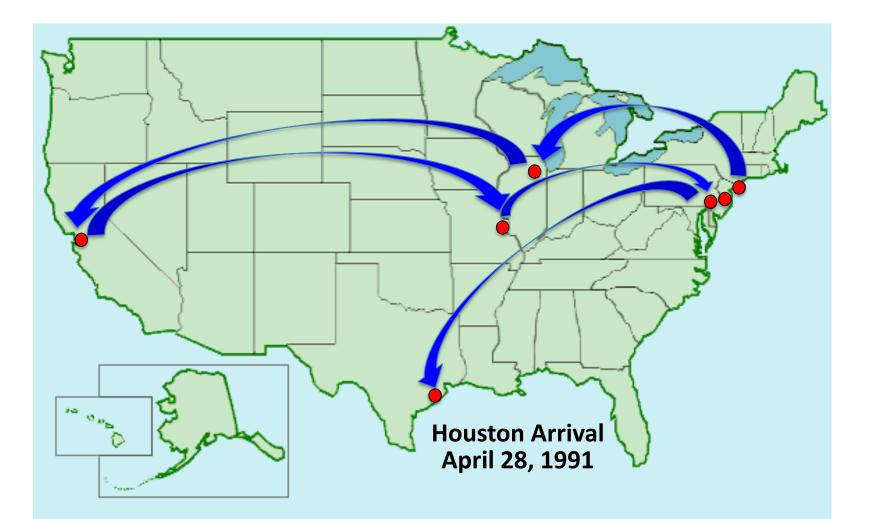
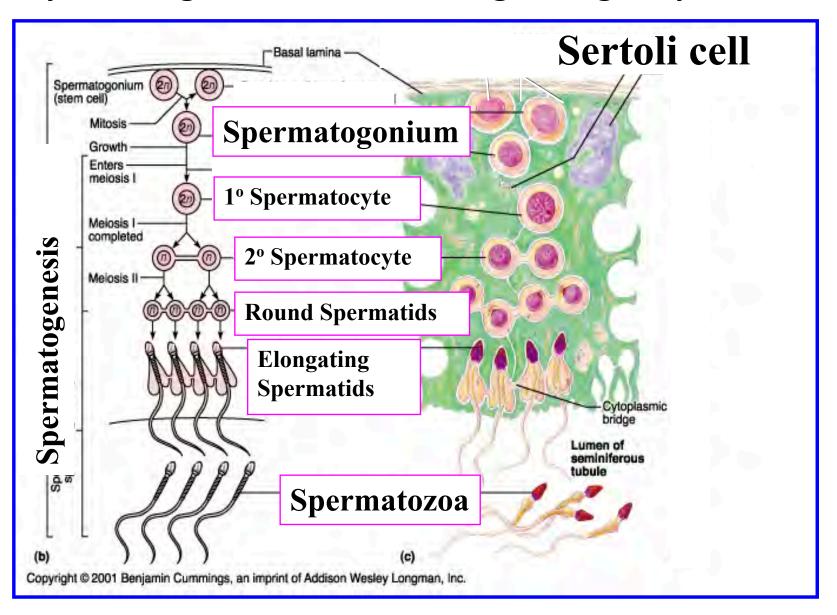

Baylor College of Medicine

Being (re)productive as a physician scientist Martin M. Matzuk, MD, PhD

<u>Aim 1</u>: Apply CRISPR/Cas9 to mechanistically discern the key reproductive tract-specific proteins and their pathways required for spermatogenesis, sperm function, and/or fertilization.


<u>Aim 2</u>: Use DEC-Tec to identify small-molecule probes and preclinical candidates to target druggable proteins essential for spermatogenesis, sperm function, and/or fertilization.

Center for Drug Discovery


Baylor College of Medicine

<u>Aim 3</u>: Evaluate *in vitro* efficacy and *in vivo* contraceptive effects of drug-like inhibitors.

