
Student Adoption and Perceptions of a Web Integrated
Development Environment

An Experience Report

Martin Velez, Michael Yen,
Mathew Le

UC Davis, CA, USA

Zhendong Su
ETH Zurich, Switzerland

Mohammad Amin Alipour
University of Houston, TX, USA

ABSTRACT

Students often spend a considerable amount of time and effort
installing and configuring programming tools and environments.
This can frustrate, and distract them from more important learning
objectives, particularly in introductory programming courses. A
web-based integrated development environment can serve as a low-
threshold, ready-to-use programming environment, and reduce the
time and effort needed to start practicing programming.

In this paper, we report our experience of developing and de-
ploying a web-based integrated development environment (web
IDE) as an optional tool at a large public university that has been
in use for over several years in various programming courses.

We conducted a survey to understand students’ perceptions
toward the web IDE and usage of its features. Using the data from
the survey, we explored potential correlations between student
demographic and behavioral traits in adoption of the web IDE. The
results of the survey suggest that around half of the students use the
IDE often or very often. We also discovered that the likelihood of
adoption of the IDE decreases as students to move to upper classes.
In this paper, we also describe broader lessons for educators and
researchers.

CCS CONCEPTS

•Applied computing→Computer-assisted instruction; •Gen-
eral and reference→ Empirical studies.

KEYWORDS

Web-based Integrated Development Envioronment; Student Per-
ceptions; Tool Adoption

ACM Reference Format:

Martin Velez, Michael Yen, Mathew Le, Zhendong Su, and Mohammad
Amin Alipour. 2020. Student Adoption and Perceptions of a Web Integrated
Development Environment: An Experience Report. In The 51st ACM Tech-
nical Symposium on Computer Science Education (SIGCSE ’20), March 11–
14, 2020, Portland, OR, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3328778.3366949

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00
https://doi.org/10.1145/3328778.3366949

1 INTRODUCTION

Programming involves several steps such as coding, compiling, link-
ing, testing and debugging [17]. Each step requires proper installa-
tion and configuration of corresponding tools and environments.
Integrated development environments (IDE) attempt to integrate
and present all tools needed for programming in a unified inter-
face, but still they require users to configure the system and install
individual tools. For example, an IDE for Python programming lan-
guage will provide syntax highlighting for Python programs, but
users may still need to install the Python interpreters and configure
the IDE to use the right installation (e.g. python 2.7 or 3.6).

Installing and configuring programming tools and environments
can be a frustrating and error-prone task, especially for a student
that is learning programming, and may also distract the student
from the primary learning objectives [15]. For example, at the Uni-
versity of California at Davis (UC Davis), there is an upper division
“Programming Languages” course where students learn program-
ming language theory and concepts by studying different languages,
namely C++, Java, Lisp, and Prolog. Since the course is only ten
weeks long (due to the quarter system), the assigned programming
projects are limited in length and difficulty. Nonetheless, students
have reported spending a significant portion of their time and effort
(hours, even days) installing and configuring programming tools
for each new assignment.

A web-based integrated development environment (web IDE)
can provide a uniform, simple programming interface and require
no installation or configurations on the local machine [10, 15, 30].
A web IDE is particularly desirable in classrooms because (1) it can
reduce time for installation, configuration and troubleshooting of
tools and environments, allowing students and instructors to focus
on the primary learning objectives, and (2) it can provide a unified,
reproducible execution environment, which can improve commu-
nicating programming problems between students and teaching
staff [15].

We developed and deployed Kodethon, a web IDE at UC Davis.
At the time of writing, we have operated and maintained Kode-
thon for more than three years. Kodethon supports all of the
programming languages used to teach courses at the university,
including Python, C, C++, Java, Lisp, and Prolog. Its built-in editor
provides convenient features like syntax highlighting and auto-
completion. Student can also use an easy-to-use shell or a full Unix
terminal—within the browser—to execute Unix commands, such
as, ssh and scp. Kodethon also supports real-time collaboration
which facilitates pair-programming and live teaching assistance.

In this paper, we discuss adoption of the web IDE by students,
and their perceptions toward it. Kodethon has been used by more

1

https://doi.org/10.1145/3328778.3366949
https://doi.org/10.1145/3328778.3366949
https://doi.org/10.1145/3328778.3366949

than 3,000 students in 15 courses as an optional tool, as opposed
to previous studies, e.g., [3, 4], wherein students were required to
use the pedagogical IDE. Thus far, students have used Kodethon
to write more than 15 million lines of code. We analyze survey re-
sponses from 140 students who took a course recently to understand
student usage and perceptions of Kodethon. The results suggest
that 48% of survey participants use the web IDE often. Around
a third of students agree about the usefulness of Kodethon, ac-
cording to usefulness criteria outlined by Lund [21], About a third
of participants opted to use the web IDE to write their programs.
Students ranked “Web-based” and “No Installation Required” as the
two most useful features – consistent with the premise of web IDEs
as a low-threshold, ready-to-use programming environment. We
found that class standing has a strong correlation with adopting
the web IDE, as novice students are more likely to adopt the system.
We found students that use the web IDE more often tend to not
use the alternative stand-alone IDEs or editors. However, we did
not find strong correlations between adoption of the web IDE and
adoption of authoring web applications like Google Docs.

