

DSP for Scientists

Department of Physics

University of Houston

Most Important in DSP

 Combining two (or more) signals to form a third output. (Superposition)

- Signal Filtering (Estimation)
 Function Approximation
- Interpolation
- Prediction (extrapolation)

CONCEPTS

- Delta Function
- Unit Impulse $\delta[n]$

$$\delta[n] = 1$$
, when $n = 0$;

$$\delta[n] = 0$$
, when $n \neq 0$.

Standard Function

• Standard Function *u*[*n*]

- u[n] = 1, when $n \ge 0$
- u[n] = 0, when n < 0 $\delta[n] = u[n] u[n 1]$

$$u[n] = \sum_{k=0,\infty} \delta[n-k]$$

Impulse Response

- Impulse response h[n] of linear system S
 - The signal that exits a system when a Delta function (unit impulse) is the input.

$$\delta[n] \longrightarrow \text{Linear System} \longrightarrow h[n]$$

$$h[n]=S(\delta[n])$$

Delta Decomposition

 Any discrete sequence x[n] can be represented by weighted Delta function

$$x[n] = \sum_{k = -\infty, \infty} x[k] \delta[n-k]$$

$$x[n] = \sum_{k = -\infty, \infty} x[n-k] \delta[k]$$

Periodic Signal

• x[n] = x[n + N], N: period

- Example: When $f \in \mathbb{Z}$
- $sin[2\pi f(n+1)] = sin[2\pi fn]$
- f is normalized frequency,
- minimum period is 1.

Convolution

•
$$y[n] = h[n] * x[n]$$

•
$$x[n] \longrightarrow \text{Linear System } h[n] \longrightarrow y[n]$$

- The *impulse response* of the system
- How the relation between input and output.

Example

Convolution Sum (Linear)

•
$$y[i] = \sum_{j=-\infty,\infty} h[j]x[i-j]$$

•
$$y[i] = \sum_{j=-\infty,\infty} x[j]h[i-j]$$

• y[n] = h[n] * x[n] = x[n] * h[n]

Convolution Calculation

- Keep x[i] invariant
- Symmetry of h[j] $g[j] \Rightarrow h[-j]$
- $y[0] = \sum_{j=-\infty,\infty} x[j]g[j]$ = $\sum_{j=-\infty,\infty} x[j]h[-j]$
- Shift g[j] Left to obtain y[i < 0]
- Shift g[j] Right to obtain y[i > 0]