Path to Houston

Male Infertility and Contraception Spermatogenesis is an amazing biological process

Male Introduction

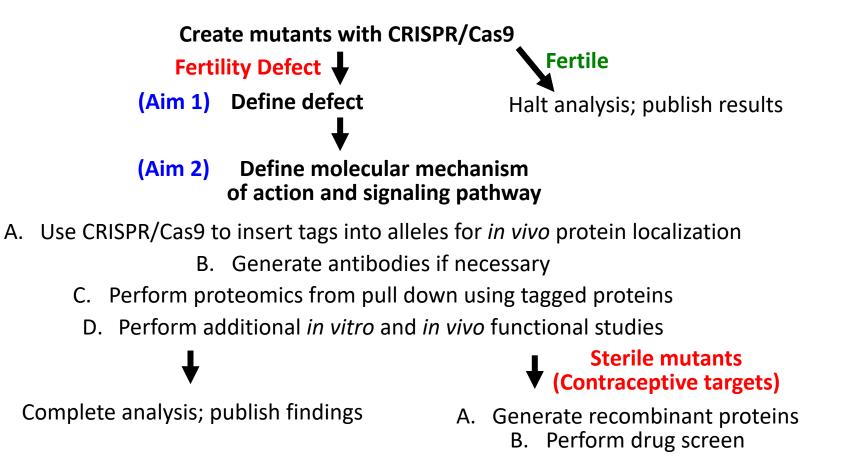
~4% of genes expressed in male germ cells (Schultz, Hamra, and Garbers, PNAS 2003)

Mutations in >1000 genes could cause infertility in men

100's of candidate germ cellspecific targets for novel contraceptives for men (*i.e.*, where KOs have a phenotype of infertility)