The main contributions of this paper are:

• We describe a web IDE that has had widespread use across
diverse set of computer science courses as an optional tool (§3).

• We designed and conducted a user survey of student usage and
perceptions of the IDE, and analyzed the results (§4).

• We explored correlations between adoption of a web IDE and
student characteristics (§5).

• We discuss broader lessons for CS educators and researchers
regarding web IDEs (§6).

2 RELATEDWORK

Web IDEs for classrooms: Perhaps, the work most related to
ours is a recent study by Benotti et al. that describes a web IDE to
support teaching functional programming in Haskell, and evaluated
the students’ attitude toward it [4]. In their study, students strongly
agreed that the web IDE makes them more productive, and a better
Haskell programmer. Barr et al. developed CodeLab as aWeb IDE for
introductory programming courses. They observed that the average
grade of students increased moderately after adopting CodeLab (0.2
points in a 4-scale grading) [3]. Note that in these studies students
were required to use the web IDE for programming while we did
not requires students to use Kodethon.

There are a number of web IDEs for classrooms. For example,
PythonTutor is a popular Python tutoring system that in addi-
tion to execution of single-file programs, visualizes the heap of
programs [11] . Helminen et al. developed a web IDE for Python
programming and ran a user study [12]. In their study, more than
40% of students reported that they used the system frequently, and
a large portion of students indicated that the web IDE is useful and
should be used in future course offerings.

Pedagogical stand-alone IDEs: There are a number of tools,
for example, to teach object-oriented concepts, such as classes and
relationships between them. BlueJ IDE provides visual tools to de-
sign a class and define the relationships between a class and other
classes [19]. BlueJ has been extended to be used in data structure
courses [25], to accommodate collaboration [8], to teach design pat-
terns [24], and in programming embedded systems [2]. A survey of

Figure 1: Kodethon User Interface: File navigator, editor,

and CDE Shell.

computing education research community in 2006 shows that more
than 25% respondents use BlueJ IDE in introductory courses [27].

Feedback in IDEs: In addition to editing and building programs,
IDEs can also provide hints to assist students to improve their pro-
gramming skills. For example, ASIDE [35], and ESIDE [34] nudges
students to adopt secure programming practices, or DevEvent-
Tracker [16] evaluates how students adhere to principle of incre-
mental programming and how much they procrastinate. Some IDEs
also track students’ activities to identify at-risk students [7, 9, 23].

Web IDEs in MOOCs: With the advent of MOOC and large
scale learning, web IDEs are becoming commonplace. For example,
Khan Academy provides a simple web IDE in their programming
lessons [1]. Some web IDEs can offer automated feedback to stu-
dents to fix the errors [31, 32]. Web-based development environ-
ments also serve as a platform for massive collection of data from
users actions. The data can be used to develop various predictive
models. For example, Wang et al. use data collected from EdX’s web
IDE to predict the success of students in arriving at a correct code,
given the intermediate steps they take [33].

3 SYSTEM DESCRIPTION AND ADOPTION

Kodethon is a web integrated development environment—it re-
quires no installation—and users can immediately start writing,
executing, and storing programs. It is designed to be easy-to-use
by university students, and to be useful in completing their course-
work. To scale to classes of hundreds of students, we designed
Kodethon as a distributed system that can scale horizontally.

3.1 Main Features

Figure 1 shows the main user interface which consists of an editor,
a file navigator, a CDE shell, and a smart run button.

1 Editor: The editor is an instance of the open-source ACE editor
which provides syntax highlighting for multiple programming
languages and basic auto-completion. Users can personalize the
editor by changing the theme, font, and indentation settings.
ACE even supports editing in VIM mode which some users find

2

to be a more efficient mode of editing. We added support to
open multiple files and switch between them using tabs.

2 File Navigator: Users can create files and organize files in folders.
They also can rename, move, copy, upload, and download files.
This allows students to access their files from anywhere and
from any device.

3 Shell Environment: This is aKodethon-specific shell that allows
users to see the output of the progrograms, and run common
Linux commands like ls and cd but also allows users to run
Kodethon-specific commands like terminal which opens a
standard Linux terminal for more advanced users. The user can
also compile and run programs using this shell.

4 Smart Run Button: A common point of initial confusion for
students is: “How do I run this program?” Kodethon employs
a best-effort strategy for executing programs. For example, if
the file end in .c, it will search for a Makefile and if it finds
one, then it runs make. Otherwise, it will compile the current
file, and run the resulting a.out program. Another example,
if the file ends in .l, it will interpret it using clisp. In our
experience, this helps students interact with programs much
quicker. Users can customize build and run settings.
Kodethon also provides:
• Multi-language Support: It provides over a dozen programming
environments, distinct sets of compilers, interpreters, and pro-
gramming tools. For example, to program in Lisp, a user simply
selects the lisp environment which includes the clisp inter-
preter. The environments are defined as Docker images. All
user commands are executed in Docker containers. For scalabil-
ity and performance, we limit resources per user such as disk
space, RAM, and CPU usage.

