifacts. We will release our code and datasets upon accep-
tance.

6 DISCUSSION

The central motivation for using linguistics-inspired models on
software has long been that source code is in a sense “natural”;
that is, it contains repetitive, predictable patterns much like natural
text [16]. Models that leverage this intuition have evolved from
simple 𝑛-gram based models to complex neural networks, such as
those used in this paper in recent years, and become applicable to
(and successful at) a wide range of coding tasks. Yet, they are still
built and motivated with the same core premise of learning from
programs in their entirety (punctuation and all) and in lexical order.
Recent results have already begun to suggest that, in practice, these
models may not be using much of their input programs for at least
one task [36]; however, this still focuses on otherwise natural, only
simplified programs.

Our method makes no attempt at preserving any meaning or
validity of the original program; we purely focus on the smallest
amount of data with which our models could suffice. This allows
us to show a new, stronger result: these four models across two
tasks appear almost entirely indifferent to the naturalness of the
provided code snippets – remove as much as 90% of tokens and
both their predictions, and their confidence therein remain almost
unchanged (Figure 6). We discuss the reasons and implications of
this observation using several examples in the remainder of this
section.

6.1 Explanations vs. Shortcuts

Figure 10 shows an example of a code snippet and its minified
by an RNN and a Transformer model respectively. In this case,
the (synthetically induced) error is fairly obvious; mtime is passed
to the _path call where name should be. If given the task to find
such a bug, a programmer might notice this particular use-before-
definition bug, which could then be explained with a relatively small
portion of the function, perhaps involving the unused parameter
name and mtime’s use before its assignment. Looking at the two
minified programs, we see traces of these same explanations: the
RNNmodel, which prioritizes lexically local patterns [15], primarily
preserves the part of the program where mtime is passed to _path –
an unlikely combination given that name is in the immediate context.
The Transformer, meanwhile, prefers to focus on the subsequent
assignment to mtime, which is out of place given its preceding use.

However, the existence of a short explanation does not naturally
imply that much of the program is unnecessary, as it apparently
does to our models. The two minified programs are arguably much
harder to read than the original – especially as our model would
see them, without the original for reference, or the indentation
that we added here – yet our models seemed to have no more
trouble predicting from them than the original. It is evident that
our models have learned to take shortcuts: they predominantly
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leverage simple syntactic patterns, quite literally to the exclusion
of almost all else. Our broader results show that this behavior is
ubiquitous and extends across models and tasks (section 5).

These shortcuts still capture meaningful, natural programming
patterns. Neither failing to use a parameter, nor the assignment
after use,5 are necessarily syntactically invalid, but our models have
clearly learned that they are sufficiently irregular to contemplate a
bug. What is remarkable about our findings is not the absence of
“naturalness" as a whole, but the absence of macro-level naturalness.
Our models appear to have little to no care for the overall structure
and content of the function, just for the presence or absence of
specific patterns therein.

6.2 Ramifications for Deep Learning

Do our results then imply that deep learners are, in a sense, frauds,
at least in software engineering applications? Not quite: it is well
known that machine learners, neural networks especially, prefer
to find simple explanations of their training data [18], which often
hinders their generalizability. The models in our case are doing
nothing less: they are presented with a single, often obvious task
and learn to solve it (arguably) as efficiently as possible. That does
not invalidate the quality of their learning: in practice, there are
myriad patterns to heed when predicting a vocabulary of hundreds
of thousands of method names, or finding arbitrary variable misuse
bugs in millions of functions. One interpretation of our results
is that our models arrive at a set of simple “explanations” that
encompasses nearly all these cases, such as how a variable should
not be used before its assignment. This vocabulary is still large and
diverse, so it remains a significant challenge for models to discover
– there are good reasons why model performance can differ vastly
even on simple tasks [15].

We saw these differences in action, too: Transformer models
are substantially better at leveraging “global” information from
throughout the function than RNNs, which are largely (lexically)
“local”. Correspondingly, we saw that the latter permitted substan-
tially more reduction of input programs, anecdotally because it
mainly preserved features in the immediate context of the bug’s
location. Note that this is not a strength of the RNN: we are reduc-
ing programs to find out how much evidence these models used
in their predictions. The ideal is neither the complete program nor
virtually none of it.