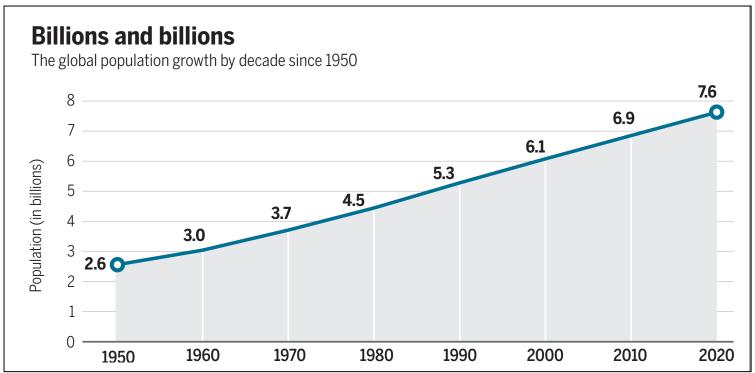
		Genes			Cells			Function		
Acvr2a Adralb Ar B4gaint1 Bci2i2 Cdkn2c Cdkn2e	Cldn11 Cyp17a1 Cyp19a1 Dhh Dmrt1 Dnaja1 Efv5	Gdi1 Gdnf Gja1 Hmga1 Hmgb2 Inha Kitl	Lhegr Man2a2 Mtap7 Nr0b1 Rbp4 St1 Sbf1	Serpina5 Slc12a2 Sox8	peritu	Sertoli, bular, Leyc or interstitia cells	lig al Ste Sig	with factors nadotropin I-cell adhes roids and m nal transdu ictional con	sion eceptors ction	
Adamts2 Apaf1 Bax' Bmp8b Csf1 Cdkn2d	Cyp19a1 Dazi Ddx4 Dnmt3i Etv5 Gdnf	Gja1 Kit Limk2 Nanos2 Pin1 P2rx1	Pi3K Rbp4 Rhox5 SIc19a2 Sohlh2 Stra8	Sycp2, Utp14b Zbtb16	((m	rmatogonia hitosis and poptosis)	and	apoptotic, s l cell cycle m cells		
Adralb Atm Bat3 Bcl2 Bcl6 Bcl2l2 Bcl2l2 Bcl2l1 Bmp8a Brca2	Cdk2 Ccna1 Cks2 Cnb1lp1 Cnot7 Cpeb1 Cstl2t Csda Dazap1	Ercc1 Exo1 Fanca Fkbp6 Fus Gal3st1 Gnpat H2afx H3f3a	Ihpk1 Limk2 Lmna Mei1 Mih1 Mih3 Morc1 Msh4 Msh5	Piwil2 Piwil4 Pms2 Psmc3ip Rad51c Rara Rarb Rec8 Slc25a4		rmatocytes meiosis)	Hor re Ger	romosome airing and s mologous combinatio nomic integ A replicatio	n	
Btrc Bsg Bub1b	Dmc1 Dmrt1 Egr4	Hsf1 Hsf2 Hspa2	Mybl1 Ovol1 Pafah1b2	Sgol2 Siah1a Sic25a4	Smc1b Sohlh1 Stx2	Spo11 Sycp1 Sycp2	Sycp3 Tert Tex11	Tex14 Tex15 Trip13	Ubb Ube2b Ubr2	
Adamts2 Bcl2l2 Cadm1 Camk4 Cib1 Crem Csnk2a Cugbp1	Ddx25 Fndc3a H1fnt Hip1 Ihpk1 Krt9 Lmtk2 Mtap7	Pank2 Pacrg Pafah1b1 Parp2 Piwil1 Prm1 Prm2 Prmd	Ppp1cc Pygo2 Rpb4 Rnf17 Six5 Sic12a2 Sic4a2 Siyx	Tdrd1 Tbpl1 Theg Tlp Tnp1 Tnp2 Ube2b Ybx2		permatids erentiation)	Cyt	l remodelin oplasmic e romatin pao clear conde ermiation	xtrusion kaging	
Ace Acr Adad1 Adam2 Adam3 Apob Bub1 Clgn	Tekt2 Tekt3 Tekt4 Tnp1 Tnp2 Pcsk4 Vdac3	Slc12a2 Spag16 Spag9 Tsn Vipr2 OT Fhl5	Prnd Rhox5 Spg6 Taf7l Morph. Aff4 Agtpbp1	Smpd1 Spem1 Tssk6 Zpbp Zpbp2 Mot. Apob	((m m	ermatozoa naturation, otility and rtilization)	Maturation in genital tract Capacitation Fertilization Nuclear decondensation Hyperactivated motility Sperm, zona and egg penetration			
Csnk2a2 Dnahc1 Egr4 Inpp5b Jund KIhI10 Pebp1 Prm1 Prm2 RbmxI2 Rxrb Ros1 Spnr	Count Adamts2 Arl4 Ahr Apob Cenpb Gamt Gdi1 Hspa4l Pacrg P2rol Rxfp1 Sh2b1	Gmcl1 Nphp1 Prkar1a OAT Apob Brdt Cadm1 Cnot7 Cstf2t Gmcl1 Jam3 Polg	Bbs2 Bbs4 Cd59b Cd81 Csnk2a2 Gba2 Gopc Gml01 Hrb Hook1 II2m Sepp1 Sept4	Agtpbp1	Filr Gapdhs Gm101 Inpp5b Ldhc Lrp8 Mthfr Nsun7 Pcsk4 Pla2g4c Pgs1 Pltp	Pold4 Prkaca Prkar1a Ros1 Sirt1 Sic9a10 Smcp Spag6 Sultle1 Taldo1 Tcf21 Tekt2	Tetk3 Tetk4 Tek118 Tgfb1 Theg Vdac3 Fer. Acr Ace Adam2 Adam3	B4gait1 Cadm1 Camk4 Cib1 Cplx1 Crem Crisp Fndc3a HexbB Mfge8 Mme11 Pgap1	Piwil1 Picb1 Picd4 Prnd Pvrl2 Rasip1 Rbmxl2 Spam1 Tyst2 Wipf3 Zpbp	
Acvr2a Adora1 Aire Amh Amhr2 Ar Atf4 Bcl2l1	Cpe Crtc1 Crybb2 Csf1 Csf2 Cux1 Cyp11a1 Ddr2	Fancl Fgt9 Fkbp4 Fos Foxa3 Fmr1 Fshb Fshr	H3f3a HexbB Hoxa10 Hoxa11 Hnf1a Immp2l Inha Insl3	Lhb Lhogr Limk2 Lipe Lrp8 Mark2 Mc4r Mtmr2	Other fertility defects		>			
Blimp1 Bmp4 Bmp8a Bmp8b Ccnd2 Cdkn2d Cdkn2d Cdkn1b Cdkn1c Cenpb Cga	Dhcr24 Ddr2 Ddx4 Dmrt1 Egr1 Emx2 Esr2 Fanca Fanca Fancc Fancg	Gdf7 Gdi1 Ggt1 Ghr Gja1 Gnrh Gnrh5 Gnrhr1 Gpr64	lgf1 Insr Kiss1r Kits Kit Lep Lepr Lfng Lgr4	Nanos2 Nanos3 Ncoa1 Ncoa6 Nhlh2 Nhlh2 Nmp4 Nos1 Npc1 Nr0b1	Nr2cC2 Nr5a1 Ncoa1 Otx1 Oxt Oxtr Pax8 Ppm1d Prdm1	Piga Poulll Prop1 P2rx1 Pcyt1b Rad23b Rara Rxrb Rec8	Rxfp2 Sbf1 Serpine2 Smad1 Smad5 Sprm1 Sox3 Stat3 Sclc19a2	Sh2b1 Sp4 Star Stat3 Strpb Taf4b Tert Tial1 Top3b	Ube3a Utp14b Vdr Vhlh Wnt7a Wt1 Zfx Zbtb16	