• Real-time Collaboration: By default, a user starts with an always-
private project. To collaborate with others, he/she must cre-
ate a shared project and add collaborators. All collaborators
will have access to that project. Kodethon allows users to set
read/write/execute permissions for collaborators (think Linux
groups), and for the public. We have observed that some users
create a project for each homework while some create a project
for the entire course. In a shared project, two or more people
can edit the same file at the same time.

• Learning management system: Instructors create programming
assignments. Students upload submissions to Kodethon. The
submissions are automatically graded. Students receive feed-
back on their submissions by running the provided test suite.

3.2 Deployment and Adoption

To deploy Kodethon to students, we asked instructors who were
teaching programming-intensive courses for the opportunity to
give a live demonstration of Kodethon during one of their lec-
tures. We gave our first live demo to students taking “Introduction
to Programming”, which uses Python programming language, in
the Spring 2015. Since then, we have given more than ten live de-
mos. Professors usually allot 5 to 15 minutes at the beginning of
a lecture in the first or second week of the academic quarter. We
usually demonstrate 1) how to create and edit programs, 2) how to
execute programs with the smart button, 3) how to use the shell
environemnt, 4) how to collaborate in real-time, and 5) how to

Table 1: Responses to the survey question: “I use or have used

Kodethon to do coursework in the following courses.”

Title (Intervention(s)) Programming
Language(s)

1 Introduction to Programming (LD) Python
2 Introduction to Programming (LD) C
3 Software Development and Object-Oriented Program-

ming (LD, S)
C++, Rust

4 Computer Organization and Machine-Dependent Pro-
gramming (LD, S)

Assembly, C++

5 Data Structures and Programming (LD) C, C++
6 Theory of Computation N/A
7 Algorithm Design & Analysis C, C++
8 Probability and StatisticalModeling for Computer Science Python, R
9 Programming Languages (LD, S) Java, Lisp, Prolog
10 Scripting Languages and Their Applications Python, R
11 Parallel Architecture C
12 Software Engineering Varies
13 Web Programming Javascript, HTML,

CSS
14 Introduction to Artificial Intelligence Varies
15 Computer Graphics Varies
LD = Live Demo, S = Survey

access the more advanced but traditional Unix terminal. The pro-
gramming language we used in the demo depends on the main
programming language of the class. For a class like “Programming
Languages”, where students have to code in Java, Lisp, and Prolog,
we emphasized the ease with which students can switch to and
between the appropriate programming environments.

With each new wave of users, we sought and received user
feedback. Students provided feedback in-person, on class forums
(e.g., Piazza), indirectly to teaching assistants and professors, and
via email. Based on this feedback, we found and fixed bugs, and
added new features.

To date, more than 3, 000 students have signed up to use Kode-
thon in at least 15 different courses at UC Davis. Table 1 lists the
courses where students have reported using Kodethon, where we
have given live demonstrations, and where we distributed our user
survey (§4). We gave live demonstrations in lower division pro-
gramming courses, and upper division “Programming Languages”
– where students are expected to program in Java, Lisp, and Prolog
in a ten-week quarter. Student also reported using Kodethon in
courses that we never gave demos too, e.g., “Software Engineer-
ing”,which indicates that Kodethon has been useful across our
CS curriculum. Students have used Kodethon to write over 15.1
million lines of code. We do not count all of the intermediate code
students wrote and delete/overwrote. The top-5 languages were
C++ (4.5M), C (2.5M), JavaScript (2.2M), Java (1.4M), and C/C++
Header (1.2M). C++ and C are used in large classes of about 300
students where students build projects that are hundreds of lines.

4 USER SURVEY

We developed a questionnaire consisting of 40 closed and open-
ended questions, and scale items. Participants took 10 minutes, on
average, to answer it completely. We asked about demographics,
education, programming background [28], and general Kodethon
usage.We also asked students about their perceptions of Kodethon
using the measures defined in the USE Questionnaire [21]. Each
items was scored on a 5-point Likert scale ranging from Strongly

3

Table 2: “I useKodethon to.”Multiple choiceswere allowed.

Activity Participants ↓ Percentage of Participants ↓
Submit Assignments 117 84%
Test Programs 63 45%
Write Programs 46 33%
Collaborate 36 26%
Share Programs 18 13%
Other 1 1%

Disagree to Strongly Agree. We asked students perceptions about
the impact of Kodethon in satisfying their learning objectives and
their future career (Table 4). To learn about students’ digital habits
and their potential relationship with adoption of Kodethon, we
asked students two questions: (1) “How often do you use Google
Docs or Office 3651?” , and (2) “How often do you use stand-alone
editors and IDEs such as Sublime, Atom, and Eclipse?”

We recruited participants by posting in Piazza class forums for
two ongoing courses, and by emailing students from a third course
from the previous academic quarter (Fall 2017) (see Table 1). We
offered participants an entry in a drawing for ten $20 Amazon gift
cards. Based on size of the classes, we estimate that we reached
out to approximately 850 students in total from which 140 stu-
dents chose to participate in our survey. The demographics of our
participants were:
• Gender: Male (87), Female (51), Not identified (2).
• Ethnicity: Asian (90), White (35), Other (17), American Indian
or Alaska Native (2), African American (1), Native Hawaiian or
Pacific Islander (1).