Overall, the apparent indifference to macro-level naturalness
(that functions as a whole are complete and well-formatted) is
troubling. Much like prior findings, our demonstration that models
rely on just a few features of their input naturally implies that they
are highly vulnerable to perturbations in those inputs [7, 36]. A
natural question may be: what might prompt them to read code
more holistically? One answer may come in the form of multi-task
learning, in which a single model is trained on a wide variety of
tasks [20]. In our analyses, the models learned those salient patterns
that helped achieve their singular objective; a mixture of diverse
objectives might prevent such shortcuts altogether. Whether and
how this works in practice is an open question. One risk may be
that similar types of shortcuts are useful for many tasks, especially
those based on synthetically generated flaws – a common practice

5The variable might be a field.

in our field. If so, our approach should be able to elucidate this,
and may well be able to serve more generally as an indicator of
the complexity of a task and/or the degree of information used by
a model, by using visualizations such as Figure 4 that show the
amount of input data required to accomplish a task on average.

6.3 Accessible Prediction Attribution

Prediction attribution in deep learners is a fast growing field, that
attempts to relate the prediction of a neural network to a part of
its input [33]. Most current attribution approaches either require
access to the trained model in full (“white-box” methods), including
its architecture and (hyper-)parameters, or try to approximate them,
e.g., [31, 32].The methodology based on reduction that we used in
this paper does not require any knowledge of either architecture
or hyper-parameters of the models; it can be applied in a complete
black-box fashion. This both makes it applicable to cases where in-
ternal information of models is unavailable, e.g. proprietary models,
but also substantially eases its use. Deploying our model to a new
pre-trained model only required knowing minimal constraints on
the input (which tokens may not be reduced; whether the program
must continue to be parseable), which are usually readily accessible.

Moreover, current techniques in attribution and transparency
usually require a certain level of knowledge about the characteris-
tics of learning algorithms and reasoning about themodel behaviors,
which the average practitioner may not have sufficient time to ac-
quire. We speculate that the application of Sivand is thus easier
and more accessible especially to the average software engineer,
as they usually have prior familiarity with the concept of test re-
duction for failing test cases in debugging, and this knowledge
can be easily transferred to reducing input programs in Sivand.
Our results did show, sometimes significant, differences between
the reduction-behavior of various architectures (e.g. fig. 10), which
may well be useful for experts to interpret. But, using Sivand does
not require such knowledge; the reduced input programs speak
for themselves. We plan to perform a user-study in the future to
evaluate the usability of our approach on average practitioner.

6.4 Limits of Extractive Interpretation

The Sivand methodology proposed in this paper is best described
as an extractive interpretation approach. Extractive interpretation
methods extract and present the important regions of the inputs,
leaving it to the user to characterize the behavior of the model.
These approaches usually work well in cases where features are
sparse and not correlated, so that highlighting one or more parts in
the input provides enough insights about the model. The high rate
of reduction in most cases in our work suggests that this approach
is indeed applicable here and can provide sufficient insights about
the behavior of the models – although a user study is needed to
validate that further. In turn, the power of this approach would
be limited on models that use complex or non-syntactic features
such as the number of lines of code in programs, as the basis for
their prediction. This would prevent the input programs from be-
ing reduced significantly, or it might be difficult to make sense of
the output and pinpoint the underlying important feature in the
reduced programs.
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pu b l i c s t a t i c vo id f ( S t r i n g [ ] a r g s ) {
System . s e t P r o p e r t y ( Cons t an t s . DUBBO_PROPERTIES_KEY ,

" con f / dubbo . p r o p e r t i e s " ) ;
Main . main ( a r g s ) ;

}

Figure 11: Code2Vec correctly predicts the name of this

method as ‘main’.

6.5 Impact of Smallest Atomic Unit Choice

Choosing different smallest atomic units in the delta debugging
algorithm can provide different, and potentially complementary in-
sights about the model. For example, Code2Vec predicts the name
of the code snippet in Figure 11 as ‘main’. If we use hierarchical
delta debugging wherein the smallest atomic unit of reduction is an
AST node, the result would be “void f (String args) {}” suggest-
ing that the method signature and the argument name have had a
large impact on the prediction. However, if we choose characters
as the smallest atomic unit and employ delta debugging, the result
is “d f(Sg[]r){em.s(C.D,"");Main(r);}” which provides a comple-
mentary view for the prediction that shows the importance of Main
identifier used in the method body. Future work may extend our
approach to new metrics and reduction strategies, which may well
provide novel insights, especially in future, more complex models
that are more resistant to such simple reduction.