Our first collaborative paper that includes CRISPR/Cas9


(PNAS July 12, 2016)

Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice

Haruhiko Miyata^{a,1}, Julio M. Castaneda^{b,c,d,1}, Yoshitaka Fujihara^{a,1}, Zhifeng Yu^{b,e,1}, Denise Archambeault^{b,c,d}, Ayako Isotani^f, Daiji Kiyozumi^f, Maya L. Kriseman^{b,d}, Daisuke Mashiko^{a,g,2}, Takafumi Matsumura^{a,h}, Ryan Matzuk^b, Masashi Mori^a, Taichi Noda^a, Asami Oji^{a,h}, Masaru Okabe^a, Renata Prunskaite-Hyyrylainen^{b,d,i}, Ramiro Ramirez-Solis^j, Yuhkoh Satouh^a, Qian Zhang^{a,3}, Masahito Ikawa^{a,f,g,h,4}, and Martin M. Matzuk^{b,c,d,e,k,l,4}


^aResearch Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; ^bDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; ^cDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; ^dCenter for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030; ^dCenter for Reproductive Frontier Research Center, Osaka University, Suita, Osaka 5650871, Japan; ^gGraduate School of Medicine, Osaka University, Suita, Osaka 5650871, Japan; ^gGraduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871, Japan; ^gGraduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871, Japan; ^hGraduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871, Japan; ^gGraduate School of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; ^jWellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom; ^kDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; ^a

Strategy to characterize these mice

Our population continues to grow... 7.7 billion in the world today

(Net gain of one person every 16 seconds)

Castaneda and Matzuk, Science 2015

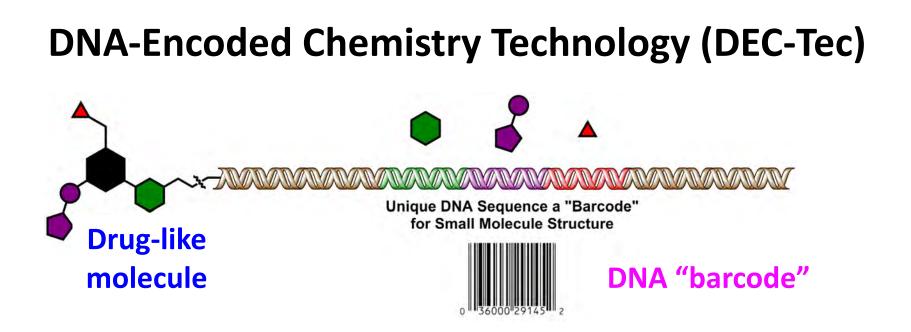
Contraception

1 million U.S. teenagers get pregnant yearly, 50% end in abortion, and the costs to US taxpayers is ~\$10 billion per year