• College: Letters and Science (91), Engineering (38), Agricultural
and Environmental Sciences (8), Other (3).

• University Standing: Freshman (39), Sophomore (40), Junior
(38), Senior (23).

• Years of Programming Experience: 0-1 (32), 1-2 (48), 2-3 (27),
3-4 (16), 4-8 (15), 8 or more (2).

5 RESULTS

5.1 Usage

Almost half of survey participants, 48%, reported using Kodethon
often: Very Often (26, 19%), Often (41, 29%), Sometimes (23, 16%),
Rarely (50, 36%), and Never (0, 0%). Table 2 shows that a large ma-
jority of participants, 83.6%, use Kodethon to submit assignments.
It also shows that about a third of participants, 33%, use Kodethon
to write their programs. This is consistent with our expectation that
although not all students will opt to use Kodethon, a significant
proportion will elect to use it. This is also consistent with our di-
rect observations from previous courses where we observed about
a third of all students opting to use Kodethon to complete the
programming assignments. Most students tend to use the primary
editor or IDE recommended by the instructor, for example, CLion
or Eclipse.

Participants reported using Kodethon on a variety of devices.
A great majority (95%) reported using Kodethon on their per-
sonal laptops. Interestingly, 8% use Kodethon on campus desktops.
Indeed, we have directly observed students using Kodethon on
1 Google applications and Office 356 are freely available to students.

Figure 2: Adoption by students by university standing.

Table 3: Responses to the items in the Usefulness measure.

Item SA A N D SD Count

1 It helps me be more effective. 5% 27% 33% 20% 15% 134
2 It helps me be more produc-

tive.
5% 23% 30% 26% 16% 135

3 It is useful. 5% 50% 27% 8% 10% 136
4 It gives me more control over

the activities in my life.
5% 16% 38% 22% 19% 129

5 It makes the things I want to
accomplish easier to get done.

4% 21% 32% 26% 23% 135

6 It saves me time when I use it. 4% 24% 25% 29% 18% 138
7 It meets my needs. 4% 33% 32% 18% 13% 136
8 It does everything I would ex-

pect it to do.
6% 24% 25% 29% 17% 139

Total 5% 27% 30% 22% 16% 1082
SA = Strongly Agree, A = Agree, N = Neither Agree nor Disagree, D = Disagree,
SD = Strongly Disagree

campus desktops provided by the CS department which is interest-
ing because those desktops already have ready-to-use programming
environments. We hypothesize students find it more convenient
to store their files on Kodethon where they can access their files
from other devices. A large portion, almost half, of students used
Kodethon in Windows. Students reported negligible use on other
devices, i.e., smart phones, tables, and other machines.

5.2 Characteristics of Adopters

We classified students into two groups: 67 adopters and 73 non-
adopters. Adopters are those who reported using Kodethon “Often”
or “Very Often”. The rest are non-adopters. We searched for indi-
vidual factors that might correlate with adoption of Kodethon.
We used Chi-square test for independence between adoption and 1)
gender (p-value > 0.05), 2) university standing (p-value < 0.002), 3)
programming experience (p-value > 0.05), and 4) university college
(p-value > 0.05). We found that adoption correlates with university
standing (p-value < 0.002). Students were less likely to adopt Kode-
thon as standing increased. We show the results in Figure 2. For
digital habits, test of independence failed to find difference between
the digital habits of adopters and non-adopters in using online edit-
ing tools such as Google Doc or other web IDEs (p > 0.05). However,
Chi-square test suggested a difference in usage of stand-alone IDEs
and editors between adopters and non-adopters (p < 0.002) which
indicates that as students adopt Kodethon they tend to not use
the alternative stand-alone tools and vice versa.

4

Table 4: Responses to additional Usefulness items.

Item SA A N D SD Count

1 It helps me become a better
programmer.

4% 16% 43% 22% 14% 137

2 It is useful for real-world pro-
gramming.

3% 29% 36% 19% 13% 136

3 It helps me develop skills I will
need in software engineer jobs.

4% 21% 41% 22% 10% 135

4 It helps me focus on the impor-
tant aspects of programming.

5% 20% 38% 24% 12% 138

Total 4% 22% 40% 22% 12% 546
SA = Strongly Agree, A = Agree, N = Neither Agree nor Disagree, D = Disagree,
SD = Strongly Disagree

5.3 Perceptions

Tomeasure this attitude, we used the Usefulness measure defined by
Lund in the USE questionnaire [21]. We summarize the responses
in Table 3. The results of the survey are mixed. Considering all
items, out of 1, 082 responses, 32% (348) agreed on the usefulness of
Kodethon, 30% (325) were neutral, while 38% (409) disagreed. One
of the most interesting items was the direct statement, “It is useful.”;
55% of participants agreed. We conjecture that participants find
different aspects of Kodethon useful and they converge under this
broad statement. Another interesting item is “It does everything
I would expect it to do.” to which only 30% of participants agreed.
This tells us that although we built many features into Kodethon,
students still expect more from a web IDE. In future work, we plan
to investigate what else students expect Kodethon to do.