7 RELATEDWORK

There has been a lot of work in the area of transparent or inter-
pretable AI, computer vision, and natural language processing that
focuses on understanding neural networks. Interpretable, transpar-
ent machine learning has numerous benefits, including making pre-
dictions explainable (and thus more useful), using learned models to
generate new insights, and improving the quality and robustness of
the models themselves [30]. These objectives are generally studied
under the umbrella of “explainable AI”. While some work studies
the properties of neural models in general [6], many studies are
more ad-hoc, focusing on specific domains and tasks [1].

7.1 Software Engineering

There is a growing body of work in the domain of robust neural
models for source code or code intelligence in general. Bui et al. [8]
evaluated the impact of a specific code fragment by deleting it from
the original program, Rabin et al. [25] compared the performance
of neural models and SVM models with handcrafted features and
found comparable performance with a relatively small number of
features. Wang et al. [36] propose a mutate-reduce approach to
find important features in the code summarization models. Several
other studies [7, 24, 26, 27] have evaluated the robustness of neural
models of code under semantic program transformations and found
that transformations can change the results of the prediction in
many cases.

7.2 Computer Vision and NLP

The need for neural model interpretability and robustness was
firmly established by Goodfellow et al., who showed that a convo-
lutional neural network could be tricked into changing its image

classification into virtually any label by adding an imperceptible
amount of targeted noise [10]. This produced a flood of research on
both improving the robustness of neural networks and attacking
current architectures [9], often in tandem. Importantly, compre-
hensive studies of robustness and adversarial perturbations have
yielded rich scientific insights into the learning behavior of these
models, both for vision and beyond [18].

The computer vision community has proposed many ways to
visualize what parts of the input are most significant to a neural
network, both to individual neurons and its output classification. A
popular example, and similar to our approach, is occlusion analysis
[38], in which regions of interest are identified by evaluating the
network’s prediction when various parts of the input image are
occluded. Locations at which prediction accuracy rapidly drops
when removed are likely especially integral to the prediction. For
linguistic expressions, input perturbations are usually less obvious:
while certain words (such as stop words) may safely be removed
without altering the meaning of a sentence, more general changes
quickly risk producing very different inputs. Recent input-related
methods rely on synonym datasets and swap out similar names
to ensure that they generate semantically similar phrases [19, 29].
Our work shows that, at least for current models and tasks, this
is significantly less of a concern in software engineering, where
many tokens can be removed with little consequence.

8 THREATS TO VALIDITY

We evaluated Sivand on four neural models and two tasks, trained
on millions but tested on a few thousands of random samples from
their datasets. As such, our findings may naturally not extend to
other inputs, models, and domains. Nevertheless, we argue both
that our analysis is broad, spanning more models and domains
than comparable work [36], and that the design of our approach
is applicable to many other problem settings in our field, which
commonly take tokens and ASTs as inputs to yield a single, or
few outputs, all covered by the models in this work. To ensure
software quality, we used the tools and datasets shared by the
original developers of the models, each from public repositories
used by dozens of developers and cited in multiple studies. For our
input reduction, we adapted Zeller et al.’s implementation of delta
debugging [39], which has been widely used in the industry and
other research studies over decades.

9 CONCLUSION

We proposed Sivand, a simple, model-agnostic methodology for
interpreting a wide range of code intelligence models, which works
by reducing the size of input programs using the well-known delta-
debugging algorithm. We apply Sivand to four popular neural code
intelligence models across two datasets and two tasks, showing
that our method can significantly reduce the size of input programs
while preserving the prediction of the model, thereby exposing the
most significant input features to the various models. Our results
suggest that these models often use just a few simple syntactic
shortcuts in their prediction. Our work sets the stage for broader
use of transparency-enhancing techniques to better understand
and develop neural code intelligence models.
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