There are still no oral contraceptives for men

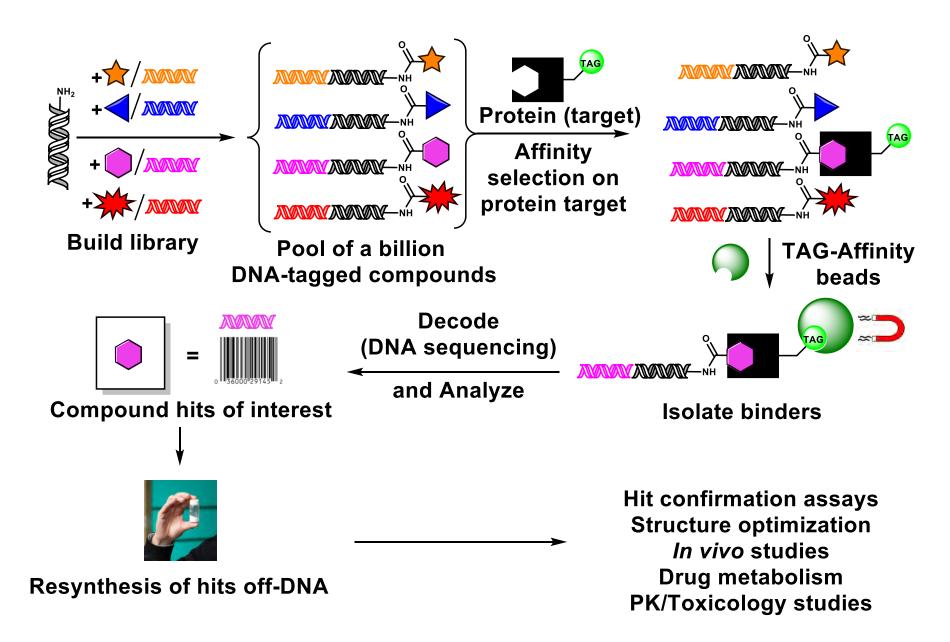
Center for Drug Discovery (CDD)

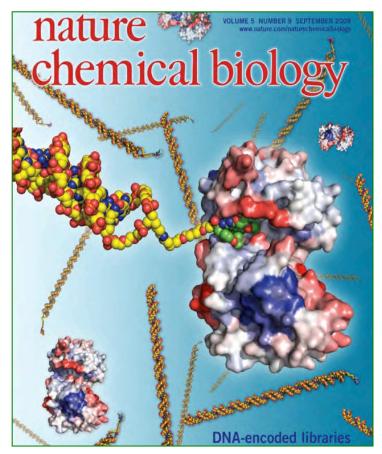
https://www.bcm.edu/research/centers/drug-discovery


<u>Mission</u>: To develop small molecule probes, preclinical candidates, and drugs for researchers and clinicians in Texas and beyond.

Creating unique compound collections for screening

HTS collections often yield this...

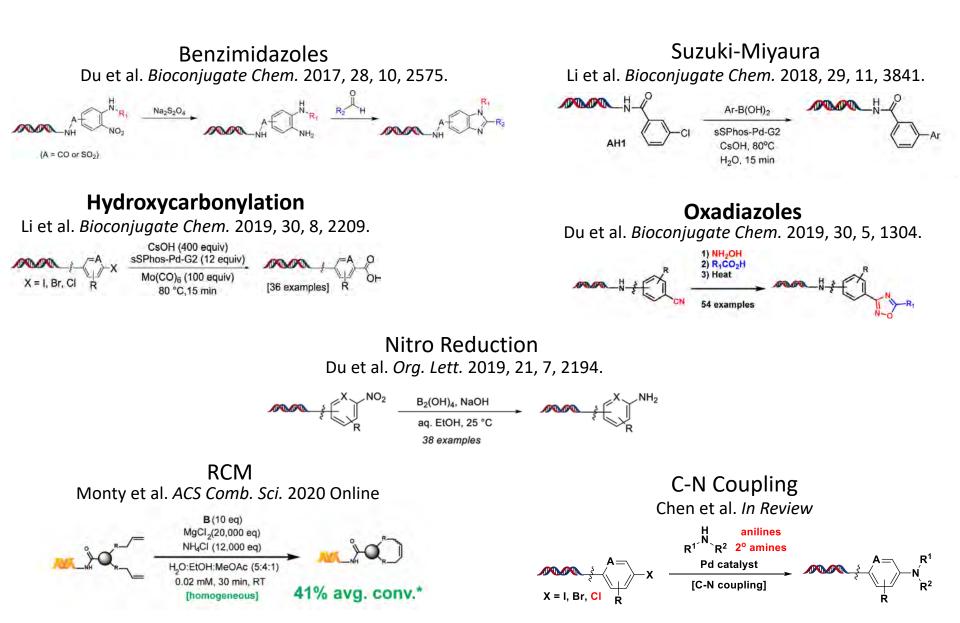

Effective drug discovery requires this...