We developed additional usefulness items to get a sense of stu-
dents perceptions about Kodethon’s usefulness beyond the class-
room. Table 4 summarizes the responses. The results of this section
were a bit shocking to us, as we were expecting for more positive
feedback. The most surprising agreement rate was for “It helps me
focus on the important aspects of programming” that only 25% of
students agreed. We expected higher agreement given that Kode-
thon allows students to simply write and run code without having
to install anything. It shows that there is a gap between our intended
impact of the IDE, as its developers, and the students’ perceptions.
One explanation can be that the Kodethon has failed to adequately
match students’ programming needs. An alternative explanation is
that students may have varying opinions on what is “important” or
even what is “programming.” We were surprised that only about
a third of participants, 32%, feel that Kodethon can be useful for
“real-world programming.” However, it is in contrast to observations
in [4] that a vast majority of students perceived programming in a
web IDE as real programming. We should note that it is unclear to
us to what “real-world programming” actually means to students;
regardless of the intended meaning and its accuracy, majority of
students perceived that Kodethon does not prepare them for real
programming.

Lastly, for all items, a significant fraction of responses were neu-
tral. We expected most students to agree or disagree. One possible
explanation is that, as many participants reported, they do not use
Kodethon often enough to form an opinion. Another possible ex-
planation is that students may feel that they have not been exposed
to enough IDEs to form an opinion. We did not find that any partic-
ipant simply replied the same to all items. It would be interesting to

Table 5: The top-10 responses to “What features of Kode-

thon do you find most useful?”

Feature Participants ↓ Percentage of Participants ↓
Web-based 90 65%
No Installation Required 85 61%
Assignment Grading 73 52%
Works on Multiple Devices 52 37%
Unix Terminal 49 35%
Assignment Feedback 48 35%
Real-time Collaboration 46 33%
Programming Language Support 35 25%
File Cloud Storage 32 23%
Syntax Highlighting Code Editor 32 23%

Table 6: The top-10 categories of open-ended responses to

“List the most positive aspect(s) of Kodethon.”

Feature Responses ↓ Percentage of Responses ↓
Assignment Grading and Feedback 55 21%
Real-time Collaboration and Chat 54 21%
Easy to Use 36 14%
Web-based 18 7%
File Cloud Storage 18 7%
Other 16 6%
Unix Terminal & CDE Shell 13 5%
Programming Language Support 13 5%
No Installation Required 3 9%
Smart Run Button 3 7%

Total 262 100%

investigate this deeper and explore if there are missing features or
usability traits that would cause participants to shift from neutral
to agreement that Kodethon is useful.

We provided participants with a list of 18 features, and asked
them to select which features they found most useful. Table 5 shows
a summary of the responses. The most important finding is that
what participants find useful corresponds with our hypothesis that
many students would find a web IDE useful because it is a con-
venient, low-threshold, ready-to- use programming environment.
Participants selected “Web-based” (65%) and “No Installation Re-
quired” (61%) as the top two features.

We asked participants to list the most positive aspects (up to 3) in
their own words. We coded 262 responses into 16 categories, shown
in Table 6. Participants mentioned many of the same features we
provided earlier but in their words. However, here students mention
the LMS (automatic grading and feedback) 55 times, and the real-
time collaboration features 54 times. Participants also commented
on the usability of Kodethon saying it was easy to use 36 times
and easy to learn 2 times. Here are some example responses:

“I appreciate the cloud storage a lot. It saved my grade
when my laptop broke.”
“I like how you don’t need to install anything, for
beginners this is helpful.”

We also asked participants to list the most negative aspects (up
to 3) in their own words. We coded 237 responses into 14 categories.
56 participants reported difficulties or issues or difficulties with the
user interface. 37 participants mentioned experiencing issues with
file saving. 34 participants responded simply “buggy” or “glitchy”
without elaborating on which feature. A large fraction of the issues
experienced by users have been due to heavy load on the system.

5

As a result, we responded by increasing the nodes in our cluster,
and making performance improvements.

6 BROADER LESSONS

We discuss some broader lessons resulting from interactions with
students and instructors and supported by our student adoption
and perception findings.

A web IDE is not a silver bullet: As our results show, a web
IDE is not an ideal tool for every student. First, many students do
not struggle with or do not mind installing programming tools.
Second, web IDEs introduce different challenges. For example, the
user interface is different and can take effort and time to learn.
While many users found Kodethon easy to use, many others felt
otherwise. Another example, because Kodethon is a web applica-
tion, fluctuations in network speed can cause the user to experience
latency or even downtime. Even if a user enjoys the user interface
and performance, network glitches can negatively impact their
experience; a non-issue in desktop IDEs.

Cost of Building a web IDE: Based on our experience, we rec-
ommend caution before selecting a web IDE and especially before
deciding to build a custom one. This advice should be applicable
to educators and researchers considering the question of intro-
ducing a web IDE in their curriculum. At the time we began de-
veloping Kodethon, there were few existing web IDEs, namely
Runnable[26], Koding [18], Nitrous [20], and Cloud9 [14]. None of
them were designed for students and none of them were customiz-
able to the needs at UC Davis. So we decided to build our own. We
learned that building a web IDE that is reliable and scalable for
real use is an expensive endeavor with a lot of technical challenges.
With two engineers, it still took almost four years to reach our
current state. Nonetheless, it was a good decision considering that
Runnable and Koding have since changed focus, and Nitrous has
shut down. While others have surfaced like CodeAnyWhere [13]
and CodeEnvy [5], we have been able to leverage our architecture
to introduce a learning management system to help instructors
grade assignments automatically and provide students with instant
feedback, a feature which 52% of participants found useful.

Some students prefer a web IDE: Usually, instructors tend to
select and present a single IDE, e.g., CLion. Instead, instructors can
provide students with multiple programming environment options,
including a desktop and a web IDE, and encourage students to
choose one, weighing the benefits and trade-offs. This is consistent
with the principle that every student learns differently and with
previous work [12]. And as our results show, many students will
voluntary opt to use a web IDE and adopters tend to not use stand-
alone IDEs. Moreover, students adopted Kodethon not merely
because it was novelty but because it provided tangible benefits to
them, ease of use, convenience, and portability. As new generation
of students uses the web more often and longer [22, 29], a web IDE
can be a more familiar system for them to interact with than tradi-
tional IDE. Moreover, cloud storage of files seems to assure students
that their programs and homework will not be lost due unexpected
hardware or software failure on their machines. Kodethon also
provides them with an easy way of collaborating in real-time to
pair program without having to resort to tools like git which often
introduce more complexities [6].

Learning objectives need to be explicit and clear: In discus-
sions with instructors, we have learned that they often have hidden
learning objectives, often unknowingly. One is to learn how to
install and configure development tools. The rationale is that there
is value in such a skill. A problem is that this learning objective
is rarely made explicit or evaluated. On balance, some instructors
have found that it is more important to give students a ready-to-use
programming environment so they can spend more time learning
to actually write code. Another problem with this hidden objec-
tive that it is too vague; it does not specify which tools (IDEs, text
editors, compilers/interpreters, etc.) should be learned.

Students may confuse programming and system building:

Based on conversations with students, many do not consider pro-
gramming in a web IDE to be “real programming”. This negative
view may stem from the fact that some students confuse computa-
tional thinking and programming with system building. In system
building, developers must consider the production environment
and compile, configure and tests their programs to meet some re-
quirements, while computational thinking concerns with creating
an appropriate abstraction of the problem domain and encoding
the abstraction in a given programming language. A large portion
of topics in computer science curricula, especially in the introduc-
tory courses, focus on the latter. Moreover, system building is still
possible in a web IDE like Kodethon. In fact, there are a growing
number of professional programmers working primarily on web
IDEs, like Amazon Cloud9 [14], developing on cloud instances.

7 THREATS TO VALIDITY

The data presented in the paper is based on a quantitative anony-
mous survey study. The results are limited to responses to the
questions. Students background can impact the generalization of
the results beyond this study. We deployed the system in a public,
selective university, where most students have some prior pro-
gramming experience. Prior experience can influence their view
of educational programming tools. For example, they may already
know how to set up and configure the programming tools; in that
case, a web IDE is of little value to them. However, in our survey,
majority of students, even some non-adopters, indicated that a web
IDE is a useful tool.

8 CONCLUSION

We described a web IDE and its deployment in a large public uni-
versity that has been used by more than 3,000 students in multiple
programming courses. We used a quantitative survey study to eval-
uate students satisfaction and perception of the system. We found
that students in the introductory classes tend to adopt a web IDE
in early programming classes than more advanced ones. We found
no strong correlation between adoption of online editing tools (e.g.,
Google Doc) and the web IDE. The analysis of results suggests
mixed reaction to the adoption and use of the IDE. While around a
third of students agree on the usefulness of the IDE in their classes,
another third disagree. The results suggests that a web IDE is not sil-
ver bullet; it is not an ideal educational tool for every student under
any circumstances. We also caution about the cost of developing
custom-made web IDE systems.

6

REFERENCES

[1] Khan Academy. 2017. Khan Academy. https://www.khanacademy.org/
[2] Amjad Altadmri, Neil C.C. Brown, andMichael Kölling. 2015. Using BlueJ to Code

Java on the Raspberry Pi. In Proceedings of the 46th ACM Technical Symposium
on Computer Science Education (SIGCSE ’15). ACM, New York, NY, USA, 178–178.
https://doi.org/10.1145/2676723.2691872

[3] Valerie Barr and Deborah Trytten. 2016. Using turing’s craft codelab to support
CS1 students as they learn to program. ACM Inroads 7, 2 (2016), 67–75.