- Synthesize millions of drug-like molecules via combinatorial chemistry
- Unique DNA "barcodes" enable screens of complex mixtures
- Screen pooled compounds for binding affinity, and then sequence DNA
- Enables wider, cheaper screens than High-Throughput Screening (HTS)

The DEC-Tec Process

DNA-Encoded Chemistry Technology (DEC-Tec)

 Billions of small molecules are screened simultaneously against drug target protein


Clark et al. 2009

 Like finding a drug-like needle in a billion compound haystack

CDD@BCM's contributions to DEC-Tec

On-DNA Chemistry Development

>40 DEC-Tec libraries and >4 *billion* unique compounds synthesized

- Libraries may be screened as a pool and at scales for thousands of screens
- Diverse library structures
- Many have produced assay validated hits
- Designed with SAR in mind
- Many libraries utilize internally developed BCM chemical conditions
- CDD has a team of geneticists, biologists, cheminformaticians, chemists, and crystallographers for validation, DEC-Tec screens, and further workup of small molecule hits and leads.

NRI centrally located on the TMC Campus: Suite for NMRs & CDD home

- Bruker 600MHz and 800MHz NMRs for drug discovery, structural biology, and metabolomics (2nd floor of NRI)
- 6th floor of NRI developed for the Center for Drug Discovery

Our CDD Team...a multidisciplinary group of students, postdocs, staff scientists, and faculty

10 Points of Advice for Trainees (and New Faculty)

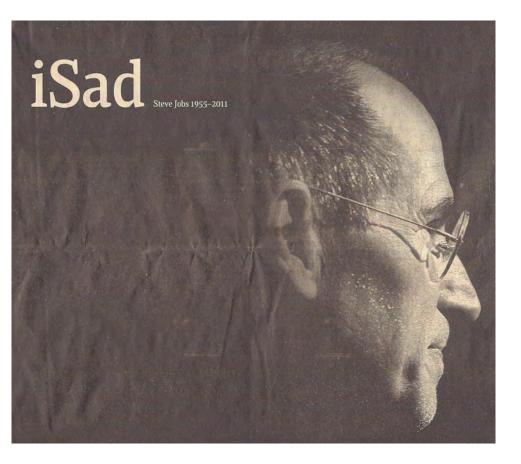
Points 1-3 – Work Ethic

Work hard at the bench – you cannot get *lucky* during your PhD or post-doc or faculty years if you do not perform experiments and work hard

(Do <u>not</u> let emails, texts, and internet surfing control your life and prevent you from your goals)

Work a few hours on Saturday and Sunday when it is quiet, and there are fewer distractions (fewer emails, phone calls, etc. – this will allow you to complete studies from Friday and start or think about studies for Monday

Bring your work to completion (i.e., a paper)


Points 4, 5, and 6 – Risk, Creativity, and Perseverance

Take risks and think outside the box

Find your niche – you do not have to do the same thing as everyone else – Novelty helps get your paper published in a top tier journal

Not all papers and grants get accepted/funded on the first or second try

Message to trainees

"Your time is limited, so don't waste it living someone else's life."

"Don't let the noise of others' opinions drown out your own inner voice."

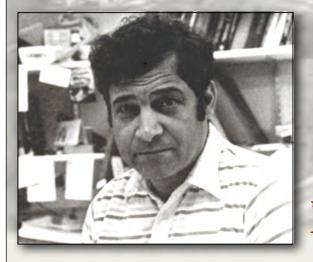
"And most important, have the courage to follow your heart and intuition."

In 1994, I submitted an NIH grant to generate a knockout of GDF9. One critique said "There is no known function of GDF9. Why do a KO?" In 1995, we resubmitted the NIH grant showing that GDF9 KO mice were infertile, and the grant is funded through the present and received a MERIT award in 2001. Our GDF9 KO paper in *Nature* in 1996 is my most cited work.

達磨 daruma – Perseverance and Great Luck!

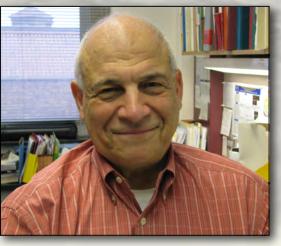
Point 7 - Collaborate

Seek out experts with whom to collaborate


I Have Been Lucky to Publish with Great Colleagues and Trainees...