[4] Luciana Benotti, Federico Aloi, Franco Bulgarelli, and Marcos J. Gomez. 2018.
The Effect of a Web-based Coding Tool with Automatic Feedback on Students’
Performance and Perceptions. In Proceedings of the 49th ACM Technical Sympo-
sium on Computer Science Education (SIGCSE ’18). ACM, New York, NY, USA, 2–7.
https://doi.org/10.1145/3159450.3159579

[5] CodeEnvy. 2019. CodeEnvy. https://codenvy.com/
[6] Santiago Perez De Rosso and Daniel Jackson. 2016. Purposes, Concepts, Misfits,

and a Redesign of Git. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2016). ACM, New York, NY, USA, 292–310. https://doi.org/10.1145/
2983990.2984018

[7] Gregory Dyke. 2011. Which Aspects of Novice Programmers’ Usage of an IDE
Predict Learning Outcomes. In Proceedings of the 42Nd ACM Technical Symposium
on Computer Science Education (SIGCSE ’11). ACM, New York, NY, USA, 505–510.
https://doi.org/10.1145/1953163.1953309

[8] Kasper Fisker, Davin McCall, Michael Kölling, and Bruce Quig. 2008. Group
Work Support for the BlueJ IDE. In Proceedings of the 13th Annual Conference
on Innovation and Technology in Computer Science Education (ITiCSE ’08). ACM,
New York, NY, USA, 163–168. https://doi.org/10.1145/1384271.1384316

[9] Corey Ford and Clinton Staley. 2016. Automated Analysis of Student Program-
mer Coding Behavior Patterns (Abstract Only). In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education (SIGCSE ’16). ACM, New
York, NY, USA, 688–688. https://doi.org/10.1145/2839509.2850540

[10] Max Goldman, Greg Little, and Robert C. Miller. 2011. Real-time Collaborative
Coding in a Web IDE. In Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology (UIST ’11). ACM, New York, NY, USA, 155–164.
https://doi.org/10.1145/2047196.2047215

[11] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-based Program Visu-
alization for Cs Education. In Proceeding of the 44th ACM Technical Symposium
on Computer Science Education (SIGCSE ’13). ACM, New York, NY, USA, 579–584.
https://doi.org/10.1145/2445196.2445368

[12] Juha Helminen, Petri Ihantola, and Ville Karavirta. 2013. Recording and Ana-
lyzing In-browser Programming Sessions. In Proceedings of the 13th Koli Calling
International Conference on Computing Education Research (Koli Calling ’13). ACM,
New York, NY, USA, 13–22. https://doi.org/10.1145/2526968.2526970

[13] Codeanywhere Inc. 2019. CodeAnywhere. https://codeanywhere.com/
[14] Cloud9 IDE Inc. 2019. Cloud9 IDE. https://c9.io/
[15] Jam Jenkins, Evelyn Brannock, and Sonal Dekhane. 2010. JavaWIDE: Innovation

in an Online IDE: Tutorial Presentation. J. Comput. Sci. Coll. 25, 5 (May 2010),
102–104. http://dl.acm.org/citation.cfm?id=1747137.1747155

[16] Ayaan M. Kazerouni, Stephen H. Edwards, T. Simin Hall, and Clifford A. Shaffer.
2017. DevEventTracker: Tracking Development Events to Assess Incremental
Development and Procrastination. In Proceedings of the 2017 ACM Conference
on Innovation and Technology in Computer Science Education (ITiCSE ’17). ACM,
New York, NY, USA, 104–109. https://doi.org/10.1145/3059009.3059050

[17] Caitlin Kelleher and Randy Pausch. 2005. Lowering the Barriers to Program-
ming: A Taxonomy of Programming Environments and Languages for Novice
Programmers. ACM Comput. Surv. 37, 2 (June 2005), 83–137. https://doi.org/10.
1145/1089733.1089734

[18] Koding. 2017. Koding. http://www.koding.com/
[19] Michael Kolling, Bruce Quig, Andrew Patterson, and John Rosenberg. 2003. The

BlueJ System and its Pedagogy. Computer Science Education 13, 4 (2003), 249–268.

https://doi.org/10.1076/csed.13.4.249.17496
[20] Frederic Lardinois. 2016. Cloud development platform Nitrous.io shuts

down. https://techcrunch.com/2016/10/31/cloud-development-platform-nitrous-
io-shuts-down/

[21] Arnold Lund. 2001. Measuring Usability with the USE Questionnaire. Usability
Interface 8, 2 (2001), 3–6.

[22] SidneyeveMatrix. 2014. The Netflix effect: Teens, binge watching, and on-demand
digital media trends. Jeunesse: Young People, Texts, Cultures 6, 1 (2014), 119–138.

[23] Jonathan P. Munson. 2017. Metrics for Timely Assessment of Novice Program-
mers. J. Comput. Sci. Coll. 32, 3 (Jan. 2017), 136–148. http://dl.acm.org/citation.
cfm?id=3015220.3015256

[24] James H Paterson and John Haddow. 2007. Tool Support for Implementation
of Object-Oriented Class Relationships and Patterns. Innovation in Teaching
and Learning in Information and Computer Sciences 6, 4 (2007), 108–124. https:
//doi.org/10.11120/ital.2007.06040108

[25] James H. Paterson, John Haddow, Miriam Birch, and Alex Monaghan. 2005. Using
the BlueJ IDE in a Data Structures Course. In Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’05). ACM, New York, NY, USA, 349–349. https://doi.org/10.1145/1067445.
1067548