Raj Kumar	36
Kathy Burns	29
Stephanie Pangas	21
Wei Yan	17
Qinglei Li	16
Aleks Rajkovic	13
Shannon Hawkins	11
Franco DeMayo	16
John Eppig	15
Chad Creighton	9
Dorrie Lamb	7

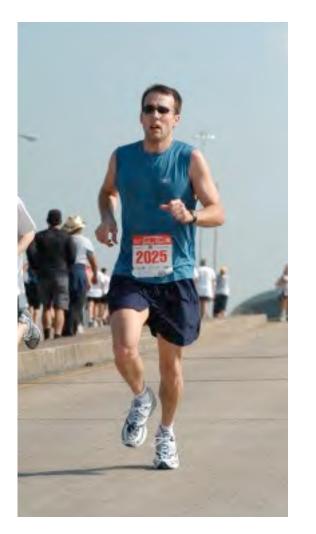
Point 8 - Mentorship


Stay in touch with your mentors and do not burn bridges – your mentors can still give you advice and help you at all stages of your career (including writing LOR)

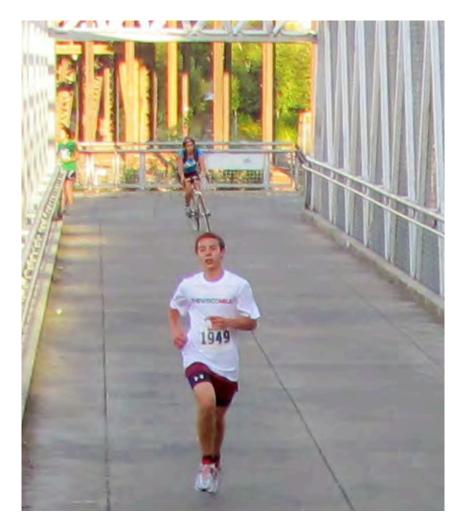
Edward Mallinckrodt Department of Pharmacology to Developmental Biology 100 Years of Innovative Science and Excellence in Mentoring

Washington University in St.Louis School of Medicine

Dr. Irving Boime



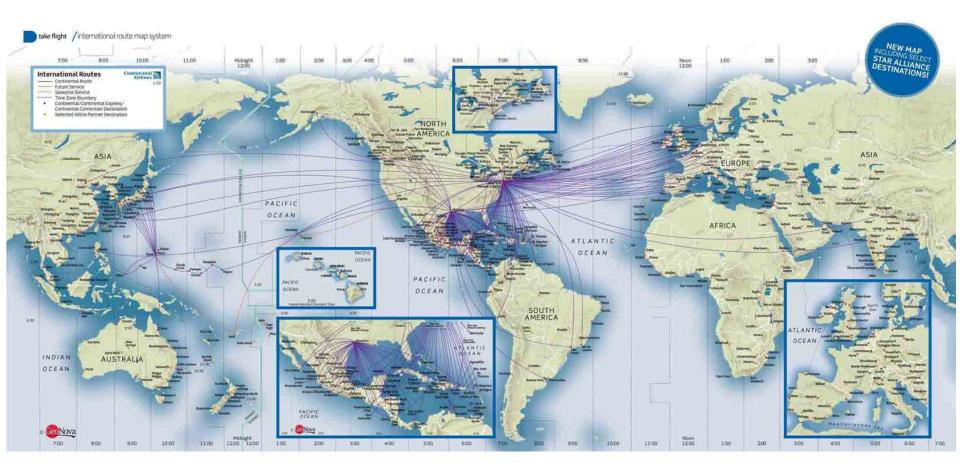
Point 9 – EXERCISE


Exercise – your quality of life will be better and you can keep up with (and *sometimes* out swim!) your children

Exercise

Mark Edson Former MSTP student

Ryan Matzuk SSR 5K - 2011 PORTLAND


Points 10 – Play hard and have fun

Play hard – forget about your work for awhile and clear your head for a little while

Do something with family or friends <u>every day</u> – it is easy to become consumed with your work

My Trainees LOVE All-You-Can-Eat Buffets

Travels since arriving in Houston >170 symposia in 27 countries