[26] Runnable. 2017. Runnable. http://www.runnable.com/
[27] Carsten Schulte and Jens Bennedsen. 2006. What Do Teachers Teach in Intro-

ductory Programming?. In Proceedings of the Second International Workshop on
Computing Education Research (ICER ’06). ACM, New York, NY, USA, 17–28.
https://doi.org/10.1145/1151588.1151593

[28] Janet Siegmund, Christian Kästner, Jörg Liebig, Sven Apel, and Stefan Hanenberg.
2014. Measuring and modeling programming experience. Empirical Software
Engineering 19, 5 (01 Oct 2014), 1299–1334. https://doi.org/10.1007/s10664-013-
9286-4

[29] Victor C Strasburger, Marjorie J Hogan, Deborah Ann Mulligan, Nusheen
Ameenuddin, Dimitri A Christakis, Corinn Cross, Daniel B Fagbuyi, David L Hill,
Alanna Estin Levine, Claire McCarthy, et al. 2013. Children, adolescents, and the
media. Pediatrics 132, 5 (2013), 958–961.

[30] Arie van Deursen, Ali Mesbah, Bas Cornelissen, Andy Zaidman, Martin Pinzger,
and Anja Guzzi. 2010. Adinda: A Knowledgeable, Browser-based IDE. In
Proceedings of the 32Nd ACM/IEEE International Conference on Software Engi-
neering - Volume 2 (ICSE ’10). ACM, New York, NY, USA, 203–206. https:
//doi.org/10.1145/1810295.1810330

[31] Ke Wang, Benjamin Lin, Bjorn Rettig, Paul Pardi, and Rishabh Singh. 2017. Data-
Driven Feedback Generator for Online Programing Courses. In Proceedings of the
Fourth (2017) ACM Conference on Learning @ Scale (L@S ’17). ACM, New York,
NY, USA, 257–260. https://doi.org/10.1145/3051457.3053999

[32] Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Search, Align, and Repair:
Data-Driven Feedback Generation for Introductory Programming Exercises. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation. ACM, New York, NY, USA.

[33] Lisa Wang, Angela Sy, Larry Liu, and Chris Piech. 2017. Deep Knowledge Tracing
On Programming Exercises. In Proceedings of the Fourth (2017) ACM Conference
on Learning @ Scale - L@S ’17. ACM Press, New York, New York, USA, 201–204.
https://doi.org/10.1145/3051457.3053985

[34] Michael Whitney, Heather Lipford-Richter, Bill Chu, and Jun Zhu. 2015. Em-
bedding Secure Coding Instruction into the IDE: A Field Study in an Ad-
vanced CS Course. In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education (SIGCSE ’15). ACM, New York, NY, USA, 60–65.
https://doi.org/10.1145/2676723.2677280

[35] Jun Zhu, Heather Richter Lipford, and Bill Chu. 2013. Interactive Support for
Secure Programming Education. In Proceeding of the 44th ACM Technical Sym-
posium on Computer Science Education (SIGCSE ’13). ACM, New York, NY, USA,
687–692. https://doi.org/10.1145/2445196.2445396

7

https://www.khanacademy.org/
https://doi.org/10.1145/2676723.2691872
https://doi.org/10.1145/3159450.3159579
https://codenvy.com/
https://doi.org/10.1145/2983990.2984018
https://doi.org/10.1145/2983990.2984018
https://doi.org/10.1145/1953163.1953309
https://doi.org/10.1145/1384271.1384316
https://doi.org/10.1145/2839509.2850540
https://doi.org/10.1145/2047196.2047215
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/2526968.2526970
https://codeanywhere.com/
https://c9.io/
http://dl.acm.org/citation.cfm?id=1747137.1747155
https://doi.org/10.1145/3059009.3059050
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1089733.1089734
http://www.koding.com/
https://doi.org/10.1076/csed.13.4.249.17496
https://techcrunch.com/2016/10/31/cloud-development-platform-nitrous-io-shuts-down/
https://techcrunch.com/2016/10/31/cloud-development-platform-nitrous-io-shuts-down/
http://dl.acm.org/citation.cfm?id=3015220.3015256
http://dl.acm.org/citation.cfm?id=3015220.3015256
https://doi.org/10.11120/ital.2007.06040108
https://doi.org/10.11120/ital.2007.06040108
https://doi.org/10.1145/1067445.1067548
https://doi.org/10.1145/1067445.1067548
http://www.runnable.com/
https://doi.org/10.1145/1151588.1151593
https://doi.org/10.1007/s10664-013-9286-4
https://doi.org/10.1007/s10664-013-9286-4
https://doi.org/10.1145/1810295.1810330
https://doi.org/10.1145/1810295.1810330
https://doi.org/10.1145/3051457.3053999
https://doi.org/10.1145/3051457.3053985
https://doi.org/10.1145/2676723.2677280
https://doi.org/10.1145/2445196.2445396

	Abstract
	1 Introduction
	2 Related Work
	3 System Description and Adoption
	3.1 Main Features
	3.2 Deployment and Adoption

	4 User Survey
	5 Results
	5.1 Usage
	5.2 Characteristics of Adopters
	5.3 Perceptions

	6 Broader Lessons
	7 Threats to Validity
	8 Conclusion
	References

